--PAGE_BREAK--Пусть в плоскости комплексного переменного дано круговое кольцо , ограниченное окружностями
, ,
где заданное положительное число
Требуется найти регулярную и однозначную внутри области функцию , если известны значения ее вещественной части на границах кольца.
Для случая круга аналогичная задача решается известной формулой Шварца Г. (1869г) (п.1)
, (, ),
где с – действительная переменная.
Здесь предполагается, что радиус круга равен 1, а положение точки на окружности определяется аргументом этой точки, так что представляет значение вещественной части искомой функции в точке .
Нашей задачей является переход от круга к кольцу и построение формулы, аналогичной формуле (1).
Обозначим через и значения вещественной части искомой функции в точках с аргументом на внешней, соответственно внутренней, границе .
Основной нашей целью является выяснение того, как скажется на формуле переход от односвязной области к двусвязной.
Величина
,
где интеграл справа берется по окружности радиуса () с центром в точке , очевидно, не зависит от . Тем же свойством обладает и вещественная часть написанного интеграла.
Отсюда, приближая вначале к 1, а замечая, что в интеграле можно
сделать требуемые предельные переходы, получим:
. (30)
Это условие, таким образом, необходимо для разрешимости поставленной нами проблемы, и мы должны предположить, что она выполняется.
Искомая функция может быть разложена в ряд Лорана
. (31)
Мы найдем разложения обеих функций , в ряды Фурье. Из этих разложений получаются коэффициенты в виде некоторых интегралов и подставляя в (31) получим известную формулу Анри Вилля для кругового кольца в форме Н.И.Ахиезера [7].
, (32)
где с – произвольная вещественная константа, — произвольное положительное число, а чисто мнимое число находится с помощью равенства
, (33)
, и, наконец — функция Вейерштрасса.
Формула (32), принадлежащая Вилли, представляет собой аналог формулы Шварца для кругового кольца; она приведена в иной форме, например в монографии Н.Ахиезера [7].
а) Преобразование интегральной формулы А.Вилля (32).
Формула Анри Вилля в форме Н.И.Ахиезера [7].
, (34)
где из (33) следует, что , где — положительное действительное число, можно придать более компактную форму, если несколько преобразуем (32), учитывая (33) и замечая, что можно выразить через с учетом граничных свойств:
,
, ; (35)
, .
Таким образом, интегральная формула (32) с учетом (34) и (35) примет следующий окончательный вид:
, (36)
где с – постоянная.
Формулу (36) можно назвать канонической, компактной и контурной интегральной формулой Анри Вилля для кругового кольца.
б) Функции Вейерштрасса.
В виду важности трех функций Вейерштрасса , и для практического применения и простоты реализации на ЭВМ мы рассмотрим следующие варианты представления данных функций [19] — [22]:
1. (37)
или
(38)
2. ,
: , (39)
,
для действительных нулей полинома возможны следующие частные случаи:
: ,
,
.
3. ,
,
где , , .
4. (41)
где ;
; ; .
5. , т.е.
, (44)
где (),
, (45)
или
6. (46)
– эллиптическая функция Вейерштрасса .
Функция Вейерштрасса , (48)
так что .
Функция Вейерштрасса определяется с помощью равенства
.
Из этой формулы следует и
где путь интегрирования не проходит ни через одну вершину сетки периодов, отличную от точки .
§4. О некоторых применениях теории конформного
отображения к краевым задачам.
а) Об структурном классе интегральных представлений.
Как известно, интегральное представление аналитических функций ИПАФ давно служит:
– как удобный аппарат для обозримого представления аналитических решений дифференциальных уравнений. Например, специальные функции – функции Бесселя, Эйри, Лежандра, Лагера, Эрмита, многочлены Чебышева, гипергеометрическая функция и многие другие – являются решениями линейных дифференциальных уравнений с аналитическими коэффициентами;
– для исследования ассимптотики этих решений и их аналитического продолжения;
– несколько позже – нашли применения для решения граничных задач теории аналитических функций и сингулярных уравнений;
– исследование внутренних и граничных свойств аналитических функций различных классов, а также для решения других, самых разнообразных вопросов математического анализа (интегралы Коши, Пуассона, Шварца, Чизотти и т.п.)
Обширный класс интегральных представлений аналитических функций, используемых для получения и исследования аналитических решений дифференциальных уравнений (АРДУ), описывается общей формулой:
(49)
где — ядро типа Шварца, зависящее от связности данной области, — аналитическая функция, регулярная и однозначная в (n+1) – связной канонической круговой области , — заданная плотность – вещественная функция в точках , контура круговой области .
Вещественные и комплексные таковы, что :
, , (, ). (50)
По заданным интегральным представлениям (49) можно найти аналитическое решение дифференциальных уравнений (АРДУ) для произвольных областей плоскости , ограниченную замкнутыми кривыми типа Ляпунова. (Существует касательная в каждой точке , , , — угол между касательными; кривая замкнута и ограничена).
