Реферат по предмету "Математика"


Вивчення функцій рядів Фур`є

--PAGE_BREAK--
те стане ясно, що множник при синусі

є кусочно-безперервною функцією від t у проміжку . У цьому випадку по лемі цей інтеграл при  прагне до нуля, так що й саме існування межі для часткової суми ряду Фур'є й величина цієї межі цілком визначається поводженням одного лише інтеграла



Але в цей інтеграл входять лише значення функції f(x), що відповідають зміні аргументу в проміжку від  до . Цим міркуванням доводиться «принцип локалізації», що складає в наступному:

Поводження ряду Фур'є функції f(x) у деякій крапці  залежить винятково від значень, прийнятих цією функцією в безпосередній близькості розглянутої крапки, тобто в як завгодно малій її околиці.

Таким чином, якщо взяти дві функції, значення яких у довільно малій околиці  збігаються, то як би вони не розходилися поза цією околицею, що відповідають цим функціям ряди Фур'є поводяться в крапці  однаково: або обоє сходяться, і притім до однієї й тій же сумі, або обоє розходяться.
4. Подання функцій рядів Фур'є
Накладемо на функцію f(x) більше важка вимога, а саме-припустимо її у проміжку .

Тоді має місце загальна теорема:

Теорема. Якщо функція f(x) з періодом кусочно-диференцуєма в проміжку , то її ряд Фур'є в кожній крапці  сходиться й має суму

Ця сума, мабуть, дорівнює , якщо в крапці  функція безперервна.

Доказ. Відзначимо, що рівність (14) має місце для кожної функції f(x), що задовольняє поставленим умовам. Якщо, зокрема, взяти, то , і з (14) одержимо, що

Множачи обидві частини рівності на постійне число  й віднімаючи результат з (14), знайдемо

для нашої мети потрібно довести, що інтеграл праворуч при прагне до нуля.

Представимо його у вигляді
 (15)
де покладено
 (16)
якби нам удалося встановити що ця функція кусочно-безперервна, то з леми попереднього параграфа варто було б уже, що інтеграл (15) має межу нулю при . Але в проміжку  функція g(x) взагалі безперервна, за винятком хіба лише кінцевого числа крапок, де вона може мати перегони-тому що така функція f(x). Залишається відкритим лише питання про поводження функції g(x) при .

Ми доведемо існування кінцевої межі
;
поклавши тоді g(0)=K, ми в крапці t=0 одержимо безперервність, і застосування леми виявиться виправданим. Але другий множник у правій частині рівності (16) явно має межею одиницю; звернемося до вираження квадратних дужках.

Нехай, для простати, спочатку крапка  лежить усередині проміжку, де функція f(x) диференцуєма. Тоді , і кожне зі співвідношень
  (17)
прагне до межі , а — до нуля. Якщо ж  є «крапка стику», то при цьому вона може виявитися як крапкою безперервності, так і крапкою розриву. У першому випадку ми знову зштовхнемося з відношенням (17), але вони будуть прагнути цього разу до різних меж, відповідно-до похідній праворуч і до похідної ліворуч. До аналогічного результату прийдемо й у випадку розриву, але тут  заміниться значеннями  тих функцій, від склеювання яких вийшла дана, а межами відносин (17) будуть однобічні похідні згаданих функцій при .

Отже, наш висновок справедливо у всіх випадках.


5. Випадок неперіодичної функції
Вся побудована вище теорія виходила із припущення, що задана функція визначена для всіх речовинних значень x і притім має період . Тим часом найчастіше доводиться мати справа з неперіодичною функцією f(x), інший раз навіть заданої тільки в проміжку .

Що б мати право застосувати до такої функції викладену теорію, уведемо замість її допоміжну функцію  певну в такий спосіб. У проміжку  ми ототожнюємо  з f(x):
 (18)
потім думаємо

а на інші речовинні значення x поширюємо функцію  за законом періодичності.

До побудованого в такий спосіб функції  з періодом  можна вже застосувати доведену теорему розкладання. Однак, якщо мова йде про крапку , що строго лежить між  і , те, через (18), нас довелося б мати справа із заданою функцією . По тій же причині й коефіцієнти розкладання можна обчислити по формулах обчислення коефіцієнтів не переходячи до допоміжної функції. Коротше кажучи, все доведене вище безпосередньо переноситься на задану функцію , минаючи допоміжну функцію .

Особливої уваги, однак, вимагають кінці проміжку . При застосуванні до функції  теореми попереднього параграфа, скажемо, у крапці , нам довелося б мати справа як зі значеннями допоміжної функції  праворуч від , де вони збігаються вже зі значеннями  праворуч від ю Тому для як значення  належало б взяти
.
Таким чином, якщо задана функція  навіть безперервна при , але не має періоду , так що , те-при дотриманні вимог сумою ряду Фур'є буде число

відмінне як від , так і від . Для такої функції розкладання має місце лише у відкритому проміжку .

