--PAGE_BREAK--1. Побудова квадратичних двовимірних стаціонарних систем1.1 Побудова квадратичної двовимірної стаціонарної системи із приватним інтегралом у вигляді параболи
Розглянемо систему диференціальних рівнянь
(1.1)
Нехай система (1.1) має приватний інтеграл виду:
, (1.2)
де Fk (x,y) — однорідні поліноми від x і y ступеня k.
Як приватний інтеграл (1.2) візьмемо параболу виду:
F (x,y) (y+ (1 x2 + (2 x+ (3 = 0 (1.3)
Будемо припускати, що (3 (0, тобто парабола не проходить через початок координат.
Згідно [10, с.1752-1760] для інтеграла (1.3) системи (1.1) має місце співвідношення:
, (1.4)
де L (x,y) = px+my+n, p, m, n — постійні.
Тоді випливаючи формулі (1.4) одержимо рівність:
(2 (1x+ (2) (ax+by+a1x2+2b1xy+c1y2) + (cx+dy+a2x2+2b2xy+c2y2) = (y+ (1x2+ (2x+ (3) (px+my+n).
Дорівнюючи коефіцієнти при однакових ступенях xm yn ліворуч і праворуч, одержимо рівності:
(2a1-p) (1= 0 (1.51), (4b1-m) (1= 0 (1.52), 2 (1c1= 0 (1.53)
(2a-n) (1+ (a1-p) (2+a2= 0 (1.61)
2 (1b+ (2b1-m) (2+2b2+p= 0 (1.62)
(2c1+c2-m= 0 (1.63), (a-n) (2-p (3n+c= 0 (1.71)
(2b- (3m+d-n= 0 (1.72), (3n= 0 (1.73)
Нехай (1 (0, тоді з рівностей (1.51), (1.52), (1.53), (1.63) і (1.73) одержуємо, що
P=2a1, m=4b1, c1=0, c2=4b1, n=0 (1.8)
Зі співвідношень (1.61), (1.62) і (1.71) знайдемо вираження коефіцієнтів кривій (1.3) через коефіцієнти системи (1.1) у наступному виді:
a1, (1.9)
a2, (1.10)
a3. (1.11)
Рівність (1.72) з урахуванням отриманих виражень (1.9) — (1.11), дасть умову, що зв'язує коефіцієнти a, b, c, d, a1, a2, b1, b2:
(1.12)
Отже, установлена наступна теорема:
Теорема 1.1 Система (1.1) має приватний інтеграл (1.3), коефіцієнти якого виражаються формулами (1.9) — (1.11), за умови, що коефіцієнти системи зв'язані співвідношенням (1.12) і c1= 0, c2= 4b1, a1 (0, 2b1a-a1b (0.
1.2 Побудова квадратичної двовимірної стаціонарної системи із приватним інтегралом у вигляді окружності або гіперболи
Нехай тепер система (1.1) поряд з інтегралом (1.3) має інтеграл у вигляді:
y2+ (x2+ (x+ (y+ (=0 (1.13)
Будемо розглядати тепер систему:
(1.14)
Відповідно до формули (1.4), де L
(x,y) = m1x+n1y+p1,m1, n1, p1 — постійні для системи (1.1), маємо:
(2a1-m1) (2= 0 (1.151)
(4b1-n1) (+2a1= 0 (1.152)
m1= 4b2 (1.153)
n1=8b1 (1.154)
(2a-p1) (+ (a1-m1) (+a2 (=0 (1.161)
2b (+ (2b1-n1) (+ (2b2-m1) (+2c= 0 (1.162)
(4b1-n1) (+2d-p1= 0 (1.163)
(a-p1) (+c (+m1 (= 0 (1.171)
b (+ (d-p1) (-n1 (= 0 (1.172)
p1 (= 0 (1.173)
Припустимо, що крива не проходить через початок координат, тобто ( (0.Нехай ( (0, тоді з рівностей (1.151), (1.153), (1.154) і (1.173) одержуємо, що
m1=4b2, n1=8b1, a1=2b2, p1=0 (1.18)
А зі співвідношень (1.161), (1.163) і (1.171) знайдемо вираження коефіцієнтів кривій (1.13) через коефіцієнти системи (1.1) у наступному виді:
(1.19), (1.20)
(1.21), (1.22)
Підставляючи коефіцієнти (, (, (і (у рівності (1.162) і (1.172), одержимо дві умови, що зв'язують коефіцієнти a, b, c, d, a2, b1, b2:
(1.23)
(1.24)
Отже, установлена наступна теорема:
Теорема 1.2 Система (1.14) має приватний інтеграл (1.13), коефіцієнти якого виражаються формулами (1.19) — (1.22), за умови, що коефіцієнти системи зв'язані співвідношеннями (1.23), (1.24) і b1 (0, b2 (0, a1=2b2.
