--PAGE_BREAK--
1.Теоритические и методические основы моделирования экономических процессов в сельскохозяйственном производстве
Экономико-математические методы представляют собой совокупность математических методов (математического программирования, теории вероятностей, теории массового обслуживания, теории игр, сетевых методов, математической статистики и др.), применяемых при решении разных экономических задач в науке и практике. Однако получение какого-либо количественного результата еще не дает оснований для его немедленного использования в практике планирования и управления народным хозяйством. Необходимо понять качественную природу этого результата. Если этого не учитывать, то полученные решения, будучи идеальными с математической точки зрения, могут оказаться совершенно неприемлемыми с экономической. Если такие понятия, как «математический экстремум» и «экономический оптимум», не совпадают, то результаты экономико-математических расчетов будут условными, абстрактными и, следовательно, практически неприемлемыми. Таким образом, при использовании экономико-математических методов экономической теории принадлежит основная роль, а математике, математическому аппарату — служебная, вспомогательная.
Разработкой и внедрением экономико-математических методов в практику планирования и управления сельским хозяйством занимаются многие научно-исследовательские учреждения и сельскохозяйственные вузы России.
В сельском хозяйстве экономико-математические методы используются по трем основным направлениям:
разработка и решение экономико-математических задач внутрихозяйственного анализа и планирования;
разработка и решение экономико-математических задач на уровне агропромышленных объединений и отдельных звеньев агропромышленного комплекса;
разработка и решение экономико-математических задач отраслевого анализа и планирования.
Разработаны и успешно решаются задачи первого направления, поскольку необходимая для их разработки информация более доступна и достоверна. Решение этих задач на ЭВМ не представляет больших трудностей и не требует усилия больших коллективов. К задачам первого направления относятся следующие задачи оптимизации: использование кормов на фермах и в хозяйствах; использование минеральных и органических удобрений; состав и использование машинно-тракторного парка; транспортные перевозки внутри хозяйства; планы развития животноводства; планы развития растениеводства; производственная структура сельскохозяйственного предприятия; внутрихозяйственное размещение и специализация производства по отделениям, фермам, бригадам и другим подразделениям; планы организационно-хозяйственного устройства сельскохозяйственных предприятий.
Задачи второго направления использования экономико-математических методов, возникшего в связи с организацией агропромышленных объединений, включают задачи оптимизации не только производства продукции сельского хозяйства, но и ее промышленной переработки внутри объединения.
Третье направление использования экономико-математических методов связано с разработкой и решением задач развития отдельных отраслей сельского хозяйства и агропромышленного комплекса в целом на уровне области, края, республики и страны. Задачи этого направления могут быть разработаны и решены только с участием больших коллективов, иногда даже несколько научно-исследовательских институтов.
Основная задача работ этого направления — оптимальное размещение и специализация сельскохозяйственного производства по регионам. Результаты решения подобных задач по отдельным крупным регионам страны показали их высокую эффективность. К этому же направлению относится задача оптимизации закупок сельскохозяйственных продуктов по хозяйствам, районам областям и республикам. Необходимо разрабатывать задачи оптимального развития агропромышленных объединений областного и республиканского уровней. Успешное решение подобных задач будет способствовать повышению эффективности работы агропромышленного комплекса страны.
Основной метод исследования — метод моделирования экономических процессов в сельском хозяйстве, который и определяет комплекс различных приемов, получивших широкое распространение в науке и практике в последние годы.
Под моделированием понимают процесс построения моделей, с помощью которых изучают функционирование (поведение) объектов различной природы.
В самом общем смысле модель — это условный образ, схема объекта исследования. Понятие «модели» связано с наличием сходства между двумя объектами, один из которых может рассматриваться как оригинал, а другой — как его модель. Степень соответствия модели объекту моделирования может быть различной. Модель является важным инструментом научной абстракции, позволяющим выделить в процессе исследования наиболее существенные характеристики изучаемого объекта. В некоторых случаях модель может быть внешне схожа с моделируемым объектом, но отличается от него какими-либо параметрами (размерами, скоростью передвижения и т.д.). Такие модели принято называть физическими (модель самолета, корабля, гидроэлектростанции, планетарий и т.д.). Физическое моделирование успешно используется в науке и технике. Однако физическое моделирование может быть использовано не во всех случаях. Если необходимо изучить объекты или системы достаточно большой сложности, физическая модель заменяется абстрактной, математической, в которой описываются количественные характеристики системы. Математические модели используются в самых различных областях человеческого знания.
Математическое моделирование универсальный и эффективный инструмент познания внутренних закономерностей, присущих явлениям и процессам. Математическое моделирование позволяет изучить количественные взаимосвязи и взаимозависимости моделируемой системы и совершенствовать ее дальнейшее развитие и функционирование. Но для того, чтобы моделирование стало действенным инструментом познания, необходимо правильно построить математическую модель, адекватную изучаемой системе. Математическая модель представляет собой систему математических формул, неравенств или уравнений, с большей или меньшей точностью описывающих явления и процессы, происходящие в оригинале.
