Реферат по предмету "Математика"


Дослідження універсальних абелевих алгебр

--PAGE_BREAK--3. Формаційні властивості нильпотентних алгебр
Як ми вже відзначали, усе алгебри вважаються приналежними деякому фіксованому мальцевскому різноманіттю й використовуються стандартні позначення й визначення з[1].

Нагадаємо, що для  й  – конгруенції на алгебрі  – говорять, що  централізує  (записується: ), якщо на  існує така конгруенція , що:
1) із  завжди треба

2) для будь-якого елемента  завжди виконується



3) якщо , те

Очевидно, що для будь-якої конгруенції  на алгебрі  конгруенція  централізує . У цьому випадку .

Помітимо, що якщо  й  – конгруенції на групі  й , те для нормальних підгруп  і  групи  й будь-яких елементів ,  мають місце наступні співвідношення:





Тоді

і в силу транзитивності  із цих співвідношень треба, що

По визначенню 2.1 одержуємо, що

Наступне визначення центральності належить Сміту .

Визначення 3.1. , якщо існує така , що для будь-якого ,

Доведемо, що визначення 2.1. еквівалентно визначенню 3.1.  означає умову 1) з визначення 2.1. И навпаки, умова 1) означає, що .

Нехай  і  – конгруенції, що задовольняють визначенню 2.1. З умови 2) треба, що для будь-якого елемента ,

Доведемо зворотне включення.

Нехай . Тому що , те з умови 2) треба, що

У силу транзитивності  маємо

і, виходить, у силу умови 3) . Отже

Покажемо, що з визначення 3.1. випливають умови 2) і 3) визначення 2.1. Якщо , те



Це означає .

Для  одержуємо, що

звідки .

Відповідно до роботи

Визначення 3.2. Алгебра  називається нильпотентною, якщо існує такий ряд конгруенції

називаний центральним, що

Лема 3.1. Будь-яка підалгебра нильпотентної алгебри нильпотентна.

Доказ:

Нехай  – підалгебра нильпотентной алгебри . Тому що  має центральний ряд

те для кожного  на алгебрі  існує конгруенція  задовольняючому визначенню 2.1. А саме, з





завжди треба

1) для будь-якого елемента

завжди виконується

2) якщо

и

те

Помітимо, що надалі, для скорочення запису, будемо враховувати той факт, що



тоді й тільки тоді, коли

Побудуємо наступний ряд конгруенції на алгебрі :

де

Покажемо, що цей ряд є центральним. Для цього на алгебрі  для кожного  визначимо бінарне відношення  в такий спосіб:

тоді й тільки тоді, коли

Покажемо, що  – конгруенція на алгебрі . Нехай





Тоді

і для кожної -арної операції  маємо

Отже,

Отже,  – підалгебра алгебри .

Очевидно, що для будь-якого елемента  має місце

Таким чином, відповідно до леми 2.3,  – конгруенція на алгебрі .

Нехай

Тоді  й тому що ,

те



Якщо , то  й, виходить,


Нехай, нарешті,

Тоді

і тому що

Отже,

Отже, конгруенція  задовольняє визначенню 2.1. для кожного . Лема доведена.

Лема 3.2. Нехай  і  – конгруенції на алгебрі ,



і  – ізоморфізм, певний на алгебрі .

Тоді для будь-якого елемента  відображення

визначає ізоморфізм алгебри  на алгебру , при якому

Доказ:

Очевидно, що  – ізоморфізм алгебри  на алгебру , при якому конгруенції  й  ізоморфні відповідно конгруенціям  і .

Тому що , те існує конгруенція  на алгебрі , що задовольняє визначенню 2.1. Ізоморфізм  алебри  на алгебру  індуцирує у свою чергу ізоморфізм  алгебри  на алгебру  такий, що

для будь-яких елементів , .

Але тоді легко перевірити, що  – конгруенція на алгебрі  ізоморфна конгруенції . Це й означає, що

Лема доведена.

Лема 3.3. Фактор-Алгебра нильпотентной алгебри нильпотентна.




Доказ:

Нехай

центральний ряд алгебри . Покажемо, що для будь-якої конгруенції  на алгебрі  ряд

є центральним, тобто

для кожного . У силу відомих теорем про ізоморфизмах для алгебр (див., наприклад, теореми II.3.7, II.3.11 ) і леми 3.2., досить показати, що

Нехай  – конгруенція на алгебрі , що задовольняє визначенню 2.1. Визначимо бінарне відношення  на алгебрі  в такий спосіб

тоді й тільки тоді, коли найдуться такі елементи , що













Безпосередньою перевіркою переконуємося, що  – конгруенція на алгебрі .

