Реферат по предмету "Математика"


Двоїста задача лінійного програмування економічна інтерпретація знаходження оптимальних планів

--PAGE_BREAK--2. Економічна інтерпретація прямої та двоїстої задач лінійного програмування


Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею.

Економічну інтерпретацію кожної з пари таких задач розглянемо на прикладі виробничої задачі.

Пряма задача:
max F = c1x1 + c2x2 + … + cnxn (3.1)

економічний двоїстий лінійний програмування

за умов: (3.2)
. (3.3)
Необхідно визначити, яку кількість продукції кожного j-го виду необхідно виготовляти в процесі виробництва, щоб максимізувати загальну виручку від реалізації продукції підприємства. Причому відомі: наявні обсяги ресурсів – ; норми витрат і-го виду ресурсу на виробництво одиниці j-го виду продукції –, а також  – ціни реалізації одиниці j-ої продукції.

Розглянемо тепер цю саму задачу з іншого погляду. Допустимо, що за певних умов доцільно продавати деяку частину чи всі наявні ресурси. Необхідно визначити ціни ресурсів. Кожному ресурсу поставимо у відповідність його оцінку . Умовно вважатимемо, що  – ціна одиниці і-го ресурсу.

На виготовлення одиниці j-го виду продукції витрачається згідно з моделлю (3.1) – (3.3) m видів ресурсів у кількості відповідно . Оскільки ціна одиниці і-го виду ресурсу дорівнює , то загальна вартість ресурсів, що витрачаються на виробництво одиниці j-го виду продукції, обчислюється у такий спосіб:
.
Продавати ресурси доцільно лише за умови, що виручка, отримана від продажу ресурсів, перевищує суму, яку можна було б отримати від реалізації продукції, виготовленої з тих самих обсягів ресурсів, тобто:
.
Зрозуміло, що покупці ресурсів прагнуть здійснити операцію якнайдешевше, отже, необхідно визначити мінімальні ціни одиниць кожного виду ресурсів, за яких їх продаж є доцільнішим, ніж виготовлення продукції. Загальну вартість ресурсів можна виразити формулою:
.
Отже, в результаті маємо двоїсту задачу:
(3.4)
за умов: (3.5)


(3.6)
Тобто необхідно визначити, які мінімальні ціни можна встановити для одиниці кожного і-го виду ресурсу , щоб продаж ресурсів був доцільнішим, ніж виробництво продукції.

Зауважимо, що справжній зміст величин  – умовні ціни, що виражають рівень «цінності» відповідного ресурсу для даного виробництва. Англійський термін «shadowprices» у літературі перекладають як «оцінка» або «тіньова, неявна ціна». Академік Л.В. Канторович назвав їх об’єктивно обумовленими оцінками відповідного ресурсу.

Задача (3.4) – (3.6) є двоїстою або спряженою до задачі (3.1) – (3.3), яку називають прямою (основною, початковою). Поняття двоїстості є взаємним. По суті мова йде про одну і ту ж задачу, але з різних поглядів. Дійсно, не важко переконатися, що двоїста задача до (3.4) – (3.6) збігається з початковою. Тому кожну з них можна вважати прямою, а іншу – двоїстою. Симетричність двох таких задач очевидна. Як у прямій, так і у двоїстій задачі використовують один набір початкових даних: , ; . Крім того, вектор обмежень початкової задачі стає вектором коефіцієнтів цільової функції двоїстої задачі і навпаки, а рядки матриці А (матриці коефіцієнтів при змінних з обмежень прямої задачі) стають стовпцями матриці коефіцієнтів при змінних в обмеженнях двоїстої задачі. Кожному обмеженню початкової задачі відповідає змінна двоїстої і навпаки.

Початкова постановка задачі та математична модель може мати вигляд як (3.1) – (3.3), так і (3.4) – (3.6). Отже, як правило, кажуть про пару спряжених задач лінійного програмування.

    продолжение
--PAGE_BREAK--2.1 Правила побудови двоїстих задач


Для побудови двоїстої задачі необхідно звести пряму задачу до стандартного виду. Вважають, що задача лінійного програмування подана у стандартному вигляді, якщо для відшукання максимального значення цільової функції всі нерівності її системи обмежень приведені до виду «», а для задачі на відшукання мінімального значення – до виду «».

