Реферат по предмету "Математика"


Алгебры и их применение

--PAGE_BREAK--Н1. Следовательно, вектор π(х)f также ортогонален к Н1.

Обозначим через Р1 оператор проектирования в Н на подпространство Н1Н1.

Теорема 2.2. Н1 – инвариантное подпространство тогда и только тогда, когда все операторы представления перестановочны с оператором проектирования Р1 на Н1.

Доказательство. Пусть Н1 – инвариантное подпространство и fН1, но также π(х)f Н1. Отсюда для любого вектора fН

π(х)Р1f Н1

следовательно, Р1π(х)Р1f = π(х)Р1f ,

то есть Р1π(х)Р1 = π(х)Р1.

Применяя операцию инволюции к обеим частям этого равенства и подставляя затем х* вместо х, получаем, что также

Р1π(х)Р1 = Р1π(х).

Следовательно, Р1π(х) = π(х)Р1; операторы Р1 и π(х) коммутируют.

Обратно, если эти операторы перестановочны, то для fН1

Р1π(х)f = π(х)Р1f = π(х)f ;

Следовательно, также π(х)f Н1. Это означает, что Н1 – инвариантное подпространство.

Теорема 2.3. Замкнутая линейная оболочка К инвариантных подпрост- ранств есть также инвариантное подпространство.

Доказательство. Всякий элемент g из К есть предел конечных сумм вида

h = f1 + … + fn, где f1, …, fn – векторы исходных подпространств. С другой стороны, π(х)h = π(х)f1 +…+ π(х)fn есть сумма того же вида и имеет своим пределом π(х)g.

2.2. Прямая сумма представлений. Пусть I – произвольное множество. Пусть (πi)iI — семейство представлений *-алгебры А в гильбертовом пространстве Нi (iI). Пусть

|| πi (х) || ≤ сх

где сх – положительная константа, не зависящая от i.

Обозначим через Н прямую сумму пространств Нi, то есть Н = Нi. В силу (2.1.) можно образовать непрерывный линейный оператор π(х) в Н, который индуцирует πi (х) в каждом Нi. Тогда отображение х → π(х) есть представление А в Н, называемое прямой суммой представлений πi и обозначаемое πi или π1…..πn в случае конечного семейства представлений (π1…..πn). Если (πi)iI – семейство представлений *-алгебры А, совпадающих с представлением π, и если CardI = c, то представления πi обозначается через сπ. Всякое представление, эквивалентное представлению этого типа, называется кратным π.

Для доказательства следующего понадобится лемма Цорна. Напомним ее.

Лемма Цорна. Если в частично упорядоченном подмножестве Х всякое линейно упорядоченное подмножество имеет в Х верхнюю грань, то Х содержит максимальный элемент.

Теорема 2.4. Всякое представление есть прямая сумма цикличных представлений.

Доказательство. Пусть f0 ≠ 0 – какой-либо вектор из Н. Рассмотрим совокупность всех векторов π(х)f0, где х пробегает всю *-алгебру А. Замыкание этой совокупности обозначим через Н1. Тогда Н1 – инвариантное подпространство, в котором f0 есть циклический вектор. Другими словами, Н1 есть циклическое подпространство представления π.

Если Н1 = H, то предложение доказано; в противном случае H-Н1 есть отличное от {0} инвариантное подпространство. Применяя к нему тот же прием, мы выделим циклическое подпространство Н2 ортогональное Н1.

Обозначим через М совокупность всех систем {Нα}, состоящих из взаимно ортогональных циклических подпространств представления; одной из таких систем является построенная выше система {Н1, Н2}. Упорядоченная при помощи соотношения включения совокупность М образует частично упорядоченное множество, удовлетворяющее условиям леммы Цорна; именно, верхней гранью линейно упорядоченного множества систем {Нα}М будет объединение этих систем. Поэтому в М существует максимальная система {Нα}. Но тогда Н=Нα; в противном случае в инвариантном подпространстве Н-(Нα) существовало бы отличное от {0} циклическое подпространство Н0 и мы получили бы систему {Нα}Н0М, содержащую максимальную систему {Нα}, что невозможно.