продолжение
--PAGE_BREAK--1.3 Необхідні й достатні умови існування в системи (1.1) двох часток інтегралів (1.3), (1.13)
У розділах 1.1-1.2 ми одержали, що система (1.1) буде мати дві частки інтеграла у вигляді кривих другого порядку за умови, що коефіцієнти системи зв'язані співвідношеннями:
(1.25)
Причому b1 (0, b2 (0, a1 (0, b1a-b2b (0.
Виражаючи c з першого рівняння системи (1.25), одержимо
(1.26)
Підставимо (1.26) у друге й третє рівняння системи (1.25).
Одержимо два співвідношення, що зв'язують параметри a, b, d, a2, b1, b2:
.
Нехай і
(1.27)
З першого рівняння системи (1.27) одержимо
Підставляючи в друге рівняння системи (1.27), знайдемо
.
Зі співвідношень (1.25) при умовах (1.27) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
(1.28)
(1.29)
(1.30)
, , , , (1.31)
Рівності (1.9) — (1.11), (1.19) — (1.22) за умови, що мають місце формули (1.28) — (1.31), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
a1 (1.32)
a2 (1.33)
a3 (1.34)
s (1.35)
b (1.36)
g (1.37)
d (1.38)
Теорема 1.3 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.32) — (1.38), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.28) — (1.31).
Нехай
(1.39)
З першого рівняння системи (1.39) знайдемо
, .
Підставляючи в друге рівняння системи (1.39), одержимо рівність:
(1.40)
Оскільки , те розглянемо два випадки: , тоді .
Зі співвідношень (1.25) при умовах (1.39) і (1.40) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
, , (1.41)
, , , , (1.42)
Рівності (1.9) — (1.11), (1.19) — (1.22) за умови, що мають місце формули (1.41) — (1.42), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
a1 (1.43),a2 (1.44)
a3 (1.45), s (1.46)
(=0 (1.47)
g (1.48),
d (1.49)
Теорема 1.4 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.43) — (1.49), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.41) — (1.42).
б) (1.50), (1.51)
З (1.50) знайдемо :
Зі співвідношень (1.25) при умовах (1.39) і (1.50) — (1.51) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
, — будь-яке число, (1.52)
, , , , (1.53)
Рівності (1.9) — (1.11) і (1.19) — (1.22) за умови, що мають місце формули (1.52) — (1.53), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
(1=0 (1.54), a2 (1.55)
a (1.56)
s (1.57)
b (1.58)
g (1.59)
d (1.60)
Теорема 1.5 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.54) — (1.60), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.52) — (1.53).
продолжение
--PAGE_BREAK--2. Якісне дослідження побудованих класів систем2.1 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.28) — (1.31)
Будемо проводити наше дослідження в припущенні, що , , .
