Реферат по предмету "Математика"


Вміння порівнювати в процесі навчання математики

--PAGE_BREAK--Задача “навчити учнів вчитися”, була висунута ще К.Д.Ушинським. На значущість масової підготовки учнів до самоосвіти вказувала Н.К.Крупська, підкреслюючи, що питання “як вчитися” відсунуть на задній план питанням “як вчити”, а варто було б і те й інше вирішувати в єдності. Учитель повинен володіти тими прийомами, що полегшують розуміння, прискорюють запам'ятовування, роблять навчання найбільш легким й ефективним. Н.К.Крупська розробила ряд рекомендацій щодо прийомів навчальної роботи [11].
Д.Н.Богоявленський, характеризуючи шляхи розвитку мислення й активізації навчання відзначає, що навчання прийомам мислення не визнається в педагогіці як принциповий і найважливіший напрямок розвиваючого навчання [2].
М.Н.Скаткін уперше гостро порушує питання про практичне рішення проблем навчання прийомам розумової діяльності. Однак, у більшості педагогічних досліджень 70-х років (А.И.Данилов, Н.Г.Дайрі, Б.В.Гнеденко, А.И.Маркушевич, Т.И.Шамова й ін.) говориться лише про необхідність формування таких прийомів і, майже, не характеризуються шляхи і методи навчання прийомам розумової діяльності.
При вивченні будь-якого нового навчального матеріалу, учні проходять три етапи його засвоєння. Відповідно можна говорити, як відзначає И.Я.Лернер, про три рівні засвоєння. Перший етап – усвідомлене сприйняття інформації про об'єкт засвоєння і запам'ятовування її; другий – засвоєння способів застосування знань за зразком; третій – у готовності творчо застосовувати засвоєну інформацію в новій, незнайомій йому ситуації. Це дидактичне положення дозволило нам виділити основні етапи навчання прийомам:
а)   введення або находження прийому;
б)   навчання застосуванню;
в) узагальнення прийому, навчання переносу.
В.И.Решетніков вважає, що формування прийомів розумової діяльності дозволяє вирішити важливу, що стала вже традиційною задачу – ліквідація перевантаження школярів і формалізму в засвоєнні знань.
У методичних дослідженнях вирішення проблеми “учити вчитися” пов'язано з застосуванням досягнень психологічної і педагогічної науки до викладання конкретних предметів. Зокрема в методиці математики широко досліджується навчання прийомам роботи над математичними поняттями, теоремами і загальними прийомами розв’язання задач: прийомам аналізу, синтезу, порівняння, абстракції, узагальнення і конкретизації; окремим частинним прийомам навчальної роботи; формування окремих (наприклад, алгебраїчних) умінь і навичок, алгоритмів рішення задач визначених видів (А.К.Артемов, В.Г.Болтянський, М.Б.Волович, М.В.Потоцький, Ю.М. Калягін, А.А.Столяр, А.Д.Сьомушкін, И.Ф.Тесленко й ін.). До останнього часу методичні дослідження, як і дидактичні, з питань формування прийомів розумової діяльності проводяться в напрямку підвищення ефективності навчального процесу в залежності від якого-небудь одного прийому, а не їхньої системи. Однак, дійсний етап розвитку психології і педагогіки безпосередньо зв'язаний з ідеєю системності (Б.Ф.Ломов). Тільки системний підхід дозволить узагальнити різні сторони розумової діяльності. В.Н.Осінська пропонує один з варіантів методики цілеспрямованого формування і систематизації в учнів прийомів мислення на уроках математики[14]. Запропонована методика розглядається в сукупності з багатьма відомими формами і методами активізації пізнавальної діяльності учнів, підвищення ефективності уроку математики, зокрема з проблемним навчанням. У роботах Л.П.Типчишина розглядається питання взаємозв'язку прийомів. У дослідженнях З.И.Слєпканъ [20] висвітлюються психолого-педагогічні основи формування математичних понять, навчання учнів доведенню математичних тверджень і розв’язанню задач. При цьому зазначається, що перед вчителем повинна ставитися мета – прямо і побічно формувати в учня прийому загальних і специфічних розумових дій, що входять до складу різних видів навчально-пізнавальної діяльності. Однак, автори зазначених досліджень не відзначають того факту, що система прийомів мислення під впливом взаємодії змінюється, перетворюється в нову функціональну форму, що забезпечує збереження цілісності.
Традиційна програма змісту математичної освіти в середній школі мала два розділи. Від учнів було потрібно лише міцне засвоєння основ математичних знань і основних алгоритмів рішення типових задач. Значний крок у напрямку планування роботи вчителя математики по навчанню учнів прийомам розумової діяльності зроблений у новій програмі. У ній зазначено, що шкільна математика займає провідне місце у формуванні науково-теоретичного мислення школярів, а тому під час вивчення в перелік прийомів і методів мислення учнів повинні включатися індукція і дедукція, узагальнення і конкретизація, аналіз і синтез, класифікація і систематизація, абстрагування й аналогія. Учні опановують прийоми аналітико-синтетичної діяльності при засвоєнні понять, при доказі теорем і розв’язанні задач. У розділі “Міжпредметні зв'язки” зазначені ситуації для застосування і переносу вироблених умінь і навичок. Власне кажучи, мова йде про прийоми навчальної діяльності, хоча явно вони не названі.
У процесі спостереження, бесід і анкетування виявлено, що більшість учнів 7-9 класів не можуть дати правильного визначення прийому “порівняння” і не розуміють ролі порівняння в засвоєнні знань. 70 % учнів показали, що вони не тільки не вміють провести повне порівняння, але й поверхово володіють фактичним матеріалом, що не завжди помітно при його послідовному викладі. 82 % учнів не змогли назвати послідовності дій при порівнянні. Отримані нами експериментальні дані свідчать про те, що завдання на порівняння для школярів незвичні й важкі.
На підставі досліджень Е.Н.Кабанової-Меллер [8,9,10] і В.Н.Осінської [14] нами виділені три рівні оволодіння прийомами. До першого відносяться учні, що не знають суті прийому і використовують його тільки під керівництвом учителя. До другого рівня – учні, що розуміють суть прийому, знають правило-орієнтир, але застосовують його не завжди повно й усвідомлено. Третій рівень характерний тим, що учні знають суть прийому, правило його реалізації, уміють самостійно його застосовувати.
Накопичені теоретичні дані в психології, педагогіці з великими труднощами впроваджуються в практику школи.
Найбільш важливі результати, отримані психологами, дидактами, методистами по проблемі формування прийомів мислення:
1.       Одним з важливих шляхів розумового розвитку є навчання учнів прийомам мислення.
2.       У психолого-педагогічній літературі обґрунтовано положення про те, що в процесі навчання необхідно відокремлювати дві самостійні, але взаємообумовлені і взаємозалежні задачі: оволодіння учнями змістом того або іншого предмета і цілеспрямоване формування в них загальних і специфічних розумових дій і прийомів розумової діяльності.
3.       Існує розрив між накопиченими теоретичними даними в психології, педагогіці і їх впровадженням в частині методи, зокрема, у методику математики, у практику школи.
4.       Система прийомів складна, динамічна система, що розвивається.
5.       Навчання прийомам можна і потрібно здійснювати на ведучому навчальному матеріалі.
6.       Формування прийомів розумової діяльності вимагає врахування індивідуально-вікових особливостей учнів.