2.3. Неприводимые представления.

Определение 2.5. Представление называется неприводимым, если в пространстве Н не существует инвариантного подпространства, отличного от {0} и всего Н.

Согласно теореме 2.2. это означает, что всякий оператор проектирования, перестановочный со всеми операторами представления, равен 0 или 1.

Всякое представление в одномерном пространстве неприводимо.

Теорема 2.5. Представление π в пространстве Н неприводимо тогда и только тогда, когда всякий отличный от нуля вектор пространства Н есть циклический вектор этого представления.

Доказательство. Пусть представление π неприводимо. При fН, f ≠ 0, подпространство, натянутое на векторы π(х)f, хА, есть инвариантное подпространство; в силу неприводимости представления оно совпадает с {0} или Н. Но первый случай невозможен, ибо тогда одномерное пространство

{α f | α C} инвариантно и потому совпадает с Н, то есть π(х)=0 в Н. Во втором же случае f есть циклический вектор.

Обратно, если представление π приводимо и К – отличное от {0} и Н инвариантное подпространство в Н, то никакой вектор f из К не будет циклическим для представления π в Н.

Теорема 2.6. (И.Шур) Представление π неприводимо тогда и только тогда, когда коммутант π (А) в L(H) сводится к скалярам (то есть операторам кратным единичному).

Доказательство. Пусть представление π неприводимо и пусть ограни- ченный оператор В перестановочен со всеми операторами π(х). Предположим сначала, что В – эрмитов оператор; обозначим через E(λ) спектральные проекторы оператора В. Тогда при любом λ оператор E(λ) перестановочен со всеми операторами π(х); в виду неприводимости представления E(λ) =0 или E(λ) =1, так как (E(λ) f, f) не убывает при возрастании λ, то отсюда следует, что существует λ0 такое, что E(λ) =0 при λλ0. Отсюда

В=λ dE(λ) = λ0 1.

Пусть теперь В – произвольный ограниченный оператор, переста- новочный со всеми операторами π(х). Тогда В* также перестановочен со всеми операторами π(х). Действительно,

В*π(х) = (π(х*)В)* = (Вπ(х*))* = π(х)В*

Поэтому эрмитовы операторы В1=, В2= также перестановочны со всеми операторами π(х) и, следовательно, кратны единице. Но тогда и оператор В = В1+iВ2 кратен единице, то есть В – скаляр.

Обратно, пусть всякий ограниченный оператор, перестановочный со всеми операторами π(х), кратен единице. Тогда, в частности, всякий оператор проектирования, перестановочный со всеми операторами π(х) кратен единице. Но оператор проектирования может быть кратным единице только тогда, когда он равен 0 или 1. Следовательно, представление неприводимо.

Определение 2.6 Всякий линейный оператор Т: Н → Н΄ такой, что Тπ(х)=π΄(х)Т для любого хА, называется оператором сплетающим π и π΄.

Пусть Т: Н → Н΄ — оператор, сплетающий π и π΄. Тогда Т*: Н΄ → Н является оператором, сплетающим π΄ и π, так как

Т* π΄(х) = (π΄(х)Т)* = (Тπ(х*))* = π(х)Т*

Отсюда получаем, что

Т* Тπ(х)=Т* π΄(х)Т= π(х)Т*Т (2.1.)

Поэтому |T| = (T*T)1/2 перестановочен с π(А). Пусть Т = U|T| — полярное разложение Т. Тогда для любого хА

Uπ(х)|T| = U|T| π(х)= Тπ(х)= π΄(х)Т=π΄(х)U|T| (2.2.)

Если KerT={0}, то |T| (Н) всюду плотно в Н и из (2.2.) следует

Uπ(х) = π΄(х)U (2.3.)

