Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!
Реферат

Реферат по предмету "Математика"


Комбінаторика

--PAGE_BREAK--Антитранзистивними є відношення перпендикулярності ().
Відношення між елементами множин можуть мати одну, дві, три або не володіти ні однією властивістю.
Наприклад, відношення перпендикулярності в множині прямих є симетричним, але не має рефлексивної і транзитивної властивостей, відношення р „число х більше числа у” у множині натуральних чисел є транзитивним, але не володіє властивостями рефлективності і симетричності.
§ 2. 4. Відношення еквівалентності.
Бінарне відношення р називається відношенням еквівалентності, якщо воно рефлексивне, симетричне і транзитивне.
Відношення: „бути однокурсником” у множині студентів; „мати один і той же корінь” у множині слів є відношеннями еквівалентності.
Якщо між елементами деякої множини, встановлено відношення еквівалентності, то цим самим ми розбиваємо задану множину на класи.
Розглянемо відношення р: „давати однакову остачу при діленні на 3” у множині невід’ємних цілих чисел. Цим самим ми розбиваємо задану множину на такі класи, які не перетинаються:
К1 = {0, 3, 6, 9 ......} – остача нуль
К2 = {4, 7, 10 ......}   – остача один
К3 = {5, 8, 11 ......}   – остача два
Класи, на які відношення еквівалентності розбиває множину А називаються класами еквівалентності. Це розбиття характеризується такими властивостями:
         1. Ці класи не порожні
         Кі ≠ Ш для всіх і = 1, 2, 3, ......, n
         2. Будь-які два класи не перетинаються
         Кі ∩ Ку =  для будь-яких і, у = 1, 2, 3, ......, n       
3. Об’єднання усіх класів дає універсальну множину А
          Кі = А
Легко переконатися, що елементи із одного класу еквівалентні між собою, а елементи із різних класів – ні.
Теорема
Будь-яке відношення еквівалентності р здійснює розбиття множини А на класи еквівалентності так, що будь-які два елементи одного класу знаходяться у відношенні р, а будь-які два елементи різних класів не знаходяться у даному відношенні між собою.
Доведення
Нехай в множині А є відношення еквівалентності р. Візьмемо з цієї множини якийсь елемент а і виділимо в окремий клас К (а) всі елементи, які знаходяться з а у відношенні р
К (а) = {у | у є А, ару}          (1)
Задане відношення р розіб’є всю множину А на ряд класів К, в результаті чого ми одержимо множину класів {К (а)}.
Доведемо, що множина  {К (а)} для всіх а є А є розбиттям на класи, тобто що вона задовольняє трьом умовам розбиття на класи, а саме, що:
1) К (а) ≠ Ш
2) К (а) ∩ К (b) = Ш
3) К (а) = А
Покажемо, що справедлива перша умова.
Раз р є відношенням еквівалентності, то воно є рефлексивне, тобто ара. Значить К (а) має  хоча б один елемент а і вже К (а) не порожня множина
К (а) ≠ Ш
Покажемо, що справджується умова 2) для будь-яких а і b є А,
якщо а  b.
Доведемо цю умову виходячи з протилежного.
Припустимо, що К (а) ∩ К (b) ≠ Ш. Тоді у них є спільний елемент с, тобто
с є К (а) і с є К (b)
Але елементи одного класу, відповідно до (1) знаходяться у відношенні р між собою, значить
арс  і  bрс
         Із симетричності відношення р із bрс слідує срb, а із транзитивності відношення р випливає:
якщо арс і срb, то арb.
         А це протирічить умові, що аb.
         Значить, припущення не вірне і
К (а) ∩ К (b) = Ш.
         Покажемо, що виконується і умова 3).
         Із  формули  (1) видно,  що  будь-який  а є А  належить класові К (а), тобто
а є К (а). Отже, щоб одержати множину А треба об’єднати усі ці класи
 К (а) = А
                                                                                         ає А
Ми довели, що відношення р розбиває множину А на класи еквівалентності.
Тепер покажемо, що: 1) два елементи одного класу еквівалентні між собою, а 2) два елементи різних класів не еквівалентні. Доведемо перше.
Нехай b і с будь-які два елементи одного класу К (а). Доведемо, що bрс. Раз b є К (а), то по формулі (1) – арb, а з того, що с є К (а) слідує, що арс. За симетричністю відношення р – з а р b слідує b р а. За транзитивністю відношення р маємо bра іарс, то bрс.
Доведемо друге. Нехай маємо два різні класи К (b) ≠ К (с). Покажемо, що b  с. Доведемо від супротивного. Припустимо, що bрс. Нехай d – довільний елемент множини К (с), тоді cpd.
За симетричністю р маємо із bрс слідує срb.
За транзитивністю із bрс і срd слідуєbpd.
Значить d є К (b).
Ми довели, що якщо d є К (с), то d є К (b) для вільного d.
Отже, К (с)  К (b).
Аналогічно доводимо, що К (b)  К (с).
Отже, К (b) = К (с).
А це протирічить умові. Значить, наше припущення не вірне і bс.
§ 2. 5. Відношення порядку. Упорядкована множина.
Серед різних відношень ми часто зустрічаємо такі, які встановлюють у множині певний порядок.
         Інтуїтивне представлення про порядок об’єктів переважно пов’язано з їх взаємним розміщенням в просторі (вище – нижче, ближче – дальше, правіше – лівіше); в часі (раніше – пізніше); з порівнянням їх розмірів (більше – менше, легше – тяжче).
         Ці відношення і подібні їм відносяться до важливого класу відношень, що називають відношеннями порядку.
Відношенням строгого порядку називається будь-яке відношення, яке є антирефлексивним, антисиметричним і транзитивним.
Отже, відношення р буде відношенням строгого порядку, якщо:
1.                хх для будь-якого х є А, тобто (х, х)  Р для будь-якої пари
2.                 (х, х) є А І.
3.                якщо  хру, то ух  для будь — якого  х, у є А, тобто якщо (х, у) є Р, то
     (у, х)  Р для будь-якої пари (х, у) є А І.
4.                якщо хру і урz, то хрz для будь-яких х, у, z є А, тобто якщо (х, у) є Р і (у, z) є Р, то і (х, z) є Р для будь яких пар (х, у) (у, z) є А І.
Так відношення р: „ х
Відношення р називається відношенням нестрогого (часткового) порядку, якщо воно рефлексивне, антисиметричне і транзитивне.
Так, відношення „число х – дільник числа у” у множині А = {1, 2, 3, 4, 5} є відношенням часткового порядку, тому що воно транзитивне, рефлексивне і антисиметричне.
У математиці та її застосуваннях особливу роль відіграють такі відношення порядку р, які дають можливість порівняти довільні різні елементи певної множини А. Ці відношення називаються відношеннями лінійного порядку у множині А.
Відношення строгого (нестрогого) порядку називається відношенням лінійного строгого (нестрогого) порядку, якщо для будь-яких різних елементів х і у із А здійснюється одне із відношень хру або урх.
Проілюструємо сказане на прикладі. Нехай А – множина студентів групи. Р – відношення „студент х вищий за студента у”. Це відношення антирефлексивне, антисиметричне і транзитивне.
Значить, воно відношення строгого порядку. Якщо в даній множині А немає студентів однакового росту, то тоді про будь-яких двох студентів можна сказати, що або студент х вищий за у або студент у вищий студента х. Отже, відношення Р є відношенням строгого лінійного порядку.
Множина А називається лінійною упорядкованою, якщо в А введено відношення Р і для будь-якої пари (х, у) є А І, якщо х ≠ у, то  хру  або
урх.
Так, множина натуральних чисел лінійно упорядкована відношенням строгого порядку „менше”, тобто N = {1, 2, 3, 4, ....}