1.2 Формування уміння порівнювати в процесі навчання
математики
Порівняння в навчанні – це розумова операція, за допомогою якої встановлюються риси подібності і відмінності між визначеними предметами і явищами.
Пізнання будь-якого предмету і явища починається з того, що ми відрізняємо його від інших предметів і встановлюємо його подібність з родинними предметами. У цьому виявляються дві основні форми, у яких здійснюється порівняння: співставлення і протиставлення.
Протиставлення – форма порівняння, спрямована на з'ясування відмінного в предметах і явищах при виділенні істотних ознак і властивостей.
Співставлення – форма порівняння, спрямована на виділення істотних властивостей, загальних для ряду об'єктів.
У розумовій діяльності учня протиставлення і співставлення як форми порівняння виконуються в єдності і є засобом аналізу і синтезу досліджуваних понять, фактів, предметів. Але в навчальному процесі ці розумові операції найчастіше здійснюються послідовно.
Надзвичайно важлива роль порівняння при формуванні понять, узагальнені і систематизації знань. Порівняння — засіб зв'язку нових і раніше засвоєних знань, матеріалу підручника й особистого досвіду учнів.
У математиці важливо уміти встановлювати відмінності між близькими родинними поняттями (наприклад, між раціональними й ірраціональними числами, правильними і неправильними дробами) і подібність між віддаленими поняттями (трикутником і тетраедром).
По ступеню повноти розрізняють часткові і повні порівняння. Суть часткового порівняння у встановленні тільки подібного або тільки відмітного. Якщо в об'єктах знаходять ознаки подібності, то це зіставлення, якщо шукають відмінність – це протиставлення.
Повне порівняння вимагає встановлення подібності і відмінності. Часткове порівняння ефективне на етапах сприйняття й осмислення знань, дозволяє глибше усвідомити особливе в досліджуваному матеріалі, зрозуміти його зв'язок з раніше засвоєними знаннями.
Пізнавальні завдання на протиставлення можуть бути такими:
1.        Чим відрізняється об'єкт А від об'єкта В?
2.        Яких властивостей немає в об'єкті А в порівнянні з об'єктом В?
3.        Якими додатковими властивостями володіє об'єкт А в порівнянні з об'єктом В?
4.        Чим відрізняються формулювання...?
Приклади:
1.        Чим відрізняється бісектриса трикутника від його медіани?
2.        Які додаткові властивості має рівносторонній трикутник  в порівнянні з рівнобедреним?
3.        Чим відрізняється ромб від квадрата; ромб від паралелограма? Які властивості в них спільні?
4.        Які додаткові властивості має прямокутник в порівнянні з паралелограмом?
З метою узагальнення матеріалу учням пропонуються завдання на співставлення об'єктів (находження спільного).
Приклади:
1.                 Які спільні властивості має симетрія, паралельний перенос, поворот? В чому причина загальності даних властивостей?
2.                 Що спільного в доведенні ознаки паралельності прямої і ознаки паралельності площин?
Повне порівняння ефективне на етапах узагальнення і систематизації знань.
Приклади:
1.                 Порівняйте ознаки рівності трикутників з ознаками подібності трикутників. Які висновки можна зробити на основі порівняння?
2.                 Порівняйте основні припущення  про довжини і площі. Які висновки з цього можна зробити?
По способах здійснення розрізняють порівняння паралельні, послідовні відстрочені.
Паралельні порівняння застосовуються при одночасному вивченні взаємопов’язаних понять, теорем і задач, при викладі матеріалу блоками.
В дев’ятому класі доцільно в порівнянні паралельно вивчати поняття паралельних, мимобіжних та прямих, що перетинаються (таблиця 1).
Таблиця 1
Прямі на площині і в просторі
Паралельні
Ті, що перетинаються
Мимобіжні
1.                   Не мають спільних точок
2.                   Лежать в одній площині
1.                   Мають одну спільну точку
2.                   Лежать в одній площині
1.                   Не мають спільних точок
2.                   Не лежать в одній площині
Доцільні завдання такого змісту:
1.                 Які ознаки спільні у паралельних прямих і прямих, що перетинаються; у паралельних і мимобіжних?
2.                 Які відмінні ознаки у паралельних і мимобіжних прямих?
Виконання таких завдань, по-перше, формує вміння аналізувати, порівнювати і, по-друге, попереджує типову помилку, коли учні в означенні мимобіжних прямих називають тільки першу ознаку.
Послідовне порівняння полягає в тому, що новий об'єкт порівнюється з раніше вивченим. Порівняння сприяє встановленню більш глибоких зв'язків раніше вивченого і нового матеріалу, полегшує засвоєння знань, допомагає побачити аналогії.
Розглянемо приклад послідовного порівняння під час вивчення у восьмому класі поняття рівності фігур за допомогою руху. Учні повторюють відомі їм означення рівності трикутників: АВС=А1В1С1, якщо АВ=А1В1, ВС=В1С1, АС=А1С1, А=А1, В=В1, С=С1. Вчитель дає нове означення  рівності фігур за допомогою руху. Порівнюючи ці означення, учні виділяють істотні ознаки між ними. Різні означення рівності трикутників – це наслідок відмінності їх теоретичних обґрунтувань. А щоб учні впевнилися в тотожності цих означень при їх різних формулюваннях, на прикладі з трикутниками доводиться, що із одного означення випливає інше і навпаки.