Наступне зауваження так само заслуговує на особливу увагу. Якщо тригонометричний ряд

сходиться в проміжку  до функції , то через те, що його члени мають період , він сходиться всюди, і сума його  теж виявляється періодичною функцією з періодом . Але ця сума поза зазначеним проміжком взагалі вже не збігається з функцією .




6. Випадок довільного проміжку
Припустимо, що функція  задана в проміжку  довільної довжини  в ньому. Якщо вдатися до підстановки
,
те вийде функція  від  у проміжку , теж кусочно-диференцуєма, до якої вже прикладемо розгляду попереднього параграфа. Як ми бачили, за винятком крапок розриву й кінців проміжку, можна розкласти її в ряд Фур'є:

коефіцієнти якого визначаються формулами Ейлера-Фур'є:
 

 
повернемося тепер до колишньої змінного , думаючи
.
Тоді одержимо розкладання заданої функції в тригонометричний ряд трохи зміненого виду:


 (19)
Тут косинуси й синуси беруться від кутів, кратних не , а . Можна було б і формули для визначення коефіцієнтів розкладання перетворити тією же підстановкою до виду
  (20)

 
Відносно кінців проміжку зберігають силу зауваження, зроблені в попередньому параграфі щодо крапок  Звичайно, проміжок  може бути замінений будь-яким іншим проміжком довгі  зокрема, проміжком . В останньому випадку формули (20) повинні бути замінені формулами
  (20a)

 
7. Випадок парних і непарних функцій
Якщо задана в проміжку  функція  буде непарної, то очевидно



У цьому легко переконається:
.
Таким же шляхом установлюється, що у випадку парної функції :
.
Нехай тепер  буде кусочно-диференцуєма в проміжку  парна функція. Тоді добуток  виявиться непарною функцією, і по сказаному

Таким чином, ряд Фур'є парної функції містить одні лише косинусів:
 (21)
Тому що в цьому випадку буде теж парною функцією, те, застосувавши сюди друге зі зроблених вище зауважень, можемо коефіцієнти  розкладання написати у вигляді
(22)


Якщо ж функція  буде непарної, то непарної буде й функція , так що
 
Ми доходимо висновку, що ряд Фур'є непарної функції містить одні лише синусів:
(23)
При цьому через парність добутку можна писати:
 (24)
Відзначимо, що кожна функція , задана в проміжку , може бути представлена у вигляді суми парних і непарної тридцятимільйонних функцій:
,
Де



Очевидно, що ряд Фур'є функції  саме й складеться з розкладання по косинусах функції  й розкладання по синусах функції .

Припустимо, далі, що функція  задана лише в проміжку . Бажаючи розкласти її в цьому проміжку в ряд Фур'є ми доповнимо визначення нашої функції для значень x у проміжку  по сваволі, а потім застосуємо сказане в пункті «Випадок неперіодичної функції».

Можна використовувати сваволю у визначенні функції в проміжку  так, що б одержати для  розкладання тільки лише по косинусах або тільки по синусах. Дійсно, представимо семі, що для  ми думаємо , так що в результаті виходить парна функція в проміжку . Її розкладання, як ми бачили, буде містити одні лише косинуси. Коефіцієнти розкладання можна обчислювати по формулах (22), куди входять лише значення спочатку заданої функції .

Аналогічно, якщо доповнити визначення функції  за законом непарності, то вона стане непарної й у її розкладанні будуть одні лише синуси. Коефіцієнти її розкладання визначаються по формулах (24).

Таким чином, задану в проміжку  функцію при дотриманні умов виявляється можливим розкладати як по косинусах, так і по одним лише синусах.

Особливого дослідження вимагають крапки  й . Тут обоє розкладання поводяться по-різному. Припустимо, для простоти, що задана функція  безперервна при  й , і розглянемо спочатку розкладання по косинусах. Умова , насамперед, зберігає безперервність при , так що ряд (21) при  буде сходитися саме к. Тому що, далі,
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Феномен світогляду
Реферат Политика регулирования доходов населения и социальная защита в условиях перехода к социально ориентированной рыночной экономике
Реферат Enkidu Friendship Essay Research Paper Friendship with
Реферат Начальные сведения об Еxcel 7.0.
Реферат АПК Республики Хакасия
Реферат Безопасность бизнеса в странах Северной Европы
Реферат Рефлекторно-отражательная природа психики
Реферат Понятие и система предпринимательского права
Реферат Особливості провадження в справах неосудних осіб і осіб які захворіли душевною хворобою після
Реферат Анализ себестоимости продукции растениеводства в ООО Мосальская Нива Калужской области
Реферат Философия Древней Индии и Древнего Китая
Реферат Foriegn Policy And Cuba Essay Research Paper
Реферат Методы определения свойств горных пород
Реферат Особенности нормирования труда в рыночных условиях на примере ЦШИ ОАО "НОСТА" (ОХМК)
Реферат Расчет экономической целесообразности перевода предприятия на пластиковую систему оплаты труда на примере ООО "Бамард"