У такий спосіб залишилося показати, що  задовольняє визначенню 2.1.

Нехай

тоді зі співвідношення

треба, що

Тому що


те . Отже,



Нехай . Тоді для деякого елемента ,  і .

Таким чином,

отже,

Тому що , те це означає, що

Нехай

де


Покажемо, що . У силу визначення  найдуться , що









При цьому мають місце наступні співвідношення:



Отже,

Але тоді по визначенню 3.2.

А тому що , те

Тепер з того, що


треба, що





Лема доведена.

Доказ наступного результату здійснюється простою перевіркою.

Лема 3.4. Нехай  – конгруенція на алгебрі , . Полога

тоді й тільки тоді, коли  для кожного , одержуємо конгруенцію  на алгебрі .

Лема 3.5. Прямий добуток кінцевого числа нильпотентних алгебр нильпотентне.

Доказ:

Очевидно, досить показати, що якщо ,  і  – нильпотентне алгебри, те  – нильпотентна алгебра.

Нехай



центральні ряди алгебр  і  відповідно. Якщо , те, ущільнивши перший ряд повторюваними членами, одержимо центральний ряд алгебри  довжини . Таким чином, можна вважати, що ці ряди мають однакову довжину, рівну .

Побудуємо тепер ряд конгруенції на алгебрі  в такий спосіб:





де  тоді й тільки тоді, коли , , .

Покажемо, що останній ряд є центральним, тобто  для довільного . Тому що

те на алгебрах  і  відповідно задані конгруенції  й , що задовольняють визначенню 2.1.

Визначимо бінарне відношення  на алгебрі  в такий спосіб:

і тільки тоді, коли

и


Легко безпосередньою перевіркою переконатися, що  – конгруенція на алгебрі . Залишилося показати, що  задовольняє визначенню 2.1.

Нехай має місце

Тоді відповідно до уведеного визначення



звідки треба, що

т.е.

Нехай

Це означає


Але тоді

и

Отже,



Нехай має місце

Це означає, що


Виходить,  і , тобто . Лема, доведена.

Як відомо, спадкоємною формацією називається клас алгебр, замкнутих відносно фактор-алгебр, підпрямих добутків і відносно підалгебр.

Результати, отримані в лемах 3.1, 3.3, 3.5 можна сформулювати у вигляді наступної теореми.

Теорема 7Клас всіх нильпотентних алгебр мальцевського різноманіття є спадкоємною формацією.

Визначення 3.3. -арна група  називається нильпотентной, якщо вона має такий нормальний ряд

що

и





для кожного .

Тому що конгруенції на -арних групах попарно перестановочні (дивися, наприклад, ), те це дає можливість використовувати отримані результати в дослідженні таких груп.

Лема 3.6. Нехай  – -арна група.  і  – нормальні підгрупи групи  й .

Тоді , де  й  конгруенції, індуковані відповідно підгрупами  й  на групі .

Доказ:

Підгрупи  й  індуцирують на групі  конгруенції  й , обумовлені в такий спосіб:



 – -арна операція.

Визначимо на  бінарне відношення  в такий спосіб:

тоді й тільки тоді, коли існують такі послідовності елементів  і  з  і  відповідно, що







Покажемо, що  – підалгебра алгебри . Для скорочення запису будемо надалі опускати -арний оператор .

Нехай





Тому що , те

Тому що , те

Тому в силу того, що ,



Отже,  – підалгебра алгебри .

Нехай  – нейтральна послідовність групи , а, отже, і групи . Тоді з визначення бінарного відношення  треба, що

Тим самим довело, що  – конгруенція на .

Тo, що  задовольняє визначенню 2.1, очевидно. Лема доведена.

Лема 3.7. Нехай  – нильпотентна -арна група. Тоді  задовольняє визначенню 2.1.

Доказ:

Тому що  для кожного , те  індуцирує конгруенцію  на . У такий спосіб  володіє поруч конгруенції, що у силу леми 3.6 буде центральним. Лема доведена.

Зокрема, для довільної бінарної групи  звідси треба, що  нильпотентна тоді й тільки тоді, коли,  задовольняє визначенню 3.2. У цьому випадку теорема 3.2 просто констатує той факт, що клас всіх нильпотентних груп утворить спадкоємну формацію.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.