Відстроченими називаються порівняння об'єктів, що вивчалися на різних уроках, значно віддалених один від одного в часі.
У практиці навчання математики найбільш поширене послідовне порівняння. Але, оскільки вчителі все більш широко практикують вивчення матеріалу блоками, то часто застосовується і паралельне порівняння при одночасному вивченні взаємопов’язаних понять, теорем, задач. Завдяки використанню в навчанні послідовного порівняння і порівняння – протиставлення у свідомості школярів загальмовуються помилкові і закріплюються правильні тимчасові зв'язки, диференційовано встановлюються поняття, правила і закони.
Якщо порівняння різних предметів (фактів, явищ) здійснюється не по одній ознаці, а знаходять спільне і відмінне по різним ознакам і в різних напрямках, то таке порівняння називається комплексним.
Приклади:
o        Чотирикутники порівнють за числом пар паралельних сторін;
o        дроби відрізняють по відношенню величин чисельника і знаменника;
o        додавання дійсних чисел і додавання векторів порівнють за виконуваністю законів додавання.
Порівняння однорідних предметів по одній ознаці веде до класифікації, розподілу об'єктів на дві групи, наприклад: функції – періодичні і неперіодичні, зростаючі й спадні.
Як і будь-який прийом розумової діяльності, порівняння має свій предмет, супроводжує визначену мету і пропонує свої шляхи реалізації в процесі навчання.
При вивченні математики предметом порівняння можуть бути об'єкти навколишньої дійсності, поняття, ознаки, результати дослідів, теореми і їх доведення, структури задач і методи їх розв’язань, операційний склад алгоритмів різних дій, способи навчальної роботи, а також факти, процеси, етапи роботи. На уроках учням пропонують порівнювати: взаємне положення прямих у=5х и у=5х-7 на координатній площині; істотні і несуттєві, доказові і характеристичні ознаки понять; способи роботи з метою вибору більш раціонального (наприклад, самоконтроль шляхом припущень або шляхом складання зворотної задачі).
Порівнюючи, учні повинні чітко розуміти, з якою метою це робиться. На уроці цілі порівняння часто називає сам учитель; при цьому необхідно викликати в учнів інтерес до оволодіння даним прийомом мислення.
    продолжение
--PAGE_BREAK--Мета порівняння в навчальному процесі різноманітна: узагальнення і систематизації знань, виділення в них головного, істотного, пошук загальних ознак при формуванні понять; пошук аналогій у навчальному матеріалі; пошук закономірностей індуктивним шляхом; висування гіпотез; установлення міжпредметних зв'язків у навчальному матеріалі й у способах його вивчення; запобігання помилок за аналогією; побудова системи аналогів даного об'єкта; запобігання підміни істотних властивостей поняття несуттєвими властивостями; виділення істотного і несуттєвого в умові задачі, узагальнення її структури й усвідомлення границь варіації її умови усередині даного типу задач. Порівняння є одним з раціональних прийомів заучування і відтворення матеріалу, але, на жаль, недостатньо застосовується при вивченні математики. Без порівняння неможливий перенос способу рішення однієї задачі на іншу – аналогічну.
Інтерес до порівняння виникає в учнів в міру того, як вони усвідомлюють його роль в успішному оволодінні знаннями, починають розуміти, що цей прийом має загальнопізнавальний характер, що, навчивши порівнювати на уроках математики, вони зможуть використовувати порівняння при вивченні інших шкільних предметів, у життєвих ситуаціях. У навчальному процесі порівняння служить одним із засобів об'єднання матеріалу в блоки. На уроці порівняння виступає як самоціль. Воно найчастіше є основою більш складних прийомів розумової діяльності або способом раціонального заучування матеріалу.
Існує ряд дидактичних вимог до використання прийому порівняння в навчальному процесі:
1. Порівнювати треба тільки однорідні предмети.
Недоцільне порівняння, наприклад, таких понять, як “відрізок” і “точка”, “ромб” і “коло”.
2.       Спільне між об'єктами порівняння можна встановлювати лише тоді, коли між ними є якась відмінність.
 Різницю між об'єктами можна встановлювати тільки при наявності в них визначеної подібності.
Школярі не завжди усвідомлюють відносини між родинними поняттями, як відносини частинного і загального. Саме в такому випадку доречно порівнювати ці поняття за допомогою питань, наприклад: Що спільного і відмінного у функцій і послідовностей? Яке з цих понять є частинним випадком стосовно іншого і чому?
3.   Порівнювати предмети слід за тими ознакам, що мають важливе, істотне значення.
Необхідно враховувати, що до порівняння учні не знають про істотність ознак. Крім того, істотність ознак також визначається в порівнянні. Тому вчитель спочатку підказує, по яких важливих ознаках варто проводити порівняння. Так при порівнянні задач варто звертати увагу на дані умов, характер зв'язку між даними і шуканими, тому що саме це визначає спосіб розв’язання. Зовнішня подібність або відмінність смислу задач не має істотного значення для способу їхнього рішення. У задач одного типу є загальне в істотному: структурі, умові, зв'язках між даними умови і шуканих величин – і розбіжність між несуттєвим у їхніх умовах і рішеннях.