Поскольку одни и те же символы и обозначения позволяют описать самые различные процессы, математическая модель широко применяется в науке и практике. Кроме того, она позволяет абстрактно (в общем виде) представить или описать большое количество сложных процессов и явлений. Экономические процессы и явления исследуются с помощью экономико-математических моделей, введенных в практику экономических исследований в нашей стране академиком В.С. Немчиновым.
Сущность экономико-математической модели в сжатой и емкой форме выразил В.С. Немчинов: «Экономико-экономическая модель представляет собой концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме»[1].
Среди различных систем наиболее сложными являются экономические, правильно описать которые можно лишь в том случае, если достаточно подробно, хорошо познаны количественные связи между отдельными факторами и степень их влияния друг на друга и на конечные результаты производств. Поэтому модель должна с большей или меньшей точностью отражать реальные процессы и взаимосвязи экономической системы и ограничения, накладываемые на нее внешними условиями. Модель должна опираться на достоверную информацию. Однако не одна, даже сложная и большая модель не может до мельчайших подробностей отразить все стороны моделируемой системы. Да в этом и нет особой надобности. Поэтому в процессе построения модели не следует стремиться к описанию многочисленных связей, присущих моделируемой системе, поскольку не всегда точно известно количественная природа всех связей и зависимостей исследуемой системы; кроме того, это может так усложнить и перегрузить модель, что решения с ее помощью конкретной экономической задачи окажется невозможной. Поэтому математическое моделирование предполагает абстрагирование, отвлечение от несущественных сторон моделируемого объекта и, следовательно, описание наиболее характерных закономерных черт его. Однако и абстрагирование имеет свои пределы, за которыми модель становится слишком условной, что не позволяет получить практически приемлемое решение. Следовательно, в процессе моделирования необходимо определить пределы абстрагирования. При этом надо помнить, что любая экономико-математическая модель представляет собой диалектическое единство количественной и качественной характеристик экономического явления. Отсутствие такого единства или нарушение его в модели может привести к нежелательным, а следовательно, и к практически непригодным решениям.
Таким образом, искусство моделирования состоит в том, чтобы, глубоко изучив и поняв качественную природу явления, суметь отразить ее в математической количественной форме, сохранив основные черты явления и отбросив несущественное.
Для изучения экономических процессов, происходящих в народном хозяйстве страны используются и другие методы, например метод научных экспериментов. Однако, как показывает опыт, дешевле и быстрее разработка экономико-математической модели. Решение ее на ЭВМ не зависит от конкретных условий хозяйства, его территориальной удаленности, времени года и других внешних факторов, и решение возможно до тех пор, пока не будут получены объективные, обоснованные практические результаты. Следует отметить, что возможно применение уже готовых типовых (базовых) моделей, экспериментально проверенных и дающих высокий эффект. Такими моделями, как правило, являются модели линейного программирования. Когда поставленная экономическая проблема не может быть решена с помощью ни одной из известных моделей, создается оригинальная модель, которая в дальнейшем проходит все необходимые стадии, вплоть до практической апробации, и только после этого рекомендуется в производство[2].
Процесс экономико-математического моделирования можно условно разделить на ряд отдельных, но взаимосвязанных этапов:
постановка задачи и обоснование критерия оптимальности;
разработка структурной математической модели;
сбор и обработка исходной информации;
построение развернутой матрицы задачи (числовой модели);
решение задачи на ЭВМ, анализ и корректировка его.
Рассмотрим более подробно сущность каждого из этих этапов.
Постановка задачи и обоснование критерия оптимальности. На этом этапе требуется, прежде всего, четкая формулировка задач, раскрывающая известные и не известные параметры и цель задачи. Постановка задачи должна свидетельствовать о хорошем знании объекта моделирования.
Критерий оптимальности должен, как правило, соответствовать основной цели экономической системы. Однако путем формулировки одного критерия оптимальности это не всегда возможно. Поэтому в задачу вводят дополнительные ограничения или решают ее последовательно на несколько критериев оптимальности, а затем с помощью сравнительного анализа полученных вариантов решений выбирают тот, который наилучшим образом отвечает поставленным целям.
Как отмечалось, правильная постановка задачи невозможна без предварительного глубокого количественного и качественного анализа моделируемой системы. Такой анализ позволяет точнее выявить условия, в которых функционирует система, и определить степень влияния одного или нескольких существенных факторов на экономические результаты. Анализировать экономические явления и процессы не просто, а в данном случае ставится задача довести до численных характеристик анализируемые явления и процессы. Только при соблюдении этих условий возможно правильно поставить задачу и получить практические результаты.
Разработка структурной математической модели. На этом этапе выбирается базовая модель и в соответствии с поставкой задачи с использованием определенных символов и обозначений записывается математическая модель. В линейном программировании разработаны две базовые модели — модель общей задачи линейного программирования, называемая моделью симплексного метода, и модель транспортной задачи, или модель распределительного метода. На основе этих базовых моделей в зависимости от конкретной постановки задачи записывается математическая модель. Отражающая структуру будущей задачи, ее композицию — структурная модель. Структурная модель позволяет в ёмкой и сжатой форме отразить характер поставленной задачи и условия, включенные в нее. При разработке структурной модели целесообразно использовать унифицированные символику и порядок описания модели.