Якщо пряма задача лінійного програмування подана в стандартному вигляді, то двоїста задача утворюється за такими правилами:

1. Кожному обмеженню прямої задачі відповідає змінна двоїстої задачі. Кількість невідомих двоїстої задачі дорівнює кількості обмежень прямої задачі.

2. Кожній змінній прямої задачі відповідає обмеження двоїстої задачі, причому кількість обмежень двоїстої задачі дорівнює кількості невідомих прямої задачі.

3. Якщо цільова функція прямої задачі задається на пошук найбільшого значення (max), то цільова функція двоїстої задачі – на визначення найменшого значення (min), і навпаки.

4. Коефіцієнтами при змінних у цільовій функції двоїстої задачі є вільні члени системи обмежень прямої задачі.

5. Правими частинами системи обмежень двоїстої задачі є коефіцієнти при змінних у цільовій функції прямої задачі.

6. Матриця
,
що складається з коефіцієнтів при змінних у системі обмежень прямої задачі, і матриця коефіцієнтів у системі обмежень двоїстої задачі



утворюються одна з одної транспонуванням, тобто заміною рядків стовпчиками, а стовпчиків – рядками.

Процес побудови двоїстої задачі зручно зобразити схематично:


Рис. 3.1. Схема побудови двоїстої задачі до прямої
Пари задач лінійного програмування бувають симетричні та несиметричні.

У симетричних задачах обмеження прямої та двоїстої задач є лише нерівностями, а змінні обох задач можуть набувати лише невід’ємних значень.

У несиметричних задачах деякі обмеження прямої задачі можуть бути рівняннями, а двоїстої – лише нерівностями. У цьому разі відповідні рівнянням змінні двоїстої задачі можуть набувати будь-яких значень, не обмежених знаком.

Всі можливі форми прямих задач лінійного програмування та відповідні їм варіанти моделей двоїстих задач у матричній формі наведено нижче.



Пряма задача Двоїста задача Cиметричні задачі
max F = CX

AX  B

X  0

min Z = BY

ATY  C

Y  0

min F = CX

AX  B

X  0

max Z = BY

ATY  C

Y  0


Несиметричні задачі

max F = CX

AX = B

X  0

min Z = BY

ATY  C



min F = CX

AX = B

X  0

max Z = BY

ATY  C





До даної задачі лінійного програмування записати двоїсту.

max F = –5x1 + 2x2;

Розв’язання.Перш ніж записати двоїсту задачу, необхідно пряму задачу звести до стандартного вигляду. Оскільки цільова функція F максимізується і в системі обмежень є нерівності, то вони мусять мати знак «». Тому перше обмеження задачі помножимо на (–1). Після цього знак нерівності зміниться на протилежний. Отримаємо:

max F = –5x1 + 2x2;



Тепер за відповідними правилами складемо двоїсту задачу:
;


Або схематично (використовуючи компоненти векторів та матриць) зв’язок між парою цих задач можна зобразити так:

До заданої задачі лінійного програмування записати двоїсту.







Розв’язання. Пряму задачу зведемо до стандартного вигляду. Оскільки цільова функція F мінімізується і в системі обмежень є нерівності, то вони мають бути виду «». Тому друге обмеження задачі необхідно помножити на (–1). При цьому знак нерівності зміниться на протилежний. Отримаємо:



Двоїста задача:




Оскільки перше обмеження початкової задачі є рівнянням, то відповідна йому змінна двоїстої задачі може набувати як додатного, так і від’ємного значення.

    продолжение
--PAGE_BREAK--3. Основні теореми двоїстості та їх економічний зміст


Зв’язок між оптимальними розв’язками прямої та двоїстої задач встановлюють леми та теореми двоїстості. Розглянемо задачі (3.1) – (3.3) та (3.4) – (3.6) з економічною інтерпретацією.