Психологи установили, що учні легше знаходять у порівнюваних об'єктах або тільки спільне, або тільки відмінне. Присутність в порівнюваних об'єктах різного і подібного (загального) виявляється для учнів більш важкою справою, тому що вимагає розумової роботи в двох напрямках одночасно. Школярі затрудняються порівнювати процеси міркувань при виконанні вправ на знаходження процента від числа, числа за його процентом та процентного відношення двох чисел.
4.   Порівнювати треба під певним кутом зору. У навчанні порівняння завжди цілеспрямоване. Ті самі об'єкти можуть мати подібність, якщо їх розглядати з однієї позиції, і можуть відрізнятися, якщо змінити “кут зору”. Наприклад, формули для обчислення площ паралелограма і трапеції зовні не мають нічого загального, але способи їхніх доведень однакові: суть виведення формул полягає в тому, що фігура перетвориться в такі фігури (або таку фігуру), площі яких заздалегідь відомі.
Прийоми розумової діяльності формуються стихійно або цілеспрямовано. Учні під керівництвом учителя порівнюють об'єкти за спільними, відмінними, та за тими й іншими ознаками одночасно. Але якщо при цьому сутності прийому, його операційному складові не приділяється належної уваги, то навіть встигаючі учні не можуть цілком назвати подібні і відмінні властивості понять, зробити план, схему порівняння.
Ю.К.Бабанський писав, що для успішного оволодіння будь-яким загальнонавчальним умінням або навичкою необхідно забезпечити наступний ланцюжок дій учнів:
-  прийняття задачі, що вимагає оволодіння відповідним умінням і навиками;
-  усвідомлення необхідності опанувати навиками, мотивація діяльності;
-  засвоєння змісту навиків, послідовності і характеру дій, операцій, що необхідні для оволодіння цим навиком;
-  виконання практичних дій, операцій, вправ по відпрацьовуванню навиків;
-  поточний самоконтроль за ступенем оволодіння навиками;
-  коригуючі дії спрямовані на відпрацювання навиків;
-  застосування умінь і навичок у типових ситуаціях;
-  застосування умінь і навичок у нестандартних ситуаціях;
-  поглиблення і подальша автоматизація навиків шляхом використання його в повсякденній практичній діяльності [1 с.95].
Для вчителя, названий ланцюг дій виступає як методологічна схема діяльності по формуванню будь-якого загальнонаукового уміння, зокрема, прийому порівняння. Звичайно вчитель, приступаючи до формування уміння порівнювати, насамперед з'ясовує, що знають учні про цей прийом, які помилки допускають при порівнянні, тобто які рівні сформованості цього уміння в різних школярів, як вони розуміють сутність прийому порівняння, його операційний склад, мету застосування. Можна провести бесіду або письмову роботу на порівняння, запропонувавши учням наступні питання:
1.        Що таке порівняння? Що означає “порівняти”?
2.        Навіщо проводять порівняння?
3.        Яка послідовність дій при порівнянь?
Практичні пізнавальні завдання, наприклад: порівняти способи розв’язання двох задач або доведення двох теорем, також допомагають виявити рівні оволодіння школярами умінням порівнювати. При цьому ніяких вказівок, плану, правил порівняння вчитель не дає.
Аналізуючи відповіді учнів на згадані питання, я прийшла до наступних висновків: багато учнів не могли назвати послідовності дій при порівнянні; не розуміють ролі порівняння в засвоєнні знань; взагалі, завдання на порівняння для учнів 7-9 класів незвичні й важкі.
1.3. Рівні оволодіння вмінням порівнювати.
В.Ф. Паламарчук виділила п'ять рівнів оволодіння прийомом порівняння.
Найнижчий рівень оволодіння прийомом порівняння – учень описує властивості об'єктів послідовно, не порівнюючи їх.
Другий рівень оволодіння прийомом порівняння – учень спочатку називає властивості одного поняття, потім іншого, використовуючи при цьому систему ознак.
Приклад відповіді. У рівнобедреного трикутника рівні дві сторони, а в рівностороннього – три. У рівнобедреного трикутника два кути рівні, а в рівностороннього – три. У першому випадку медіана, проведена до основи, є бісектрисою і висотою, а в другому випадку всі три медіани мають цю ж саму властивість. У рівнобедреного трикутника медіани, висоти, бісектриси перетинаються відповідно в одній точці, аналогічно і в рівностороннього трикутника. У рівнобедреного трикутника ці три точки перетину не збігаються, а в рівностороннього – збігаються. Центри вписаних й описаних кіл у першому випадку не збігаються, а в другому – збігаються. У рівнобедреного трикутника тільки медіани поділяються точкою перетину у відношенні 2:1, рахуючи від вершини, а в рівностороннього – також бісектриси і висоти (типова помилка, коли учні вважають, що в рівнобедреного трикутника бісектриси і висоти теж поділяються точками перетину в такому ж відношенні).
Варто відмітити, що для такого порівняння за набором ознак потрібно не тільки уміння порівнювати, але і глибоке знання матеріалу, уміння систематизувати, змінювати послідовність висвітлення властивостей.
Тому, відповіді учнів будуть набагато краще, якщо вчитель буде послідовно задавати питання про окремі властивості понять або коли властивості одного поняття спроектувати на екран відеопроектора, а властивості іншого поняття учні повинні назвати самі у відповідності з властивостями першого (Як приклад див. табл.2)

