Реферат по предмету "Математика"


Проверка истинности моделей множественной регрессии

Министерство образования и науки Российской Федерации
Государственное образовательное учреждение высшего профессиональногообразования
АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им.И.И. ПОЛЗУНОВА
ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ РЕГИОНАЛЬНЫМ РАЗВИТИЕМ
Расчётное задание
по дисциплине: Эконометрика
Проверка истинности моделей множественной регрессии
Выполнил:
Филатов М.И.
2010

Исходныеданные Численность студентов (на 1000 человек населения) Динамика Валового Внутреннего Продукта (в постоянных ценах) Динамика валового накопления основного капитала (в постоянных ценах) x1 y x2 Россия 64 131,2 103 Австралия 50 123 169 Австрия 29 117 115 Азербайджан 22 177,3 103,4 Армения 34 184,1 263,5 Беларусь 195 164,9 162,2 Бельгия 39 115 120 Венгрия 42 139 178 Германия 28 110 102 Грузия 42 169,3 112,4 Дания 40 114 134 Италия 34 111 125 Казахстан 61 163,4 126,7 Канада 42 121 156 Киргизия 46 134,7 83,3 Китай 15 184 420 Мексика 22 122 175 Нидерланды 33 119 129 Норвегия 47 120 130 Польша 54 140 154 Республика Молдова 34 129,1 134,1 Румыния 32 115 132 Соединенное Королевство Великобритания 38 122 146 США 58 117 143 Таджикистан 21 116,4 143,5 Украина 51 122,7 122,6 Финляндия 58 130 154 Франция 36 115 129 Швеция 48 121 129 Япония 32 105 91¹
Все данные взяты за2003 год. Данные взяты из статистического сборника Регионы России Социально-экономическиепоказатели.
2003. Федеральнаяслужба государственной статистики Построение моделимножественной регрессии
Расчет параметров
Рассчитаем необходимыепараметры:Признак Ср. знач. СКО Характеристики тесноты связи
βi
bi
/> Коэф-ты частной корр. F-критерий фактический Табличный F-критерий y 131,77 22,74
Ryx1x2=0,5963 x1 44,9 30,41
ryx1=0,2152 0,2639 0,1973 0,0672
ryx1х2=0,3112
Fx1факт=2,8954 4,21 x2 146,19 60,57
ryx2=0,5353 0,5583 0,2097 0,2326
ryx2х1=0,5695
Fx2факт=12,95 4,21
rx1x2=-0,0872 a=92,26
rx1х2у=-0,2453
Fфакт=7,45 3,35
Уравнение регрессии встандартизованном масштабе:
ty=2639tx1+0,5583tx2
Уравнение множественнойрегрессии в естественной форме:
yтеор=92,26+0,1973x1 +0,2097x2
Рассчитаем по этойформуле теоретические значения динамики ВВП и определим среднюю ошибкуаппроксимации. Она равна 9,5254.

Выбор фактора,оказывающего большее влияние
1. Динамика валовогонакопления основного капитала оказывает большее влияние на динамику ВВП, чемчисленность студентов, так как
|β2|=0,5583> |β1|=0,2639.
2. С помощью среднихкоэффициентов эластичности можно оценить относительную силу влияния динамикивалового накопления основного капитала (х2) и числа студентов (х1)на динамику ВВП (у):
/>=0,0672, />=0,2326,
следовательно, сувеличением валового накопления основного капитала на 1% от ихсреднего значения, динамика ВВП возрастает на 0,23% от своего среднегозначения. А при увеличении числа студентов на 1% от своего среднего значения,динамика ВВП увеличится на 0,067% от своего среднего значения. Очевидно, чтосила влияния второго фактора (динамики валового накопления основного капитала)на результативный признак (динамику ВВП) значительно больше, чем сила влиянияпервого фактора (числа студентов).
3.Сравниваякоэффициенты парной и частной корреляции
ryx1 0,2152
ryx2 0,5353
ryx1x2 0,3112
ryx2x1 0,5695
Коэффициенты парной ичастной корреляции отличаются незначительно что говорит о слабой межфакторнойсвязи. Связь между динамикой валового накопления основного капитала и динамикойвалового внутреннего продукта (связь прямая и средне тесная) выше, чем связьмежду числом студентов и динамикой ВВП (связь прямая слабая).