Розділ 3.  СИМВОЛІКА  МАТЕМАТИЧНОЇ  ЛОГІКИ
§ 3. 1. Поняття висловлення
Під математичною логікою або символічною логікою розуміють логіку, що розвивається за допомогою математичних методів. Математичний апарат до логіки вперше застосував у XIX ст.  англійський математик Джордж Буль.
Д. Буль (1815 – 1864 р.р.), батько відомої англійської письменниці Войнич (її чоловік був революціонером), автора роману „Овод”. Темп розвитку математичної логіки різко зростає у XIX ст. У 90-х роках ХХ ст… математична логіка дістає широке застосування в технічних науках, наприклад, електротехніці. Зараз вона є складовою частиною теоретичного фундаменту кібернетики.
Основним поняттям математичної логіки є висловлювання. Висловлювання належить до первинних понять, воно не визначеється через інші поняття, а вводяться за допомогою опису.
Під висловлюванням розуміють будь-яке твердження, відносно якого можна з’ясувати, істинне воно чи хибне. Наприклад,
1.    Діагональ квадрата не сумірна з його стороною – „і” висловлювання
2.    5 > 8 – „х” висловлення
3.    О котрій годині ти повернешся вчора додому? – не є висловленням.
Висловлення позначаються малими латинськими буквами: p, q, r, s,…
Множину усіх висловлювань, яку позначимо буквою S, ділять на дві підмножини (класи)
Т – клас усіх істинних висловлювань
F – клас усіх хибних висловлювань
Два висловлювання p і q називаються рівносильними (логічно рівними), якщо вони належать до одного й того самого класу і записують
p  q
Із означення рівносильності висловлювань виникають властивості:
1.                     р  р
2.                     Якщо р  q, то q  р – симетричність
3.                     Якщо р  q і q  r, то р  r – транзитивність
§ 3. 2. Операції над висловленнями
У розмовній мові для сполучення двох речень вживають слова: і, або, якщо… то, тоді і тільки тоді, не. З’ясуємо те значення, в якому ці слова вживаються в логіці.
а) Логічне множення (кон’юнкція)
Логічним добутком (кон’юнкцією) двох висловлень p і q називається
таке висловлення „p і q”, яке істинне тоді і тільки тоді, коли p і q одночасно істинні. Позначається: p q.
Згідно з означенням маємо таку таблицю істинності для кон’юнкції.
p
q
p  q
i
i
i
i
x
x
x
i
x
 x
x
x
Приклад.  Нехай висловлення р буде “5
Переважно скорочено таку кон’юнкцію записують як подвійну нерівність 8
             Властивості кон’юнкції
1) Комутативна (переставна властивість) p  q  q  p
p
q
p q
q p
і
і
і
і
і
х
х
х
х
і
х
х
х
х
х
х