Таблиця 2
Властивості рівнобедреного трикутника
Властивості рівностороннього трикутника
1.                   Дві сторони рівні.
2.                   Два кути при основі рівні.
3.                   Медіана, проведена з вершини кута до основи, є бісектрисою і висотою.
4.                   Медіани точкою перетину діляться у відношенні 2:1, рахуючи від вершини.
5.                   Точки перетину медіан, бісектрис, висот не збігаються.
6.                   Центри вписаного й описаного кіл не збігаються.
1.         Три сторони рівні.
2.         Три кути рівні.
3.         Усі медіани є бісектрисами і висотами.
4.         Медіани, бісектриси і висоти точкою перетину діляться у відношенні 2:1, рахуючи від вершини.
5.         Точки перетину медіан, бісектрис, висот збігаються.
6.         Центри вписаного й описаного кіл збігаються
Робота з таблицею: одна сторона таблиці закривається, і учні називають властивості трикутника, описані в закритій її частині.
Третій рівень оволодіння прийомом порівняння – учень називає або тільки загальні властивості об'єктів, або тільки відмінні, або ті й інші, але не повністю (неповні порівняння).
Приклад відповіді. Паралелограм і прямокутник – це чотирикутники, діагоналі їх перетинаються і точкою перетину діляться пополам, протилежні сторони рівні, усі кути в прямокутника рівні і попарно рівні в паралелограма.
У відповіді не названий цілий ряд як спільних властивостей, так і відмінних. Причому учні найчастіше називають не по порядку, то спільні властивості, то відмінні, у відповіді немає чіткості, деякі властивості не можуть згадати.
Цей рівень найбільш характерний для більшості учнів 7-9 класів.
Четвертий рівень оволодіння прийомом порівняння – учень називає всі загальні властивості, усі відмінні, указує мету порівняння, робить висновки, порівнює істотні ознаки (повне порівняння).
Приклад відповіді по темі “Чотирикутники” при виконанні завдання на порівняння властивостей квадрата і ромба. Загальні властивості: чотирикутники, протилежні сторони паралельні, діагоналі є бісектрисами кутів, усі сторони рівні, діагоналі перетинаються під прямим кутом. Відмінні властивості показані в таблиці 3.
Таблиця 3
Відмінні властивості
Квадрат
Ромб
1.                   Усі кути прямі.
2.                   Діагоналі рівні між собою.
3.                   S=a2 (де а – сторона квадрата)
1.                   Протилежні кути рівні.
2.                   Діагоналі не рівні між собою.
3.                   S=a·h (де а – сторона, а h – висота ромба).
Висновки: квадрат і ромб мають ряд спільних властивостей, тому що і квадрат і ромб – чотирикутники. Але в них є і відмінні риси; причина – у несхожості видових ознак даних понять.
Мета порівняння в даному випадку – більш глибоке осмислення властивостей вивчених понять, раціональне заучування матеріалу, повторення, систематизація знань, встановлення істотних зв'язків.
Якщо вчитель не формував цілеспрямовано цей прийом, то таке порівняння, можливо, не зможе виконувати самостійно майже жоден учень восьмого класу, навіть у тому випадку, коли завдання дати додому.
П'ятий рівень оволодіння прийомом порівняння відрізняється від четвертого тим, що учень не тільки вміє правильно порівняти, але і застосовує це уміння при вивченні інших навчальних предметів, тобто порівняння стає узагальненим прийомом його розумової діяльності.
Прийом порівняння має широке застосування і при заучуванні доведень багатьох теорем, наприклад, теорем про властивості кутів при основі рівнобедреного трикутника, про властивість його медіани, проведеної з вершини до основи, про властивість протилежних кутів паралелограма і тощо. В цих доведеннях є істотно спільне: потрібно обґрунтувати рівність кутів, для цього варто розглянути трикутники, що містять ці кути, і довести рівність трикутників. Порівняння доведень дозволяє виділити загальний орієнтир міркувань, а деталі доведень запам'ятовувати необов'язково.
П.М.Эрднієв, що досліджував роль прийому порівняння в навчальному процесі, рекомендує застосовувати так звані подвійні правила [23], що дозволяють не тільки на слух, але і наочно розмежувати спільні і відмінні властивості в подібних формулюваннях, бачити аналогії, більш глибокі зв'язки, полегшують запам'ятовувати. Наприклад:
 гострого кута прямокутного трикутника називається відношення  катета до гіпотенузи.

