© Н.М. Козий, 2008, [UA]
Свидетельство Украины № 25256
о регистрации авторского права
ДОКАЗАТЕЛЬСТВО СИЛЬНОЙ ГИПОТЕЗЫ ГОЛЬДБАХА-ЭЙЛЕРА
Сильная гипотеза Гольдбаха-Эйлера формулируется следующим образом: любое четное число, большее двух, равно сумме двух простых чисел:
N = A + B,
где: А и В – простые числа.
ДОКАЗАТЕЛЬСТВО
Напишем арифметическую прогрессию: Р = [ 1, 2, 3, 4, 5… N]
Очевидно, что:
— количество членов прогрессии равно N;
— количество четных и нечетных членов прогрессии одинаково и равно:
n = 0, 5 N.
Напишем возрастающую Vи убывающуюUарифметические прогрессии из нечетных чисел прогрессии Р для случая, когда n– четное число:
V = [ 1, 3, 5, 7 … 0,5N-1, 0,5N +1… N-3, N-1]
U = [ N-1, N-3 … 0,5N +1, 0,5N-1 … 7, 5, 3, 1]
Очевидно, что часть прогрессии U:
U1 = [ N-1, N-3 … 0,5N +1]
представляет собой зеркальное расположение членов прогрессии V:
V1 =[ 0,5N +1… N-3, N-1],
а часть прогрессии U:
U2 = [ 0,5N-1 … 7, 5, 3, 1]
представляет собой зеркальное расположение членов прогрессии V:
V2 = [ 1, 3, 5, 7 … 0,5N-1].
Исходя из этого для числа N при n– четном запишем:
V= [ 1, 3, 5, 7 … 0,5N-1]
U= [ 0,5N-1 … 7, 5, 3, 1].
Приэтом:
V0i + U0i = N,
где Viи Ui— i– тые члены прогрессий V0 иU.
Приn– четном количество членов прогрессии Vравно количеству членовпрогрессииUи равно:
K= 0,5∙n= 0,25·N. /1/
Напишем возрастающую Vи убывающуюUарифметические прогрессии из нечетных чисел прогрессии Р для случая, когда n– нечетное число:
V = [1, 3, 5, 7 … 0,5N… N-3, N-1]
U = [N-1, N-3 … 0,5N … 7, 5, 3, 1]
Очевидно, что часть прогрессии U:
U3 = [N-1, N-3 … 0,5N]
представляет собой зеркальное расположение членов прогрессии V:
V3 = [0,5 … N-3, N-1],
а часть прогрессии U:
U4 = [0,5N … 7, 5, 3, 1]
представляет собой зеркальное расположение членов прогрессии V:
V4 = [1, 3, 5, 7 … 0,5N].
Исходя из этого для числа N при n– нечетном запишем:
V= [ 1, 3, 5, 7 … 0,5N]
U= [ 0,5N … 7, 5, 3, 1].
Приэтом:
V0i + U0i = N,
где Viи Ui— i– тые члены прогрессий V0 иU.
Приn–нечетном количество членов прогрессии Vравно количеству членовпрогрессииUи равно:
К=0,5·(n+1) = 0,25·(N+ 2). /2/
Количество пар чисел Vi+ Uiпрогрессий V0 иUравно: П =К.
В общем случае обозначим:
Zpv– количество простых чисел в прогрессии V;
Zsv— количество составных чисел в прогрессииV;
Zpu-- количество простых чисел в прогрессии U;
Zsu— количество составных чисел в прогрессии U;
Пs/v – количество пар чисел Vi+ Ui, состоящих из составных чисел прогрессии Uи простыхчисел прогрессииV;
Пs/u– количество пар чисел Vi+ Ui, состоящих из составных чисел прогрессии V0 и простыхчисел прогрессии U;
Пр--количество пар чисел Vi+ Ui, состоящих из простыхчисел прогрессий VиU.
Очевидно, что:--PAGE_BREAK--
П= К= Zpv+ Zsv = Zpu+ Zsu; /3/
Zsv= K — Zpv; Zsu= K — Zpu.