Если, кроме того, = Н΄, то есть если KerT*={0}, то U является изоморфизмом Н и Н΄ и (2.3.) доказывает что π и π΄ эквивалентны.

Пусть π и π΄ — неприводимые представления *-алгебры А в гильбертовых пространствах Н и Н΄ соответственно. Допустим, что существует ненулевой сплетающий оператор Т: Н → Н΄. Тогда из (2.1.) и теоремы 2.6. следует, что Т*Т и ТТ* — скалярны (≠0) и π, π΄ эквивалентны.

2.4. Конечномерные представления.

Теорема 2.7. Пусть π – конечномерное представление *-алгебры А. Тогда π = π1…..πn, где πi неприводимы.

Доказательство. Если dimπ = 0 (n=0), то все доказано. Предположим, что dimπ = q и что наше предложение доказано при dimπ π΄΄, причем dimπ΄

Разложение π = π1…..πn не единственно. Тем не менее, мы получим некоторую теорему единственности.

Пусть ρ1, ρ2 – два неприводимых подпредставления π. Им отвечают инвариантные подпространства Н1 и Н2. Пусть Р1 и Р2 – проекторы Н на Н1 и Н2. Они коммутируют с π(А). Поэтому ограничение Р2 на Н1 есть оператор, сплетающий ρ1 и ρ2. Следовательно, если Н1 и Н2 не ортогональны, то из пункта 2.3. следует, что ρ1 и ρ2 эквивалентны. Это доказывает, что любое неприводимое подпредставление π эквивалентно одному из πi. Итак, перегруп- пировав πi, получаем, что π = ν1…..νm, где каждое νi есть кратное ρiνi΄ неприводимого представления νi΄, и νi΄ попарно эквивалентны. Если ρ – неприводимое представление π, то предыдущее рассуждение показывает, что соответствующее инвариантное подпространство Н΄ ортогонально всем инвариантным подпространствам Нi, отвечающих νi, кроме одного. Поэтому Н΄ содержится в одном из Нi. Это доказывает, что каждое пространство Нi определяется однозначно: Нi – это подпространство Н, порожденное пространствами подпредставлений π, эквивалентных νi΄. Таким образом, доказано предложение.

Теорема 2.8. В разложении π = ρ1ν1΄…..ρmνm΄ представления π, (где ν1΄,…, νm΄ неприводимы и неэквивалентны) целые числа ρi и классы представлений νi΄ определяются единственным образом, как и пространства представлений.

2.5. Интегрирование и дезинтегрирование представлений. Напомним определение борелевского пространства.

Определение 2.7. Борелевским пространством называется множество Т, снабженное множеством В подмножеств Т, обладающим следующими свойствами: ТВ, ШВ, В инвариантно относительно счетного объединения, счетного пересечения и перехода к дополнению.

Определение 2.8. Пусть Т1, Т2 – борелевские пространства. Отображение f: Т1→Т2 называется борелевским, если полный прообраз относительно f любого множества в Т2 есть борелевское множество в Т1.

Дадим несколько вспомогательных определений и утверждений.

Пусть Т – борелевское пространство и μ – положительная мера на Т.

Определение 2.9. μ – измеримое поле гильбертовых пространств на Т есть пара ε = ((H(t))tT, Г), где (H(t))tT – семейство гильбертовых пространств, индексы которых пробегают Т, а Г – множество векторных полей, удовлетворяющее следующим условиям:

(i) Г – векторное подпространство Н(t);

существует последовательность (х1, х2,…) элементов Г таких, что для любого tT элементы хn(t) образуют последовательность H(t);

для любого хГ функция t→||x(t)|| μ – измерима;

пусть х – векторное поле; если для любого yГ функция t→(x(t), y(t)) μ – измерима, то хГ.