Сбор и обработка исходной информации. Процесс сбора и обработки исходной информации более сложный и трудоемкий. На этом этапе определяются характер и объем необходимой информации, источники ее получения и способы обработки.
В значительной степени получаемый результат зависит от качества исходной информации. Если даже одна — две цифры, включенные в задачу, будут неверными, то весь результат решения окажется неприемлемым.
При разработке экономико-математических задач самая трудоемкая работа — расчет технико-экономических коэффициентов затрат и выхода продукции. Если на решение задачи на ЭВМ затрачивается 20-30 мин, то на разработку информации — один — два месяца напряженной работы.
Построение числовой матрицы задачи (числовой модели). Матрица представляет собой запись в табличной форме, в которой условия задачи отражены в виде линейных соотношений. Матрица состоит из столбцов и строк. По столбцам матрицы располагаются, как правило, переменные величины, т.е. искомые значения отраслей сельскохозяйственного производства, по строкам — условия задачи, которые называются ограничениями. Технико-экономические коэффициенты матрицы могут означать либо норму затрат, либо норму выхода продукции в расчете на единицу измерения переменной величины. Но каждая матрица содержит особый столбец, в котором отражаются тип и объем ограничений, и особую строку, в которой располагается целевая функция задачи.
Таким образом, развернутая матрица представляет собой задачу, подготовленную к решению на ЭВМ. Обычно матрица строится в соответствии с принятой на вычислительном центре программой расчета. Матрица этой задачи имеет следующий вид:
В таком виде матрица передается для решения на ЭВМ в вычислительный центр.
Анализ и корректировка полученного на ЭВМ решения. Анализ решения проводит постановщик задачи, который должен овладеть определенными навыками и приемами анализа.
Анализ должен определить реальность полученного решения, возможность практического использования этого решения в хозяйстве, необходимость корректировки решения и направление корректировки. Корректировка решения может быть проведена с использованием коэффициентов последней симплексной таблицы. Однако если первоначальные параметры задачи изменяются, необходимо повторное решение ее на ЭВМ. Процесс продолжается до тех пор, пока не будет получено практически приемлемое решение[3].
2. Разработка экономико-математической модели по оптимизации отраслевой структуры производства в СХА «Горизонт»
2.1. Постановка задачи
За сельскохозяйственной артелью «Горизонт» закреплено 4460 га сельскохозяйственных угодий, в том числе 3195 га пашни, 755 га сенокосов и 510 га пастбищ. В хозяйстве возделывается большинство сельскохозяйственных культур, характерных для центрально-черноземной зоны. Животноводство представлено молочным скотоводством. Фактическое поголовье фуражных коров составляет 500 голов со шлейфом, соответствующим организации стада с замкнутым циклом воспроизводства.
Хозяйство заключило договора на реализацию сельскохозяйственной продукции в следующих объемах: пшеницы — 21300 ц, ячменя — 8520 ц, овса — 2130 ц, гороха — 2663 ц, гречихи — 639 ц, сахарной свеклы — 109000 ц, подсолнечника — 3941 ц., молока — 11900 ц., мяса КРС в живом весе — 1620 ц.
При оптимизации отраслевой структуры производства необходимо найти такое сочетание отраслей, которое обеспечило бы максимально возможную эффективность производства при условии соблюдения всех агротехнических и зооветеринарных требований, выполнении договорных обязательств по реализации продукции, гарантированного обеспечения отраслей животноводства кормами собственного производства.
Поскольку основной целью любой коммерческой организации является получение максимально возможной суммы прибыли, то в данной задаче критерием оптимальности будет являться максимизация суммы чистого дохода, определяемого как разность между стоимостью товарной продукции и общей суммой производственных затрат по предприятию.
2.2. Подготовка входной информации
Для разработки экономико-математической модели данной задачи необходимо подготовить следующую информацию:
· размер площади пашни, пастбищ и сенокосов;
· перечень сельскохозяйственных культур, возделываемых в данном предприятии;
· планируемый уровень урожайности сельскохозяйственных культур, нормы высева семян;
· виды сельскохозяйственных животных, их поголовье, продуктивность, нормы и рационы кормления;
· питательность кормов;
· материально-денежные затраты и затраты труда в расчете на 1 га посева или одну структурную голову сельскохозяйственных животных;
· объемы реализации продукции по договорам;
· цены реализации товарной продукции;
· агротехнические требования и возможные пределы насыщения севооборотов отдельными сельскохозяйственными культурами.
При подготовке входной информации необходимо обосновать уровень урожайности сельскохозяйственных культур, на основе расчета технологических карт определить нормативный уровень производственных затрат и затрат труда по каждой сельскохозяйственной культуре. Информация о планируемых уровнях урожайности сельскохозяйственных культур, затратах материально-денежных средств и труда в расчете на 1 га приведены в таблице 1.
--PAGE_BREAK--