Из анализа значений числа N с использованием таблицы простых чисел следует:
-для чисел N≤ 116: Zpv> Zsu; Zpu> Zsv;
— для чисел N= 118…136: Zpv=Zsu; Zpu= Zsv;
— для чисел N≥138: ZpvZsu; ZpuZsv.
Составим прогрессии VиUдля произвольно взятых чисел N, разделим их на подпрогрессии, установим значения величин Zpv, Zsv, Zpu, Zsu,Пs/v, Пs/u, При соотношения между ними как для прогрессий VиUв целом, так и для входящих в них подпрогрессий.
ПРИМЕР 1. N=120; n=0,5N=0,5·120 = 60 –четное число.
В соответствии с зависимостями /1/ и /3/ количество пар чисел Vi+ Uiравно:
П = К = 0,25·N=0,25∙120 =30.
V={ V01 =[ 1 3 5 7 9 11 13 ] V02=[ 15 17 19 21 23] V03=[25 27]
U={U01 = [119 117 115 113 111 109 107 ] U02 =[105 103 101 99 97 ] U03=[95 93]
Пр* * * * * *
V04 = [ 29 31 ] V05 = [ 33 35 ] V06= [ 37 39 41 43 45 47 ] V07= [ 49 51 53]
U04= [ 91 89 ] U05= [ 87 85 ] U06= [ 83 81 79 77 75 73 ] U07= [ 71 69 67]
Пр* * * * *
V08= [ 55 57 59 ] }.
U08= [ 65 63 61 ] }.
Пр *
Простые числа набраны жирным шрифтом курсивом.
*- пары простых чисел.
Для прогрессий V0 и Uв целом имеем:
Zpv =17, Zsv =13, Zpv = Zsu, Пs/v=5, Пs/v ≠Пs/u,
Zpu =13, Zsu =17, Zpu = Zsv, Пs/u=1, Пр = 12.
Определим разности:
Rv = Zpv — Пs/v= 17 – 5 = 12;
Ru = Zpu — Пs/u= 13 – 1 = 12.
Из сравнительного анализа величин Rv, Ru иПр следует:
Rv=Ru =Пр = 12.
Для подпрогрессий V01 иU01 имеем:
Zpv =6, Zsv =1, Zpv > Zsu, Пs/v=3, Пs/v ≠Пs/u,
Zpu =3, Zsu =4, Zpu > Zsv, Пs/u=0, Пр = 3.
Определим разности:
Rv = Zpv — Пs/v= 6 – 3 = 3; Ru = Zpu — Пs/u= 3 – 0 = 3.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 3.
Для подпрогрессий V02 иU02 имеем:
Zpv =3, Zsv =2, Zpv > Zsu, Пs/v=0, Пs/v =Пs/u= 0,
Zpu =3, Zsu =2, Zpu > Zsv, Пs/u=0, Пр = 3.
Определим разности:
Rv = Zpv — Пs/v= 3 – 0 = 3; Ru = Zpu — Пs/u= 3 – 0 = 3. продолжение
--PAGE_BREAK--
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 3.
Для подпрогрессий V04 иU04 имеем:
Zpv =2, Zsv =0, Zpv > Zsu, Пs/v=1, Пs/v ≠Пs/u,
Zpu =1, Zsu =1, Zpu > Zsv, Пs/u=0, Пр = 1.
Определим разности:
Rv = Zpv — Пs/v= 2 – 1 = 1; Ru = Zpu — Пs/u= 1 – 0 = 1.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 1.
Для подпрогрессий V06 иU06 имеем:
Zpv =4, Zsv =2, Zpv > Zsu, Пs/v=1, Пs/v ≠Пs/u,
Zpu =3, Zsu =3, Zpu > Zsv, Пs/u=0, Пр = 3.
Определим разности:
Rv = Zpv — Пs/v= 4 – 1 = 3; Ru = Zpu — Пs/u= 3 – 0 = 3.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 3.