4. По коэффициентумножественной корреляции: Rуx1x2=0,5963 можно сделать вывод, чтозависимость динамики ВВП от динамики валового накопления основного капитала ичисла студентов характеризуется как средне тесная, в которой 59,63% вариациирезультативного признака определяется вариацией учтённых в модели факторов.Прочие факторы, не включённые в модель, составляют соответственно 35,56% отобщей вариации.
4.Так как F – критерий Фишерапревышает табличное значение:
Fфакт=7,45>Fтабл=3,35
то можно говорить остатистической значимости и надёжности уравнения регрессии.
5. Сравнивая частные F– критерии фактические с пороговой константой Fтабл=4,21,делаем вывод: Fх2факт=12,95> Fтабл,следовательно статистически подтверждена целесообразность включения в модельдинамики валового накопления основного капитала, после числа студентов, т.к.этот фактор оказывает большее влияние.
Построение парныхмоделей регрессии
Представим данныеполученные при построении парных моделей в таблице:Модель Aср. r (ρ) Уравнение
Fфакт Линейная 10,89 0,5353
у=102,38+0,201х1 11,24 Степенная 11,008 0,4934
у=38,26×х10,2481 9,01 Показательная 10,47 0,5350
у=106,53×1,001х1 11,23 Гиперболическая 12,59 0,3786
у=165,92-4546,04/х1 4,68
Определение лучшеймодели
1. Недопустимуюошибку аппроксимации имеют все 4 модели, однако у показательной модели онанаименьшая, это говорит о том что линейная модель лучше аппроксимирует исходныеданные чем остальные модели.
2. У линейной моделитеснота связи самая сильная по сравнению с другими моделями. Это говорит о том,что показательная модель лучше подходит к нашим данным.
3. Проверив гипотезу остат. значимости и надежности, получив значения Fфактбольше табличного во всех случаях, получаем, что все 4 уравнения являются стат.значимыми и надежными. Хотя линейная модель имеет наибольшее Fфактпо сравнению с другими моделями, это говорит о большей точности линейноймодели.
По двум показателямлинейная модель лучше остальных, это говорит о том, что линейная модель лучше аппроксимируетисходные данные. Однако множественная модель, на мой взгляд, лучшеаппроксимирует данные, чем линейная, потому что множественная модель имеетдопустимую ошибку аппроксимации и большую тесноту связи.
/>
Проверка предпосылокМНК
1.Первую предпосылкупроверим путём вычисления суммы значений остатков:x1 x2 y x1x2 yx1 yx2 y^x y-y^x 64 103 131,2 6592 8396,8 13513,6 126,48 4,72 50 169 123 8450 6150 20787 137,56 -14,56 29 115 117 3335 3393 13455 122,09 -5,09 22 103,4 177,3 2274,8 3900,6 18332,82 118,28 59,02 34 263,5 184,1 8959 6259,4 48510,35 154,21 29,89 195 162,2 164,9 31629 32155,5 26746,78 164,75 0,15 39 120 115 4680 4485 13800 125,11 -10,11 42 178 139 7476 5838 24742 137,87 1,13 28 102 110 2856 3080 11220 119,17 -9,17 42 112,4 169,3 4720,8 7110,6 19029,32 124,11 45,19 40 134 114 5360 4560 15276 128,25 -14,25 34 125 111 4250 3774 13875 125,18 -14,18 61 126,7 163,4 7728,7 9967,4 20702,78 130,86 32,54 42 156 121 6552 5082 18876 133,25 -12,25 46 83,3 134,7 3831,8 6196,2 11220,51 118,80 15,90 15 420 184 6300 2760 77280 183,27 0,73 22 175 122 3850 2684 21350 133,29 -11,29 33 129 119 4257 3927 15351 125,82 -6,82 47 130 120 6110 5640 15600 128,79 -8,79 54 154 140 8316 7560 21560 135,20 4,80 34 134,1 129,1 4559,4 4389,4 17312,31 127,08 2,02 32 132 115 4224 3680 15180 126,25 -11,25 38 146 122 5548 4636 17812 130,37 -8,37 58 143 117 8294 6786 16731 133,69 -16,69 21 143,5 116,4 3013,5 2444,4 16703,4 126,49 -10,09 51 122,6 122,7 6252,6 6257,7 15043,02 128,03 -5,33 58 154 130 8932 7540 20020 135,99 -5,99 36 129 115 4644 4140 14835 126,41 -11,41 48 129 121 6192 5808 15609 128,78 -7,78 32 91 105 2912 3360 9555 117,65 -12,65 сумма 0,0000
2.Случайный характеростатков. Проверим графически:
/>
Из графика зависимостиостатков εiот теоретических значений результативного признака видно, что точкираспределены случайно, следовательно, εiпредставляютсобой случайные величины и МНК оправдан.