Пусть ε = ((H(t))tT, Г) μ – измеримое поле гильбертовых пространств на Т. Векторное поле х называется полем с интегрируемым квадратом, если хГ и ||x(t)||2 dμ(t)

Если х, y – с интегрируемым квадратом, то х+y и λх (λС) – тоже и функция t →(x(t), y(t)) интегрируема; положим

(x, y) = (x(t), y(t)) dμ(t)

Тогда векторные поля с интегрируемым квадратом образуют гильбертово пространство Н, называемое прямым интегралом Н(t) и обозначаемое x(t)dμ(t).

Определение 2.10. Пусть ε = ((H(t))tT, Г) – измеримое поле гильбер- товых пространств на Т. Пусть для любого tT определен оператор S(t)L(H(t)). Если для любого хT поле t→S(t)x(t) измеримо, то t→S(t) называется измеримым операторным полем.

Пусть Т – борелевское пространство, μ — положительная мера на Т, t→Н(t) — μ — измеримое поле гильбертовых пространств на Т. Пусть для каждого tT задано представление π(t) *-алгебры А в Н(t): говорят, что t→π(t) есть поле представлений А.

Определение 2.11. Поле представлений t→π(t) называется измеримым, если для каждого хА поле операторов t→π(t)х измеримо.

Если поле представлений t→π(t) измеримо, то для каждого хА можно образовать непрерывный оператор π(х)=π(t) (x) dμ(t) в гильбертовом прост- ранстве Н =Н(t) dμ(t).

Теорема 2.9. Отображение х→π(х) есть представление А в Н.

Доказательство. Для любых х, yА имеем

π(х+y) = π(t) (x+y) dμ(t) = (π(t) (x) + π(t) (y)) dμ(t) =π(t) (x )dμ(t) +

+π(t) (y) dμ(t) = π(х) +π(y)

Аналогично π(λх) = λπ(х), π(хy) = π(х) π(y), π(х*)=π(х)*

Определение 2.12. В предыдущих обозначениях π называется прямым интегралом π(t) и обозначается π =π(t) dμ(t).

Определение 2.13. Операторное поле t→φ(t)I(t)L(H(t)) где I(t)-единичный оператор в H(t), называется диагональным оператором в Н=Н(t)dμ(t).

Пусть ε = ((H(t))tT, Г) – μ-измеримое поле гильбертовых пространств на Т, μ1 – мера на Т, эквивалентная μ (то есть каждая из мер μ1, μ абсолютно непрерывна по другой), и ρ(t)=. Тогда отображение, которое каждому хН==Н(t)dμ(t) составляет поле t→ρ(t)-1/2х(t)Н1=Н(t) dμ1(t),

есть изометрический изоморфизм Н на Н1, называемый каноническим.

Действительно,

||ρ(t)-1/2х(t)dμ1(t)||2 = ||х(t)||2ρ(t)-1 dμ1(t) = ||х(t)||2dμ1(t) = ||х(t)||2

Теорема 2.10. Пусть Т – борелевское пространство, μ – мера на Т, t→Н(t) – измеримое поле гильбертовых пространств на Т, t→π(t) – измеримое поле представлений А в Н(t),

Н =Н(t) dμ(t), π1==π(t )dμ(t),

Д – алгебра диагональных операторов в Н. Пусть μ1 – мера на Т, эквивалентная μ,

Н1 =Н(t) dμ1(t), π1 =π(t) dμ1(t),

Д1 – алгебра диагональных операторов в Н1. Тогда канонический изоморфизм преобразует π в π1 и Д в Д1.

Доказательство. Пусть ρ(t)=. Канонический изоморфизм из Н в Н1 есть изометрический изоморфизм, который переводит х =x(t) dμ(t)Н в

Ux = ρ-1/2х(t) dμ1(t).

Пусть α А. Имеем

π1(α)Ux = π(t)(α) ρ-1/2 х(t) dμ1(t) = Uπ(t)(α) х(t) dμ(t) = Uπ(α)x,

поэтому и преобразуем π в π1. Тогда если SД, то аналогично SUx = USx, для любого хН.