Якщо та  – допустимі розв’язки відповідно прямої та двоїстої задач, то виконується нерівність

або . (3.7)

Доведення. Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі:


Підсумувавши праві і ліві частини нерівностей, отримаємо:
. (3.8)
Аналогічно перетворимо систему обмежень (3.5) двоїстої задачі:



Підсумувавши після множення тут також ліві та праві частини, отримаємо нерівність:
(3.9)
Ліві частини нерівностей (3.8) та (3.9) збігаються, отже:
.
Нерівність (3.7) доведено.

Якщо та  – допустимі розв’язки відповідно прямої та двоїстої задач, для яких виконується рівність
(3.10)
то X*, Y* – оптимальні розв’язки відповідних задач.

Доведення. Нехай  – допустимий план прямої задачі (3.1) – (3.3). Тоді на підставі нерівності (3.7) маємо: . За умовою задачі , отже
(3.11)
Оскільки за допущенням  – довільний допустимий план прямої задачі, то нерівність (3.11) виконується для будь-якого з можливих розв’язків. Отже, маємо, що при цільова функція (3.1) набирає найбільшого значення, тобто є оптимальним розв’язком початкової задачі.

В аналогічний спосіб доводиться, що  – оптимальний план двоїстої задачі.


3.1 Перша теорема двоїстості


Теорема (перша теорема двоїстості). Якщо одна з пари спряжених задач має оптимальний план, то й друга задача також має розв’язок, причому для оптимальних розв’язків значення цільових функцій обох задач збігаються, тобто .

Якщо цільова функція однієї із задач необмежена, то спряжена задача також не має розв’язку.

Доведення. Допустимо, що початкова задача (3.1) – (3.3) має оптимальний план, який отриманий симплексним методом. Не порушуючи загальності, можна вважати, що останній базис складається з першихm векторів . Остання симплексна таблиця має вигляд:
Таблиця 3.1
і

Базис

Сб

План

с1

с2



сm

cm + 1



cn

x1

x2



xm

xm + 1



xn

1

x1





1













2

x2







1

































m

xm











1







m + 1



F0

















Позначимо через D матрицю, що утворена з компонент векторів А1, А2,…, Аm останнього базису в першій симплексній таблиці.

Для оптимального плану отримаємо:
(3.12)


де , В-вектор, що складається з вільних членів системи обмежень.

Звідси:
(3.13)
Симплексна таблиця 3.1 містить коефіцієнти розкладу векторів початкової системи обмежень задачі за векторами базису, тобто кожному вектору з системи обмежень задачі (3.1) – (3.3) Аj відповідає в симплексній таблиці вектор , такий що
(3.14)
Позначимо через матрицю, що складається з коефіцієнтів розкладу векторів . Тоді буде справджуватися рівність:

, звідки
. (3.15)
Враховуючи (3.13), значення оптимального плану даної задачі знаходиться у вигляді:

де , причому



,

тобто всі компоненти вектора є оцінками оптимального плану задачі (3.1) – (3.3), а тому
. (3.16)
Оскільки оптимальний план початкової задачі подано у вигляді , то за правилами побудови двоїстої задачі можна допустити, що її оптимальний план матиме вигляд:
. (3.17)
Доведемо, що дійсно є оптимальним планом двоїстої задачі.

Система обмежень двоїстої задачі у векторно-матричній формі матиме вигляд: .

Підставимо в цю нерівність значення . Тоді, враховуючи (3.15), (3.16) та (3.17), отримаємо: .

Звідки: . Отже, задовольняє систему обмежень (3.5) двоїстої задачі, тому є допустимим планом задачі (3.4) – (3.6).

Для даного плану значення функціонала дорівнюватиме:
, (3.18)
де . Підставимо в (3.18) значення з (3.17) та, враховуючи (3.13), матимемо:
. (3.19)
Доведено, що збігається зі значенням оптимального плану початкової задачі.

Отже, за лемою 3.2 (достатня умова оптимальності плану задачі лінійного програмування) план є оптимальним планом двоїстої задачі (3.4) – (3.6).

Аналогічно доводиться, що коли двоїста задача має розв’язок, то початкова також має розв’язок і виконується рівність: .