3. Наличиегомоскедастичности. Воспользуемся методом Гольдфельда – Квандта. Числоисключаемых центральных наблюдений примем равным 8. Тогда в каждой группе будетпо 11 наблюдений. Результаты расчетов представим в таблице:x1 x2 y x1x2 yx1 yx2 y^x y-y^x Ai (y-y^x)^2 46 83,3 134,7 3831,8 6196,2 11220,51 132,15 2,55 1,8961 6,52 32 91 105 2912 3360 9555 128,41 -23,41 22,2973 548,13 28 102 110 2856 3080 11220 127,98 -17,98 16,3451 323,27 64 103 131,2 6592 8396,8 13513,6 139,08 -7,88 6,0058 62,09 22 103,4 177,3 2274,8 3900,6 18332,82 126,24 51,06 28,7972 2606,87 42 112,4 169,3 4720,8 7110,6 19029,32 133,02 36,28 21,4308 1316,41 29 115 117 3335 3393 13455 129,22 -12,22 10,4468 149,40 39 120 115 4680 4485 13800 132,65 -17,65 15,3447 311,40 51 122,6 122,7 6252,6 6257,7 15043,02 136,51 -13,81 11,2549 190,71 34 125 111 4250 3774 13875 131,48 -20,48 18,4460 419,23 61 126,7 163,4 7728,7 9967,4 20702,78 139,87 23,53 14,4012 553,73 0,0000 15,1514 6487,74 x1 x2 y x1x2 yx1 yx2 y^x y-y^x Ai (y-y^x)^2 21 143,5 116,4 3013,5 2444,4 16703,4 119,32 -2,92 2,5060 8,51 38 146 122 5548 4636 17812 124,14 -2,14 1,7530 4,57 58 154 130 8932 7540 20020 131,22 -1,22 0,9407 1,50 54 154 140 8316 7560 21560 130,25 9,75 6,9625 95,01 42 156 121 6552 5082 18876 127,90 -6,90 5,7020 47,60 195 162,2 164,9 31629 32155,5 26746,78 166,75 -1,85 1,1203 3,41 50 169 123 8450 6150 20787 133,47 -10,47 8,5103 109,57 22 175 122 3850 2684 21350 128,35 -6,35 5,2041 40,31 42 178 139 7476 5838 24742 134,04 4,96 3,5697 24,62 34 263,5 184,1 8959 6259,4 48510,35 155,95 28,15 15,2883 792,18 15 420 184 6300 2760 77280 195,01 -11,01 5,9854 121,29 0,0000 5,2311 1248,57
Величина R=0,1924(1248,57/6487,74), меньше табличного значения F-критерия,следовательно, наличие гомоскедастичности и отсутствие гетероскедастичности.