РОЗДІЛ 2. МЕТОДИЧНІ СИСТЕМИ ФОРМУВАННЯ ТА РОЗВИТКУ ВМІННЯ ПОРІВНЮВАТИ
Шляхи і методичні засоби формування вміння порівнювати
На основі теоретичного аналізу проблеми розвитку розумової діяльності учнів у психології, дидактиці, методиці викладання математики, а також у педагогічному досвіді й особистому викладанні математики ми прийшли до висновку, що без спеціально спрямованого формування розумова діяльність підлітків розвивається повільно. Процес розвитку мислення в різних педагогічних умовах піддається удосконалюванню різними шляхами. При організації експериментального навчання ми виходили з того, що засвоєння знань, сформованих при навчанні математики, можливо лише на основі цілеспрямованого навчання учнів прийомам розумової діяльності.
Одним із широко розповсюджених і на перший погляд дуже простим є прийом порівняння. Його відносять і до розумового і до навчального прийомів. К.Д.Ушинський вважав, що порівняння – основа всякого мислення і що в дидактику цей прийом повинний бути основним.
Отже, наш наступний підрозділ ми присвятимо методиці формування вміння порівнювати.
Методика формування вміння порівнювати.
Перш ніж почати цілеспрямоване формування прийому порівняння в учнів, необхідно попередньо з'ясувати рівень сформованості уміння порівнювати і розуміння сутності прийому порівняння, тобто провести діагностику.
Це можна зробити через спеціальну письмову або контрольну роботу, можна провести бесіду з учнями, обговорюючи при цьому наступні питання:
1.        Що таке порівняння? Що означає “порівнювати”?
2.        Навіщо проводять порівняння?
3.        Яка послідовність дій при порівнянні?
Ми проводили діагностику учнів 7-9 класів Херсонської загальноосвітньої школи № 46, запропонувавши їм відповісти в письмовому виді на наступні питання:
1.        Що таке порівняння? Що означає “порівнювати”?
2.        Навіщо проводять порівняння?
3.        Яка послідовність дій при порівнянні?
Були, також, запропоновані учням практичні пізнавальні
завдання наступного характеру:
-  дати означення рівностороннього і рівнобедреного трикутника, порівняти їх;
    продолжение
--PAGE_BREAK---  порівняти означення прямокутника і квадрата.
Підводячи підсумки цієї роботи і зробивши розрахунки, ми одержали наступні дані: 65,5% порівняння замінили простим описом об'єктів, що порівнювалися; 10,3% пояснили порівняння, як встановлення спільних і відмінних ознак, але і вони практично відчували труднощі при виконанні порівняння; 27,2% порівняння обмежили перерахуванням тільки відмінних ознак, а 4 учня (13,8%) зрозуміли і використовували порівняння, як знаходження подібності. Аналізуючи відповіді на поставлені питання ми прийшли до висновку, що учні не розуміють ролі порівняння в засвоєнні знань. Вони не тільки не можуть провести повне порівняння, але і поверхово володіють фактичним матеріалом, що не завжди помітно при його послідовному викладі, і взагалі завдання на порівняння для школярів незвичні й важкі.
Після діагностики необхідно створити атмосферу зацікавленості в оволодінні учнями прийомом порівняння. Для цього на етапі мотивації доцільно застосовувати різні девізи, епіграфи до уроку, наприклад, “Усе пізнається в порівнянні !”,”Без порівняння немає навчання!”
Щоб створити “сприятливий ґрунт” для переходу до наступного етапу формування прийому порівняння – осмислення суті прийому і правил його реалізації ми на наступному уроці, після письмової роботи, провели детальний аналіз її переваг і недоліків по основних структурних компонентах порівняння.
Результати здивували учнів: їм здавалося, що порівнювати так просто. І перед ними виникли питання: «А які ж правила порівняння? Що можна порівнювати, а що не можна? Чи можна скласти план і схему порівняння?» Ці і подібні питання створюють сприятливий ґрунт для осмислення суті прийому. Учні переконуються, що для порівняння об'єктів недостатньо знати окремі властивості, необхідно знати ще сутність і правило-орієнтир порівняння. Осмислення суті прийому і правила його реалізації один з найбільш важливих етапів.
Суть прийому роз'ясняється учням у виді короткого визначення: порівняння – це прийом розумової діяльності, за допомогою якого в предметах і явищах виділяються окремі ознаки, знаходяться спільні і відмінні властивості. Потім у процесі пошукової бесіди або інструктажу вводиться правило-орієнтир використання даного прийому.