Для подпрогрессий V07иU07 имеем:
Zpv =1, Zsv =2, Zpv = Zsu, Пs/v=0, Пs/v ≠Пs/u,
Zpu =2, Zsu =1, Zpu = Zsv, Пs/u=1, Пр = 1.
Определим разности:
Rv = Zpv — Пs/v= 1 – 0 = 1; Ru = Zpu — Пs/u= 2 – 1 = 1.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 1.
Для подпрогрессий V08иU08 имеем:
Zpv =1, Zsv =2, Zpv
Zpu =1, Zsu =2, Zpu
Определим разности:
Rv = Zpv — Пs/v= 1 – 0 = 1; Ru = Zpu — Пs/u= 1 – 0 = 1.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 1.
ПРИМЕР 2. N=154; n=0,5N=0,5·154= 77 – нечетное число.
В соответствии с зависимостями /2/ и /3/ количество пар чисел Vi+ Uiравно:
П = К=0,5(n+1) = 0,25(N+ 2) = 0,25 (154 + 2) = 39.
V={V01= [ 1 3 5 7 9 ] V02= [ 11 13 15 17 19 21 23]»
U={U01= [153 151 149 147 145] U02= [143 141 139 137 135 133 131 ] »
Пр * * * *
V03=[ 25 27 29 31 33 35 37 39] V04=[ 41 43 45 47 49 51 53]
U03=[129 127 125 123 121 119 117 115] U04=[113 111 109 107 105 103 101]
Пр * * *
» V05= [55 57 59 61 63 65 67 69] V06= [ 71 73 ] V07= [ 75 77 ] }.
» U05= [99 97 95 93 91 89 87 85] U06= [ 83 81 ] U07= [ 79 77 ] }.
Пр *
Простые числа набраны жирным шрифтом курсивом. продолжение
--PAGE_BREAK--
*- пары простых чисел.
Для прогрессий V0 и Uв целом имеем:
Zpv =21, Zsv =18, Zpv
Zpu =15, Zsu =24, Zpu
Определим разности:
Rv = Zpv — Пs/v= 21 – 13 = 8; Ru = Zpu — Пs/u= 15 – 7 = 8.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 8.
Для подпрогрессий V01 иU01 имеем:
Zpv =4, Zsv =1, Zpv > Zsu, Пs/v=2, Пs/v ≠Пs/u,
Zpu =2, Zsu =3, Zpu > Zsv, Пs/u=0, Пр = 2.
Определим разности:
Rv = Zpv — Пs/v= 4 – 2 = 2; Ru = Zpu — Пs/u= 2 – 0 = 2.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 2.
Для подпрогрессий V02 иU02 имеем:
Zpv =5, Zsv =2, Zpv > Zsu, Пs/v=3, Пs/v ≠Пs/u,
Zpu =3, Zsu =1, Zpu > Zsv, Пs/u=1, Пр = 2.
Определим разности:
Rv = Zpv — Пs/v= 5 – 3 = 2; Ru = Zpu — Пs/u= 3 – 1= 2.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 2.
Для подпрогрессий V04 иU04 имеем:
Zpv =4, Zsv =3, Zpv > Zsu, Пs/v=1, Пs/v ≠Пs/u,
Zpu =5, Zsu =2, Zpu > Zsv, Пs/u=2, Пр = 3.
Определим разности:
Rv = Zpv — Пs/v= 4 – 1 = 3;
Ru = Zpu — Пs/u= 5 – 2 = 3.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 3.
Для подпрогрессий V06 иU06 имеем:
Zpv =2, Zsv =0, Zpv > Zsu, Пs/v=1, Пs/v ≠Пs/u,
Zpu =1, Zsu =1, Zpu > Zsv, Пs/u=0, Пр = 1.
Определим разности:
Rv = Zpv — Пs/v= 2 – 1 = 1; Ru = Zpu — Пs/u= 1 – 0 = 1.
Из сравнительного анализа величин Rv, Ru иПр следует: Rv= Ru =Пр = 1.