Для доведення другої частини теореми допустимо, що лінійна функція початкової задачі необмежена зверху. Тоді з нерівності маємо, що , що не має змісту. Отже, двоїста задача в даному разі не має розв’язків. Доведена теорема дає змогу в процесі розв’язування однієї задачі водночас знаходити план другої.

Економічний зміст першої теореми двоїстості. Максимальний прибуток (Fmax) підприємство отримує за умови виробництва продукції згідно з оптимальним планом , однак таку саму суму грошей () воно може мати, реалізувавши ресурси за оптимальними цінами . За умов використання інших планів на підставі основної нерівності теорії двоїстості можна стверджувати, що прибутки від реалізації продукції завжди менші, ніж витрати на її виробництво.


    продолжение
--PAGE_BREAK--3.2 Друга теорема двоїстості


Між розв’язками спряжених задач крім рівності значень цільових функцій існує тісніший взаємозв’язок. Для його дослідження розглянемо дві симетричні задачі лінійного програмування.

Пряма задача:


(3.20)


.

Двоїста задача:


(3.21)


Для розв’язування задач симплексним методом необхідно звести їх доканонічної форми, для чого в системи обмежень задач (3.20) і (3.21) необхідно ввести відповідно m та n невід’ємних змінних. Поставимо обмеженням кожної задачі у відповідність змінні її двоїстої задачі.



Отримали таку відповідність між змінними спряжених задач:

Наступна теорема в літературі, як правило, має назву теореми про доповнюючу нежорсткість.

Теорема (друга теорема двоїстості для симетричних задач). Для того, щоб плани X* та Y* відповідних спряжених задач були оптимальними, необхідно і достатньо, щоб виконувалися умови доповнюючої нежорсткості:
(3.22)


. (3.23)



Доведення. Необхідність. Нехай X* та Y* – оптимальні плани відповідно прямої та двоїстої задач (3.20) i (3.21). З першої теореми двоїстості відомо, що
,
а також компоненти векторів X* та Y* задовольняють системи обмежень задач (3.20) та (3.21), тобто:
, (3.24)
. (3.25)
Помножимо (3.24) на , а (3.25) – на і підсумуємо праві та ліві частини. Отримаємо:
;


Праві частини останніх двох нерівностей не збігаються, але оскільки їх ліві частини однакові, то це означає, що разом вони виконуються лише за умови рівностей, тобто:


;


Виконаємо перетворення для кожного рівняння:
; (3.26)
. (3.27)
Оскільки , то в рівнянні (3.26) кожна з компонент , а , тому виконання рівняння (3.26) можливе лише у тому разі, коли кожний доданок виду . Аналогічне міркування проведемо для (3.27), після чого можна висновувати, що .

Достатність.За умовою виконуються рівняння
,

, .
Необхідно довести, що X* та Y* – оптимальні плани відповідно прямої (3.20) та двоїстої (3.21) задач. У кожному рівнянні розкриємо дужки та підсумуємо перше рівняння по , а друге – по . Отримаємо:




;

.
Ліві частини цих рівнянь однакові, отже, . Тоді за першою теоремою двоїстості, оскільки значення цільових функцій цих задач збігаються, можна висновувати, що X* та Y* – оптимальні плани спряжених симетричних задач. Теорему доведено.

Очевидніший взаємозв’язок між оптимальними планами прямої та двоїстої задач встановлює наслідок другої теореми двоїстості.

Наслідок. Якщо в результаті підстановки оптимального плану однієї із задач (прямої чи двоїстої) в систему обмежень цієї задачі і-те обмеження виконується як строга нерівність, то відповідна і-та компонента оптимального плану спряженої задачі дорівнює нулю.

Якщо і-та компонента оптимального плану однієї із задач додатна, то відповідне і-те обмеження спряженої задачі виконується для оптимального плану як рівняння.

Економічний зміст другої теореми двоїстості стосовно оптимального плану Х* прямої задачі. Якщо для виготовлення всієї продукції в обсязі, що визначається оптимальним планом Х*, витрати одного і-го ресурсу строго менші, ніж його загальний обсяг , то відповідна оцінка такого ресурсу (компонента оптимального плану двоїстої задачі) буде дорівнювати нулю, тобто такий ресурс за даних умов для виробництва не є «цінним».