Используя интегральные представления Чизотти, мы получим решение задачи Дирихле для области и интегральные формулы Пуассона для :
(51)
. (52)
Из (52) получим:
;
.
где
,
продолжение
--PAGE_BREAK--,
,
, , , [4];
В случае круга:
,
.
Круговое кольцо:
;
,
где — функция Вейерштрасса, , , , — некоторые постоянные, определяемые из нормировки отображений функций , , — периоды функции .
Формулу (53) назовем интегральными формулами Дирихле-Чизотти для областей , или решениями задачи Дирихле для рассматриваемой области или интегральными формулами Пуассона для соответствующих канонических областей .
б) О решении задачи Дирихле методом Чизотти
для многосвязных областей
Как мы знаем, решение задачи Дирихле для произвольных многосвязных областей найти явное и эффективное решение трудоемкая или невозможная проблема.
Поэтому более эффективное нахождение краевых задач представляет немаловажный интерес в теории аналитических и гармонических функций для многосвязных областей ( неконцентрического кругового кольца, внешности двух кругов и для конечных двух-трехсвязных областей и т.д.) используя интегральную формулу Чизотти для заданных соответствующих областей.
1. Построим функцию , дающую конформное отображение на , где , ; ():
, (57)
где и — постоянные, определяется однозначно по формуле Шварца для соответствующих заданных областей.
Пусть — регулярная функция в . Так как подинтегральное выражение (57) представимо по формуле Эйлера в следующем виде:
, то
(58)
С учетом (58) интегральная формула (57) примет вид:
;
.
где и — постоянные (к=1,2).
Формулу (59) можно назвать интегральной формулой Дирихле-Чизотти для конечных многосвязных областей, т.к. формула (57) есть интегральная формула Чизотти для конечных многосвязных круговых областей.
Если найден и от известного интегрального выражения ):
, т.е.
; (60)
,
то мы получим решение граничной задачи Пуассона для канонических (конечных, бесконечных) областей .
2. Если область — концентрическое круговое кольцо, то
, (61)
где — заданная функция — функция Вейерштрасса, то мы имеем интегральную формулу Вилля-Шварца (61) в компактной контурной форме.
Из (61) получим:
, (62)
, (63)
где , , , .
Формулы (62) и (63) называются интегральными формулами Вилля-Пуассона. Подставляя (62) и (63) в исходную интегральную (59) мы получим интегральную формулу Дирихле через интеграл Чизотти. Формулы (62) и (63) можно назвать интегральными формулами Дирихле-Чизотти для конечных двусвязных областей.
в) Интегральная формула Чизотти для заданных областей – решение
задачи Дирихле для соответствующих областей.
Если известны интегральные формулы Шварца для круговых областей , дающие аналитической в функции через нормальной производной ее действительной части на границе области и интегральные представления Чизотти для круговых областей, дающие выражение функции , реализующей конформное отображение области на ограниченную гладкой кривой (51), (52), то поэтому интегральную формулу, дающую конформное отображение на через нормальную (касательную) производную ее действительной (мнимой) части на границе , естественно назвать интегральной формулой Дини-Шварца-Чизотти для заданных областей.
Можно рассмотреть интегральные формулы Дини-Шварца для многосвязных областей и их применение к решению краевых задач типа Дирихле.
Решение задачи Неймана сводится к решению задачи Дирихле сопряженной гармонической функции.
Учитывая, что задача конформного отображения многосвязной области на каноническую область и задача Дирихле для той же области эквивалентны (49), используем интегральный метод Чизотти для соответствующих областей (50), (51).
Применяя ИПАФ типа Шварца регулярной и однозначной в , найдем решение задачи Дирихле, как представляющее однозначную и аналитическую (гармоническую) в произвольной многосвязной области функцию
(64)
удовлетворяющую в уравнению
(65)
и граничному условию
, , (66)
где .
Решение задачи (65) и (66) в заданных произвольных областей имеет следующий вид:
(67)
или после соответствующих преобразований получим (§4 п.«б»):
;
, (68)
где и постоянные, определяемые нормировкой функции , — угол наклона касательной в точке , соответствующей при отображении .
Пусть теперь — каноническая область (круг, концентрическое круговое кольцо, внешность двух кругов, …), а — соответствующая область, ограниченная контуром .
Построим функцию , дающую конформное отображение на . Причем будем для простоты считать, что , .
В силу конформности отображения всюду в функция равна
; на (69)
,
Следовательно, функцию можно представить следующими интегральными формулами типа Шварца:
, , ();
, , (; (70)
, ,
где — ядро Шварца для круга;
— функция Вейерштрасса;
— ядро Александра-Сорокина для неконцентрического кругового кольца;
— ядро для внешности двух окружностей;
— ядро для симметричных и равных (неравных) окружностей.