Определение 2.14. Пусть Т, Т1 – борелевские пространства; μ, μ1 – меры на Т и Т1 соответственно; ε = ((H(t))t    продолжение
--PAGE_BREAK--T, Г), Z1 = ((H1(t1))t1T1, Г), — μ-измеримое и μ1-измеримое поля гильбертовых пространств. Пусть η: Т→Т1 – борелевский изоморфизм, переводящий μ в μ1; η-изоморфизм ε на ε1 называется семейство (V(t))tT, обладающее следующими свойствами:

для любого tT отображение V(t) является изоморфизмом Н(t) на Н1(η(t));

для того, чтобы поле векторов t→x(t)H(t) на Т было μ-измеримо, необходимо и достаточно, чтобы поле η(t)→V(t)х(t) Н1(η(t)) на Т1 было μ1-измеримо.

Отображение, переводящее поле хН =Н(t) dμ(t) в поле η(t))→V(t)х(t) Н1 = Н1(t) dμ1(t), есть изоморфизм Н на Н1, обозначаемый V(t) dμ(t).

Теорема 2.11. Пусть Т – борелевское пространство; μ – мера на Т, t→H(t) – μ- измеримое поле гильбертовых пространств на Т, t→ π(t) — μ- измеримое поле представлений А в H(t),

Н =Н(t) dμ(t), π ==π(t) dμ(t),

Д – алгебра диагональных операторов в Н. Определим аналогичным образом Т1, μ1, t1→H1(t1), t1→ π1(t1), Н1, π1, Д1.

Предположим, что существует:

N, N1 – борелевские подмножества Т и Т1, такие что μ (N) = μ (N1) = 0;

борелевский изоморфизм η: T\N →T\N1, преобразует μ в μ1;

η-изоморфизм t→V(t) поля t→Н(t) (tZ\N) на поле t1→Н1(t1) (t1Т1\N1) такой, что V(t) преобразует π(t) в π1(η(t)) для каждого t.

Тогда V =V(t)dμ(t) преобразует Д в Д1 и π в π1.

Доказательство. Обозначим через It, It1 единичные операторы в Н(t) и Н1(t1). Если fL∞(T, μ) и если f1 – функция на Т1\N1, получаемая из f|(T\N) при помощи η, то V преобразует f(t)It dμ(t) в f1(t1) It1 dμ1(t1), поэтому V преоб- разует Д в Д1. С другой стороны, пусть αА и х = х(t) dμ(t)Н.

Тогда

Vπ(α)х = Vπ(t)(α) х(t) dμ(t) = V(η-1(t1)) π(η-1(t1))(α) х(η-1(t1)) dμ1(t1) = π1(t1)(α) V(η-1(t1)) х(η-1(t1)) dμ1(t1) = π1 (α) V х

Поэтому V преобразует π в π1.

Приведем примеры прямых интегралов.

Пусть имеется последовательность гильбертовых пространств  и дискретная мера μ на N, то есть μ(n)=1 для любого nN. Тогда

Н(n) dμ(n) = Н(n), то есть прямой интеграл сводится к ортогональ- ной сумме.

Пусть Т=[0, 1] и в каждой точке tТ соответствует поле комплексных чисел С, и на Т задана линейная мера Лебега dt. Тогда С dt = L2 (0, 1).

Изоморфизм устанавливается отображением х = х(t) dt →х(t)L2 (0, 1).

Разложения представления на неприводимые представления в прямой интеграл называют дезинтегрированием.

§ 3. Тензорные произведения пространств

3.1. Тензорные произведения пространств. Пусть   — конечная последовательность сепарабельных гильбертовых пространств,   — некоторый ортонормированный базис в Нк.

Образуем формальное произведение

 (3.1.)