Якщо ж витрати ресурсу дорівнюють його наявному обсягові , тобто його використано повністю, то він є «цінним» для виробництва, і його оцінка буде строго більшою від нуля.

Економічне тлумачення другої теореми двоїстості щодо оптимального плану Y* двоїстої задачі: у разі, коли деяке j-те обмеження виконується як нерівність, тобто всі витрати на виробництво одиниці j-го виду продукції перевищують її ціну сj, виробництво такого виду продукції є недоцільним, і в оптимальному плані прямої задачі обсяг такої продукції дорівнює нулю.

Якщо витрати на виробництво j-го виду продукції дорівнюють ціні одиниці продукції , то її необхідно виготовляти в обсязі, який визначає оптимальний план прямої задачі .


    продолжение
--PAGE_BREAK--3.3 Третя теорема двоїстості


Як було з’ясовано в попередньому параграфі, існування двоїстих змінних уможливлює зіставлення витрат на виробництво і цін на продукцію, на підставі чого обґрунтовується висновок про доцільність чи недоцільність виробництва кожного виду продукції. Крім цього, значення двоїстої оцінки характеризує зміну значення цільової функції, що зумовлена малими змінами вільного члена відповідного обмеження. Дане твердження формулюється у вигляді такої теореми.

Теорема (третя теорема двоїстості). Компоненти оптимального плану двоїстої задачі дорівнюють значенням частинних похідних від цільової функції за відповідними аргументами , або

(3.28)

Доведення. Розглянемо задачу лінійного програмування, подану в канонічній формі:
(3.29)




(3.30)
(3.31)
Двоїсту задачу до задачі (3.29) – (3.31) сформулюємо так: знайти оптимальний план , за якого мінімізується значення
(3.32)
за умов:

(3.33)
причому умова невід’ємності змінних відсутня.

Позначимо  – оптимальний план двоїстої задачі,  – оптимальний план задачі (3.29) – (3.31). За першою теоремою двоїстості відомо, що:

,

або
. (3.34)
Оскільки досліджується питання впливу зміни значень на F, то лінійну функцію (3.34) можна розглядати як функцію від аргументів . Тоді частинні похідні за змінними будуть дорівнювати компонентам оптимального плану двоїстої задачі :
. (3.35)
Однак дане твердження справедливе лише у тому разі, коли компоненти оптимального плану залишаються постійними, а оскільки за першою теоремою двоїстості , то значення двоїстих оцінок будуть незмінними лише за умови постійної структури оптимального плану початкової задачі.

Отже, рівності (3.35) справджуються лише за незначних змін , інакше суттєва зміна умов початкової задачі (правих частин системи обмежень (3.30) та цільової функції (3.32)) приведе до зміни базису в оптимальному плані прямої задачі, а значить, і до іншого розв’язку двоїстої .

Економічний зміст третьої теореми двоїстості. Двоїсті оцінки є унікальним інструментом, який дає змогу зіставляти непорівнянні речі. Очевидно, що неможливим є просте зіставлення величин, які мають різні одиниці вимірювання. Якщо взяти як приклад виробничу задачу, то цікавим є питання: як змінюватиметься значення цільової функції (може вимірюватися в грошових одиницях) за зміни обсягів різних ресурсів (можуть вимірюватися в тоннах, м2, люд./год, га тощо).

Використовуючи третю теорему двоїстості, можна легко визначити вплив на зміну значення цільової функції збільшення чи зменшення обсягів окремих ресурсів: числові значення двоїстих оцінок показують, на яку величину змінюється цільова функція за зміни обсягу відповідного даній оцінці ресурсу .

Отже, за умови незначних змін замість задачі (3.29) – (3.31) маємо нову задачу, де замінено на . Позначимо через оптимальний план нової задачі. Для визначення не потрібно розв’язувати нову задачу лінійного програмування, а достатньо скористатися формулою , де  – оптимальний план задачі (3.29) – (3.31).

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :