--PAGE_BREAK--Уравнения с разделяющимися переменными
Дифференциальное уравнение называется уравнением с разделяющимися переменными, если его можно записать в виде.
Такое уравнение можно представить также в виде:
Перейдем к новым обозначениям
Получаем:
После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными.
Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.
--PAGE_BREAK--
Постоянные коэфициенты
Если y1 и y2 – линейно независимые частные решения линейного однородного уравнения второго порядка , то общее решение данного уравнения есть линейная комбинация этих частных решений, т.е. общее решение уравнение имеет вид
Где C1 и C2 – произвольные постоянные.
Пусть линейное однородное дифференциальное уравнение
имеет постоянные коэффициенты pи q.
Будем искать частное решение данного уравнения в виде
Где k – постоянное число, которое нужно найти. Дифференцируя получаем
и .
Подставляя и в уравнение, получим
или, сокращая на множитель , который не равен нулю, находим
которого определяется число k, называется характеристическим уравнением данного линейного уравнения второго порядка с постоянными коэффициентами
--PAGE_BREAK--
Статистическое определение вероятности.
Статистической вероятностью события А называется число, около которого колеблется относительная частота события А при достаточно ьольшом числе испытаний (опытов).
Вероятность события А обозначается символом Р(А). Согласно данному определению Р(А)≈ Р*(А) = nA/n, где nA– число наступления событий в данном испытании, n– общее кол-во испытаний.
Свойства:
1.Вероятность любого события заключена между 0 и 1, т.е. 0 ≤ Р(А) ≤ 1
2.Вероятность невозможного события равна 0, т.е. Р(ᴓ) = 0
3.Вероятность достоверного события равна единице, т.е. Р(Ω) = 1.
4.Вероятность суммы несовместных событий равна сумме вероятностейэтих событий, т.е. если А*В =ᴓ, то Р (А + В) = Р (А) + Р(В)
Классическое определение вероятности.
Пусть проводится опыт с nисходами, которые можно представить в видепоолной группы несовместных равновозможных событий. Такие исходы называются случаями, шансами, элементарными событиями, опыт – классическим. Случай w, который приводит к наступлению события А, называется благоприятным (или – благоприятствующим) ему, т.е. случай wвлечет за собой событие А.
Вероятностью события А называется отношение числа mслучаев, благоприятсвующих этому событию, к общему числу nслучаев, т.е. Р(А) = m/n, где m–кол-во случаев благоприятствующих этому событию, n–кол-во всех событий.
Свойства:
1. Вероятность любого события заключена между 0 и 1, т.е. 0 ≤ Р(А) ≤ 1
2. Вероятность невозможного события равна 0, т.е. Р(ᴓ) = 0
3. Вероятность достоверного события равна единице, т.е. Р(Ω) = 1.
4. Вероятность суммы несовместных событий равна сумме вероятностейэтих событий, т.е. если А*В =ᴓ, то Р (А + В) = Р (А) + Р(В)
Пример: В урне 12 белых и 8 черных шаров. Какова вероятность того, что на удачу вынутый шар будет белым?
Пусть А – событие, состоящее в том, что вынут белый шар. Ясно что n= 12+8=20 – число всех возможных случаев. Число благоприят –х событию А, равно12. След-но по формуле Р(А) = 12/20 = 0,6.
Геометрическое определение вероятности.
Геометрической вероятностью события А называется отношение площади области Dк площади области Ω, т.е. Р(А) = SD/SΩ.
Геометрическое определение вероятности события применимо и в случае, когда области ΩиDобе линейные и объемные. В первом случае Р(А) = lD/lΩ. Во втором Р(А) = VD/VΩ, где l– длина, V– объем соответствующей области.
Все три формулы можно записать в виде Р(А) = mesD/mesΩ, где mes– мера (S,l,V) области.
Свойства:
1.Вероятность любого события заключена между 0 и 1, т.е. 0 ≤ Р(А) ≤ 1
2.Вероятность невозможного события равна 0, т.е. Р(ᴓ) = 0
3.Вероятность достоверного события равна единице, т.е. Р(Ω) = 1.
4.Вероятность суммы несовместных событий равна сумме вероятностейэтих событий, т.е. если А*В =ᴓ, то Р (А + В) = Р (А) + Р(В)
--PAGE_BREAK--