 Він має такий вигляд:
1.        установити мету порівняння;
2.        перевірити, чи відомий матеріал про об'єкти, що будуть порівнюватися;
3.        виділити головні ознаки, по яких будуть порівнюватися об'єкти;
4.        знайти різні властивості;
5.        знайти відмінність і (або) подібність;
6.        сформулювати висновок про подібність і (або) відмінність даних об'єктів відповідно до поставленої мети.
Правило-орієнтир учні повинні записати в зошитах, а вчителеві бажано завжди його мати на уроці на відеопроекторі або плакаті. Далі вчитель організує роботу з формування уміння порівнювати відповідно до правила-орієнтира.
Наприклад, пропонує порівняти ознаки подібності і ознаки рівності трикутників(мал.1):


1.                 Встановлюємо мету порівняння: систематизація знань, раціоналізація запам’ятовування.
2.                 Перевіряємо, чи знаємо ми ознаки рівності і ознаки подібності трикутників.
3.                 Складаємо план порівняння: сформулювати теореми, ідеї доведень, з’ясувати і обґрунтувати основні знання які будемо використовувати, значення матеріалу.
4.                 Знаходимо спільні і відмінні риси, для цього порівнюємо формулювання теорем: вони відрізняються лише термінами “пропорціональні” і “рівні”.
Висновок: якщо замінити термін “пропорціональні” на термін ”рівні”, то із ознак подібності отримуємо відповідні ознаки рівності трикутників, тобто взяти К=1. Це доцільно застосовувати  для раціонального запам’ятовування матеріалу.
Далі порівнюємо доведення ознак подібності і ознак рівності трикутників. 
Для доведення всіх трьох ознак подібності трикутників застосовується загальна схема:        
1. Будуємо трикутник, гомотетичний одному із даних в умові, з коефіцієнтом К= і довільним центром гомотетії.
 2. Доводимо, що отриманий при гомотетії трикутник дорівнює другому, даному в умові, за відповідною ознакою рівності трикутників.
 3. Робимо висновок на підставі того, що послідовне виконання перетворення гомотетії і руху є подібність.
При доведенні всіх трьох ознак рівності трикутників застосовуються аксіоми існування трикутника, рівного даному, відкладання відрізків і кутів. У процесі доведення третьої ознаки застосовується метод від супротивного.     |
Основні знання, які використовуються в обґрунтуваннях, різні. Тому доведення ознак подібності трикутників необхідно знати незалежно від доведень ознак рівності трикутників.
Висновок зроблений на основі порівняння: ознаки рівності трикутників – це окремий випадок ознак подібності, коли К=1, термінові „пропорційні” відповідає термін «рівні». Тому досить запам'ятати тільки ознаки подібності трикутників. Доведення теорем різні для ознак подібності і рівності трикутників. Призначення ознак однакове.
Багато дослідників вважають, що пізнавальні задачі дозволяють формувати в учнів досвід творчої пошукової діяльності, який іншим шляхом набути неможливо. Будь-яка пізнавальна задача або завдання длясвого рішення вимагає визначеного прийому розумової діяльності або сукупності цих прийомів, що розвивають розумові здібності учнів.
Розглянемо пізнавальну задачу: „Порівняти розв’язання задач про ділення відрізка навпіл і про побудову перпендикулярної прямої”. Використовуємо питання-орієнтири, складені відповідно до правила-орієнтира прийому порівняння. Повторюємо розв’язання кожної задачі. Порівнюємо плани розв’язань і встановлюємо спільне в них: після побудови за допомогою циркуля точок АіВнапрямій, розв’язання другої задачі співпадає з першою. Встановлюємо спільне в доведеннях: з рівності трикутників випливає рівність відповідних сторін або кутів. Робимо висновки: варто запам'ятовувати раціональне розв’язання задачі. Задача на побудову перпендикулярної прямої зводиться до задачі на ділення відрізка навпіл і відрізняється від неї додатковою дією – находженням на прямій точок Аі В. Тому варто пам'ятати те, як розв’язувати задачу на ділення відрізка навпіл, і те, що в другій задачі потрібно спочатку за допомогою засічок із точки Ознайти на прямій точки В іА. При доведенні варто шукати рівні трикутники і виділяти необхідні рівні елементи. У даному випадку порівняння дозволяє виділити головне, виступає як прийом раціонального запам'ятовування і відтворення знань.