4.Отсутствиеавтокорреляции. Тест Дарбина–Уотсона:x1 x2 y y^ lу-у^l (lу-у^l/у)*100 у-у^ ei-ei-1 (ei-ei-1)^2 (у-у^)^2 64 103 131 126,48 4,715497 3,594 -4,715 -4,7155 22,2 22,24 50 169 123 137,56 14,55865 11,836 14,559 19,27414 371,5 211,95 29 115 117 122,09 5,093094 4,353 5,093 -9,46555 89,6 25,94 22 103 177 118,28 59,02032 33,288 -59,020 -64,1134 4110,5 3483,40 34 264 184 154,21 29,88682 16,234 -29,887 29,13349 848,8 893,22 195 162 165 164,75 0,151302 0,092 -0,151 29,73552 884,2 0,02 39 120 115 125,11 10,11485 8,796 10,115 10,26615 105,4 102,31 42 178 139 137,87 1,133281 0,815 -1,133 -11,2481 126,5 1,28 28 102 110 119,17 9,170267 8,337 9,170 10,30355 106,2 84,09 42 112 169 124,11 45,18646 26,690 -45,186 -54,3567 2954,7 2041,82 40 134 114 128,25 14,24733 12,498 14,247 59,43379 3532,4 202,99 34 125 111 125,18 14,17636 12,771 14,176 -0,07097 0,0 200,97 61 127 163 130,86 32,53879 19,914 -32,539 -46,7152 2182,3 1058,77 42 156 121 133,25 12,25437 10,128 12,254 44,79316 2006,4 150,17 46 83,3 135 118,80 15,89794 11,802 -15,898 -28,1523 792,6 252,74 15 420 184 183,27 0,725914 0,395 -0,726 15,17202 230,2 0,53 22 175 122 133,29 11,29077 9,255 11,291 12,01669 144,4 127,48 33 129 119 125,82 6,817621 5,729 6,818 -4,47315 20,0 46,48 47 130 120 128,79 8,790167 7,325 8,790 1,972546 3,9 77,27 54 154 140 135,20 4,796736 3,426 -4,797 -13,5869 184,6 23,01 34 134 129 127,08 2,015804 1,561 -2,016 2,780932 7,7 4,06 32 132 115 126,25 11,24923 9,782 11,249 13,26503 176,0 126,55 38 146 122 130,37 8,368454 6,859 8,368 -2,88077 8,3 70,03 58 143 117 133,69 16,68649 14,262 16,686 8,318035 69,2 278,44 21 144 116 126,49 10,08938 8,668 10,089 -6,59711 43,5 101,80 51 123 123 128,03 5,32814 4,342 5,328 -4,76124 22,7 28,39 58 154 130 135,99 5,992662 4,610 5,993 0,664522 0,4 35,91 36 129 115 126,41 11,40967 9,921 11,410 5,417008 29,3 130,18 48 129 121 128,78 7,777864 6,428 7,778 -3,63181 13,2 60,50 32 91 105 117,65 12,65349 12,051 12,653 4,875628 23,8 160,11 19110,43 10002,65
Исходя из статистикиДарбина-Уотсона, можно сделать вывод, что автокорреляция отсутствует, так как 1,91находится в промежутке (1,339;2,661) (d2;4-d2).Следовательно, значения остатков распределены независимо друг от друга.Отсутствие автокорреляции остаточных величин обеспечивает состоятельность иэффективность оценок коэффициентов регрессии.
Таким образом, не всепредпосылки выполнились, это говорит о недостаточной надежности уравнениямножественной регрессии. Возможно, можно было бы и получить надежную модель,если исключить из данных страны значение динамики ВВП, которых сильноотличается от других.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Предельные издержки
Реферат О возможностях сокpащения темпов pасползания гоpодов
Реферат Альберт Эйнштейн, Вальтер Ритц и студент Сергей Семиков
Реферат Humanism Essay Research Paper Erasmus of Rotterdam
Реферат Рынок информационно маркетинговых услуг
Реферат Othello Iago
Реферат Расчет показателей разработки элемента трехрядной системы
Реферат Breach Of Confidentiality The Legal Implications When
Реферат Усовершенствование блока управления и конструкции реактора установки вакуумного напыления
Реферат Бухгалтерский учет в ресторанах
Реферат Письменные Памятники Иерусалимской Церкви Внутреннее Состояние Иерусалимской Церкви в Шестидесятые
Реферат Уголовно-правовые аспекты банкротства
Реферат Документирование деятельности предприятия с участием иностранного партнёра
Реферат Basics On Keats Essay Research Paper John
Реферат Автор и его герой в поэме Василий Теркин. Движение сюжета поэмы