Из анализа приведенных прогрессий и входящих в их состав подпрогрессий следуют определенные варианты сочетаний величин Zpv, Zsv, Zpu, Zsu,Пs/v, Пs/u, при которых прогрессии и входящие в них подпрогрессии содержат пары простых чисел Vi+ Ui, удовлетворяющие условию:
Vi+ Ui= N:
Вариант 1: Zpv=Zpu, Zsv=Zsu, Zpv>Zsu, Zpu>Zsv, Пs/v=Пs/u = 0 (подпрогрессия V02 -U02 для числа N =120); продолжение
--PAGE_BREAK--
Вариант 2: Zpv=Zpu, Zsv=Zsu, Zpv(подпрогрессияV08 -U08 для числа N =120);
Вариант 3: Zpv>Zpu, ZsvZsu, Zpu>Zsv, Пs/v>Пs/u(подпрогрессии V01 -U01, V04 -U04, V06 -U06 для числа N =120 и подпрогрессии V01 -U01, V06 -U06 для числа 154);
Вариант 4: Zpv>Zpu, ZsvПs/u (прогрессия V0-U0для числа N =120);
Вариант 5: Zpv>Zpu, Zsv>Zsu, Zpv>Zsu, Zpu>Zsv, Пs/v>Пs/u (подпрогрессия V02-U02 для числа N =154);
Вариант 6: ZpvZsu, Zpv=Zsu, Zpu=Zsv, Пs/v
Вариант 7: ZpvZsu, Zpv>Zsu, Zpu>Zsv, Пs/v
Вариант 8: Zpv>Zpu, ZsvПs/u (прогрессия V0-U0для числа N =154).
В рассмотренных вариантах преобладает вариант 3 (в 5 из 12 подпрогрессий). Вероятно, что возможны и другие варианты сочетаний величин Zpv, Zsv, Zpu, Zsu,Пs/v, Пs/u.
Значения количества пар Пp простых чисел для некоторых четных чисел N (количества Пpприведены в скобках рядом с числами N):
80(5), 82(5), 84(8), 86(5), 88(4), 90(10), 120(12), 138(5), 150(13), 154(8), 180(15), 184(8), 222(11), 226(7), 228(13), 336(19), 644(17), 1000(28), 1312(22).
Из анализа приведенных данных следует, что строгой зависимости между значениями четных чисел Nи количеством пар Пp простых чисел для них не существует, но прослеживается закономерность, в соответствии с которой с существенным увеличением значений числа Nувеличивается количество пар Пpдля них.
Из изложенного следует, что любое четное число N>4 равно сумме двух и более пар Пp простых чисел при условии, что эти числа могут быть равны. Примеры:
6=1+5=3+3; 8=1+7=3+5; 10=3+7=5+5; 12=1+11=5+7; 14=1+13=3+11=7+7.
ДОКАЗАТЕЛЬСТВО СЛАБОЙГИПОТЕЗЫ ГОЛЬДБАХА
Слабая гипотеза Гольдбаха формулируется следующим образом: любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел:
М = A+ B+ C,
где: A, B и C – простые числа.
При этом:
A≠ B≠ С
ДОКАЗАТЕЛЬСТВО
Обозначим:
A + B =N.
Очевидно, что N – четное число.
Тогда:
M = N + C.
Отсюда:
N = M – C.
Вычтя из любого нечетного числа простое число, получим четное число. Выше при доказательстве сильной гипотезы Гольдбаха-Эйлера доказано, что любое четное число, большее двух, равно сумме одной пары или нескольких пар простых чисел. Следовательно, любое нечетное число М, большее семи, равно:
M = N + C = A + B + С,
где: A, Bи C– простые числа.
При этом:
A≠ B≠ С
Автор: Козий Николай Михайлович, инженер-механик
E-mail: nik_krm@mail.ru
umbolic@gmail.com Ссылки (links):
mailto:nik_krm@mail.rumailto:umbolic@gmail.com