Нехай ми маємо систему (1.1), коефіцієнти якої визначаються відповідно до формул (1.28) — (1.31), тоді система (1.1) запишеться у вигляді:
(2.1)
Інтегральні криві в цьому випадку мають вигляд:
(2.2)
(2.3)
Знайдемо стани рівноваги системи (2.1). Дорівнявши праві частини системи нулю й виключивши змінну y, одержимо наступне рівняння для визначення абсцис станів рівноваги:
(2.4)
З (2.4) одержуємо, що
, , , .
Ординати крапок спокою мають вигляд:
, , , .
Отже, маємо крапки
, , , .
Досліджуємо поводження траєкторій на околицях станів рівноваги , , , .
Досліджуємо крапку .
Складемо характеристичне рівняння в крапці .
Звідси
, (2.5)
,
Отже, характеристичне рівняння прийме вид:
= =0.
,
Або
.
Характеристичними числами для крапки системи (2.1) будуть
.
Коріння — дійсні, різних знаків не залежно від параметра d. Отже, крапка — сідло.
Досліджуємо крапку
.
Складемо характеристичне рівняння в крапці
.
Згідно
рівностям (2.5) характеристичне рівняння прийме вид:
,
Або
.
Характеристичними числами для крапки системи (2.1) будуть
,
тобто
, .
Коріння — дійсні й одного знака, що залежать від параметра d. Якщо d (0, то крапка — нестійкий вузол, якщо d (0, то крапка — стійкий вузол. Досліджуємо крапку .
Застосовуючи рівності (2.5), складемо характеристичне рівняння в крапці
:
Характеристичними числами для крапки
системи (2.1) будуть , тобто , . Коріння — дійсні й одного знака, що залежать від параметра d. Якщо d — стійкий вузол, якщо d>0, то крапка — нестійкий вузол.
Досліджуємо крапку
.
Складемо характеристичне рівняння в крапці
.
Застосовуючи рівності (2.5), одержимо:
,
Або
Характеристичними числами для крапки
системи (2.1) будуть
,
тобто
, .
Коріння — дійсні й різні знаки не залежно від параметра d. Виходить, крапка — сідло.
Досліджуємо нескінченно — вилучену частину площини наприкінці осі oy. Перетворення
[7]
переводить систему (2.1) у систему:
(2.6)
де .
Для дослідження станів рівноваги на кінцях осі y, нам необхідно досліджувати тільки крапку . Складемо характеристичне рівняння в крапці.
Одержимо, що
Коріння — дійсні й одного знака. Отже, крапка — стійкий вузол.
Досліджуємо нескінченно — вилучену частину площини поза кінцями осі oy перетворенням [7] Це перетворення систему (2.1) переводить у систему:
(2.7)
де .
Вивчимо нескінченно — вилучені крапки на осі U, тобто при z=0. Маємо:
Одержуємо, що . Отже, станів рівноваги поза кінцями осі oy немає.
Тепер дамо розподіл станів рівноваги системи (2.1) у вигляді таблиці 1.
Таблиця 1.
Положення кривих (2.2), (2.3) і розташування щодо їхніх станів рівноваги при d (0 і d (0 дається відповідно мал.1 (а, б).
Поводження траєкторій системи в цілому при d (0 і d (0 дається мал.4 (а, б) додатка А: Поводження траєкторій системи (2.1).
Досліджуючи вид кривих (2), (2.3) і розташування щодо їхніх станів рівноваги, переконуємося, що система (2.1) не має граничних циклів, тому що Воробйов А.П. [5] довів, що для систем, праві частини яких є поліноми другого ступеня, граничний цикл може оточувати тільки крапку типу фокуса. З огляду на розташування станів рівноваги відносно кривих (1.3) і (1.13), що є інтегралами системи (2.1), характер стану, містимо, що для системи (2.1) не може існувати граничних циклів, що оточують кілька станів рівноваги.