Интегральное представление (68) назовем интегральной формулой для решения задачи типа Дирихле для рассмотренных областей .
Для нахождения гармонической (или ) в произвольной односвязной области функций, достаточно знать или обычные классические интегральные формулы Пуассона для круга :
или
.
2. Для нахождения решения задачи Дирихле в произвольной двусвязной ограниченной (конечной) области через — решение кругового кольца надо пользоваться контурной компактной формулой Вилля, т.е. и — интегральные формулы Пуассона для кругового кольца ():
,
.
Таким образом, аналогичными примерами можно найти и для остальных рассмотренных областей решения задачи Дирихле () через и .
§5. Об интегральных представлениях Пуассона-Дирихле
для заданных областей.
Пусть , , — нормированная функция дает конформное отображение канонической области плоскости на соответствующую область плоскости . Простоты ради будем считать, что .
В силу конформности отображения мы имеем, что всюду в и, как легко видеть реальная (действительная) часть голоморфной в функции
равна на окружностях :
, продолжение
--PAGE_BREAK--(72)
где при , (), (73)
, — угол наклонакасательной к в точках , соответствующих при отображении . Область ограничена гладкими кривыми типа Ляпунова , а в каждой точке контура области плоскости известен угол наклона .
Здесь вещественные числа и комплексные числа , таковы для конечной — связной области, что
, , (, ). (74)
При этом будем считать, что — внешняя, а — внутренние кривые, и будем считать, что , [5].
Из существования отображающей функции следует, что функция регулярная, однозначная и эффективная в канонической области согласно равенству (64), представляется по интегральной формуле Шварца [5] в форме Александрова-Сорокина в следующем виде:
. (75)
Функция регулярна и действительные части на граничных компонентах принимают непрерывные значения , определяемые равенством (65), а — ядро определяется следующими формулами [5]:
, (76)
, (77)
1, при
-1, при , с – вещественное число.
Если мы в (67) отделим вещественную и мнимую части, то мы получим две интегральные формулы Пуассона для — связных круговых областей ; что мы и делаем, следуя вычислениям Александрова-Сорокина [5], т.е. решаем задачу Дирихле-Пуассона: об определении значений гармонической функции внутри канонической области , если известны ее значения на границах , — функция полярного аргумента, дающая граничные значения .
, (78)
, (79)
где , , .
Рассмотрим некоторые частные задачи Дирихле-Пуассона для .
Следствие 1. Если в формулах (72) и (73) положить , то мы получим формулу Пуассона – интеграл Пуассона для круга [ ]:
, () (80)
, () (81)
Следствие 2. Если в формулах (72) и (73) положить , то мы получим две интегральные формулы Пуассона для кругового кольца:
, (82)
, (83)
где (74) и (75) – реальные и мнимые части компактной интегральной формулы Вилля-Шварца для кругового кольца [2], — функция Вейерштрасса, — угол наклона касательной к в точке , , — периоды, с – произвольная постоянная, ().
Так как функция ) представляется быстро сходящимися рядами, то формулы (74) и (75) можно с успехом использовать для приближенного решения соответствующих граничных задач.
Следствие 3. Если в формулах (70) и (71) — задана нормальная (касательная) производная, то мы получим две интегральные формулы Дини-Шварца для соответствующих областей, т.е. получим непосредственное обобщение интеграла Дини, дающее решение граничной задачи Неймана для заданных рассмотренных областей.
В случае единичного круга эта формула имеет вид[1, 9]:
, (84)
где действительная функция при , под понимается дифференцирование по направлению внутренней нормали, а с – произвольная постоянная. Формула (76) имеет место при условии, что
. (85)
Условие (77) – необходимое и достаточное условие дл разрешимости рассматриваемой граничной задачи и при его выполнении искомая однозначная аналитическая функция определяется с точностью до произвольного комплексного постоянного слагаемого.
А из (76) следуют формулы Дини:
,
.
В случае кругового кольца , имеем
, (87)
где ,
, .
Формула (80) – формула Дини-Шварца или интегральная формула Дини-Шварца для кругового кольца.
Если в равенстве (79) отделить действительные и мнимые части, то мы получим непосредственное обобщение интегральной формулы Дини, дающее решение граничной задачи Неймана для кругового кольца:
,
,
где , , .
Формулу (81) можно назвать формулой Дини-Вилля для кругового кольца.
Аналогично можно найти интегральные формулы Пуассона, Шварца-Дини для любых () связных (конечных и бесконечных) областей, используя формулы (70) и (71).
§6. Интегральная формула Чизотти-Пуассона-Дирихле
для конечных трехсвязных областей.
продолжение
--PAGE_BREAK--