2) Асоціативна (сполучна) властивість (p  q)  s  p  (q s) 
p
q
s
(p  q)
(p  q)  s 
(q  s)
(q  s) p
і
і
і
і
і
і
і
і
х
х
х
х
х
х
х
і
х
х
х
х
х
х
х
і
х
х
х
х
х
і
і
х
х
і
х
і
х
і
х
х
х
х
і
і
х
і
х
х
х
х
х
х
х
х
х
х

Означення кон’юнкції двох висловлювань розповсюдна на будь-яке скінченне число висловлювань
рі = р1р2р3р4…рn
б) Логічне додавання (диз’юнкція)
Диз’юнкцією або логічною сумою двох висловлень p і q  називається висловлення “p і q „ яке істинне тоді і тільки тоді, коли істинне хоча б одне із висловлювань і хибне коли вони обидва хибні.
Позначення диз’юнкції: p vq
Таблиця істинності:
 p
q
pvq
i
i
i
i
x
і
x
i
і
x
x
x
                
  Закони диз’юнкції
1) Комутативний: p vq  q v p
p
q
p vq
q vp
і
і
і
і
і
х
і
і
х
і
і
і
х
х
х
х

2) Асоціативний закон диз’юнкції (pvq) vs pv(qvs)
p
q
s
p vq
(p vq) vs 
q vs
p v (q vs)   
і
і
і
і
і
і
і
і
х
х
і
і
х
і
х
і
х
і
і
і
і
х
х
і
х
і
і
і
х
і
і
і
і
і
і
і
х
і
і
і
і
і
і
і
і
і
і
і
і
х
х
х
х
х
х
х

3) Дистрибутивні закони, які пов’язують кон’юнкцію і диз’юнкцію
(pvq) s (p s) v(q s)
(pq) vs (p vs)  (q vs)
Довести дома самостійно.
в) Заперечення висловлення
Запереченням висловлення р називається висловлення „не р“, яке істинне, коли р хибне, і хибне коли р істинне.
                                           Позначення: .
р

і
х
х
і
Закони  заперечення
1) Заперечення заперечення висловлення рівносильне висловленню р:
 р
2) Закон суперпозиції
p х
р

p
і
х
х
х
і
х
3) Законвключення третього
qv   i
Кожне висловлення q або істинне або хибне, третього не може бути qv  =i
q

qv
і
х
i
х
і
i
4) Закони де Моргана
  v
  
Заперечення кон’юнкції двох висловлень рівносильне диз’юнкції заперечень і заперечення диз’юнкції рівносильне кон’юнкції заперечень цих висловлень.
  v
р
q
pq



v
і
i
i
х
x
x
x
i
x
x
і
x
i
i
x
i
x
i
i
x
i
x
x
x
x
x
x
x
г) Логічне слідування (імплікація)
Слідуванням (імплікацією) двох висловлень p і q називається висловлення “якщо p, то q„, яке хибне тоді і тільки тоді, коли p – істинне, а q – хибне.   Позначається імплікація: pq
 p
q
pq
i
i
i
i
x
x
x
i
і
x
x
i
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Motivation Vs Procratination Essay Research Paper Juanita
Реферат Frederick Douglass Narrative Essay Research Paper Frederick
Реферат Значение деятельности М.М. Сперанского в укреплении государственности России
Реферат 1. Un caz de vindecare hipnotică (1892-1893). În Studii despre isterie, B
Реферат Аннотация рабочей программы учебной дисциплины маркетинг Направление подготовки
Реферат Поняття грошової системи та її елементи
Реферат Beowulf Vs Odysseus Essay Research Paper Literary
Реферат Нарушения психосексуальных ориентаций
Реферат Vмеждународная научно-практическая конференция и выставка «Корпоративные библиотечные системы: технологии и инновации»
Реферат Объекты Бытия, физические вещи и сознание
Реферат Good And Evil In The Crucible Essay
Реферат Психология искусства Выготского
Реферат Изучение драмы в школе на примере пьесы А Н Островского Гроза
Реферат Анализ эффективности использования основных фондов. Анализ косвенных затрат
Реферат Статистические наблюдения по валовому региональному продукту автономных образований России