а (d (0)
б (d (0)
Мал.1
продолжение
--PAGE_BREAK--2.2 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.41) — (1.42)
Будемо проводити наше дослідження в припущенні, що
Нехай ми маємо систему (1.1), коефіцієнти якої визначаються формулами (1.41) — (1.42). Тоді система (1.1) буде мати вигляд:
(2.8)
Інтегральні криві в цьому випадку мають вигляд:
(2.9)
(2.10)
Приватний інтеграл (1.13) у цьому випадку перетворюється у дві прямі (2.10)
1. Знайдемо стани рівноваги системи (2.8). Для цього дорівняємо праві частини системи нулю
Розглянемо два випадки:
Одержуємо:
З першого рівняння знайдемо y:
і підставляючи y у друге рівняння одержимо:
Вирішуючи це рівняння, знаходимо:
.
Отже, одержуємо
,
,
Отже, одержуємо крапки
, , ,
і пряму x=0, що є траєкторією системи (2.8).
2. Досліджуємо поводження траєкторій на околицях станів рівноваги
Досліджуємо крапку .
Складемо характеристичне рівняння в крапці .
Звідси
(2.11)
Отже, характеристичне рівняння прийме вид:
Характеристичними числами для крапки системи (2.8) будуть , . Коріння — дійсні й різні знаки не залежно від параметра d, значить крапка — сідло. Досліджуємо крапку . Згідно (2.11) складемо характеристичне рівняння в крапці :
Характеристичними числами для крапки системи (2.8) будуть , .
Коріння — дійсні й одного знака, що залежать від параметра d. Якщо d — нестійкий вузол, а якщо d>0, то крапка — стійкий вузол.
3. Досліджуємо поводження траєкторій в околиці крапки .
Складемо характеристичне рівняння згідно (2.11)
.
Характеристичними числами для крапки системи (2.8) будуть
,
Коріння — дійсні й одного знака, що залежать від параметра d. Якщо d — стійкий вузол, якщо d>0, то крапка — нестійкий вузол.
4. Досліджуємо поводження траєкторій в околиці крапки .
Згідно (2.11) складемо характеристичне рівняння:
Характеристичними числами для крапки системи (2.8) будуть , . Коріння — дійсні й різні знаки не залежно від параметра d, отже — сідло. Досліджуємо нескінченно — вилучену частину площини системи (2.8) поза кінцями осі oy. Перетворення [7] переводить систему (2.8) у систему:
(2.12)
де .
Вивчимо нескінченно — вилучені крапки на осі U, тобто при z=0. Одержуємо:
Отже .
Таким чином, одержуємо дві крапки N1 (0,-1) і N2 (0,1), які є станом рівноваги. Досліджуємо характер цих крапок звичайним способом.
Складемо характеристичне рівняння в крапці N1 (0,-1).
(2.13), . Маємо:
, .
Коріння — дійсні й різні за знаком, отже крапка N1 (0,-1) — сідло.
Досліджуємо крапку N2 (0,1). Згідно (2.13) складемо характеристичне рівняння:
, .
Коріння — дійсні й одного знака, значить крапка N2 (0,1) — стійкий вузол.
Досліджуємо кінці осі y за допомогою перетворення [7] . Це перетворення переводить систему (2.8) у систему:
(2.14)
де .
Для дослідження станів рівноваги на кінцях осі y, нам необхідно досліджувати тільки крапку N3 (0,0). Складемо характеристичне рівняння в крапці N3 (0,0):
,
Коріння — дійсні й одного знака, значить крапка N3 (0,0) — нестійкий вузол.
Тепер дамо розподіл станів рівноваги системи (2.1) у вигляді таблиці 2.
Таблиця 2.
Положення кривих (2.9), (2.10) і розташування щодо їхніх станів рівноваги при d (0 і d (0 дається відповідно мал.2 (а, б).
Поводження траєкторій системи в цілому при d (0 і d (0 дається мал.5 (а, б) додатка Б: Поводження траєкторій системи (2.8).
Питання про існування граничних циклів не виникає, тому що Воробйов А.П. [5] довів, для квадратичної системи граничний цикл не може оточувати вузол.
а (d0)
Мал.2
продолжение
--PAGE_BREAK--