Розглянемо прийоми формування вміння порівнювати на уроках систематизації, повторення, узагальнення знань. Вміння проміжного протиставлення можна формувати на уроках паралельного повторення, систематизації знань або вивченні понять осьової і центральної симетрії. Дії виконуються послідовно для одного і другого поняття (таблиця 4).
Таблиця 4
Осьова симетрія (мал. 2)
Центральна симетрія (мал. 3)
1)    Візьмемо пряму а і точку А
2)    Опустимо з точки А перпендикуляр на пряму а ,
3)    Продовжимо перпендикуляр в іншу півплощину
4)    Відкладемо по іншу сторону від а на перпендикулярі відрізок АО=ОА1
5)     Одержимо точку А1,  симетричну точці А відносно прямої а
Таке перетворення називається осьовою симетрією
1)      Візьмемо точки О і А
2)      З'єднаємо точки А іО
3)      Продовжимо півпряму по іншу сторону точки О
4)      Відкладемо по іншу сторону від точки О на прямій відрізок АО=ОА1
5)      Одержимо точку А1,симетричну точці А відносно точки О
Таке перетворення називається центральною симетрією
Потім учні доводять теореми про те, що симетрія на площині є рух (табл. 5).
Таблиця 5
Що потрібно довести
Ідея доведення
Зв'язок з алгеброю
Осьова симетрія
Центральна симетрія
Осьова симетрія
Центральна симетрія
АВ=А1В1
Скористатися координатним методом
Розглянути рівні трикутники
У графіку парної функції
Оу– вісь симетрії. Графіки взаємно обернених функцій симетричні відносно прямої у=х
У графіку
непарної
функції
точка
О(0; 0) –
центр
симетрії
Далі пропонуємо учням назвати спільні і відмінні властивості понять.
Один із способів навчання умінню порівнювати – встановлення родо-видових відносин між поняттями. Невмінням учнів установлювати такі відносини пояснюється типова помилка – перенесення видових властивостей на родове поняття, що випливає через нечітке диференціювання властивостей роду і властивостей виду. Щоб запобігти такій помилці, можна запропонувати учням завдання на порівняння: якими властивостями відрізняється прямокутник від паралелограма? квадрат від ромба? квадрат від прямокутника? десятковий дріб від звичайного? пряма пропорційність від лінійної функції? бісектриса рівнобедреного трикутника, проведена з його вершини, від інших бісектрис кутів цього трикутника? які властивості загальні в названих парах понять? В чому причина того, що багато властивостей однакові? В чому причина розбіжності властивостей у порівнюваних поняттях? Яке з порівнюваних понять загальне, а яке частинне?
Без порівняння неможливе підведення під поняття, тобто розпізнавання. При цьому те поняття, до якого потрібно віднести дане поняття, виступає зі своїми властивостями як еталон. У процесі міркувань співставляються властивості „еталона” і піднесеного під нього поняття, і робиться висновок.
Як відзначалося раніше, важливим методичним прийомом у формуванні уміння порівнювати є складання порівняльних таблиць, схем. Ця робота може виконуватися учнями як під керівництвом учителя, так і самостійно. Розглянемо порівняльну таблицю властивостей чотирикутників (табл. 6).

Таблиця 6
Види чотирикутників
Властивості чотирикутників
Випуклий чотирикутник
Паралелограм
Прямокутник
Ромб
Квадрат
Трапеція
1.      Всі сторони непаралельні
2.      Пари протилежних сторін паралельні
3.      Дві пари протилежних сторін паралельні
4.             Діагоналі, перетинаючись, діляться пополам
5.Протилежні сторони попарно рівні
6.      Всі сторони рівні
7.      Всі кути рівні
8.      Діагоналі рівні
9.      Є центр симетрії
10.    Є осі симетрії
11.          Можна вписати коло
12. Можна описати коло
+

+










+
+
+
+



+




+
+
+
+

+
+
+
+

+

+
+
+
+
+


+
+
+


+
+
+
+
+
+
+
+
+
+
+

+










    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.