α = (α1,…, αn)  (n раз), то есть рассмотрим упорядо- ченную последовательность ( ) и на формальные векторы (3.1.) натянем гильбертово пространство, считая, что они образуют его ортонормиро- ванный базис. Полученное сепарабельное гильбертово пространство называется тензорным произведением пространств Н1,…, Нn и обозначается Н1,…, Нn = . Его векторы имеют вид:

f =  (fαC), || f ||2 =

Пусть g = , тогда скалярное произведение опреде- ляется формулой

(f, g) =  (3.3.)

Пусть f(k) = (к = 1,…, n) – некоторые векторы. По определению

f = f(1)… f(n) =  (3.4.)

Коэффициенты fα =  разложения (3.4.) удовлетворяют условию (3.2.), поэтому вектор (3.4.) принадлежит , при этом

|| f || =  (3.5.)

Функция Н1,…, Нn >   линейна по каждому фрагменту, а линейная оболочка L векторов (3.4.) плотна в   — эта линейная оболочка называется алгебраическим (непополненным) тензорным произведением пространств Н1,…, Нn и обозначается α.

Приведенное определение тензорного произведения зависит от выбора ортогонального базиса в каждом сомножителе . При изменении базисов получаем тензорное произведение, изоморфное с сохранением своей структуры исходному произведению.

Пусть Н1 и Н2 – гильбертовы сепарабельные пространства. Тогда конструкция тензорного произведения означает следующее. Рассматривается линейная оболочка L формальных произведений f1 f2, причем считается, что

(f1 + g1) f2 = f1 f2 + g1 f2 (3.6.)

f1 (f2 + g2) = f1 f2 + f1 g2 (3.7.)

(λ f1) f2=λ (f1 f2) (3.8.)

f1 λ (f2) = λ (f1 f2) (3.9.)

f1, g1Н1; f2, g2 Н2; λ С.

Иными словами, линейное пространство L факторизируется по его линейному подмножеству, натянутому на всевозможные векторы, имеющие вид разностей между правыми и левыми частями равенств (3.6.) – (3.9.).

Затем вводится скалярное произведение в L.

(f1 f2, g1 g2 ) = (f1 g1)(f2 g2) (3.10.)

f1, g1Н1; f2, g2 Н2,

а затем распространяется на другие элементы из факторизованного L билинейным образом.

3.2. Тензорные произведения операторов. Определим тензорное произведение ограниченных операторов.

Теорема 3.1. Пусть ,   — две последовательности гильбер- товых пространств,   — последовательность операторов АкL(Нк, Gк). Определим тензорное произведение А1 …Аn = Ак формулой

() f = () =  (3.11.)

(f ).

Утверждается, что ряд в правой части (3.11.) сходится слабо в и определяет оператор  L (, ), причем

|| || = || || (3.12.)

Доказательство. Достаточно рассмотреть случай n=2, так как в силу равенства Н1,…, Нn = (Н1,…, Нn-1)Нn общий случай получается по индукции.

Пусть - некоторый ортонормированный базис в Gк (к = 1, 2) и пусть g =  G1 G2. В качестве f возьмем вектор из Н1 Н2 с конечным числом отличных от нуля координат fα.

Зафиксируем α2, β1  Z+ и обозначим через f(α2) Н1 вектор f(α2) =  и через g(β1)G2 – вектор g(β1) =. Получим

= =

= ≤ =

= ≤ =

=

Из этого неравенства следует слабая сходимость в G1G2 ряда  уже при произвольном c Н1Н2 и оценка его нормы в G1G2 сверху через ||A1|| ||A2|| ||f||. Таким образом, оператор A1 A2: Н1 Н2 →G1G2 определен посредством (3.11.) корректно, ограничен и его норма не превосходит ||A1|| ||A2||.

Из (3.5.) и (3.11.) следует

||(A1 A2) (f1 f2)|| = ||A1 f1|| ||A2 f2|| (fк Нк, к = 1, 2)

Подбирая должным образом орты f1, f2 последнее произведение можно сделать сколь угодно близким к ||A1|| ||A2||, поэтому неравенство ||(A1 A2)|| ≤ ||A1|| ||A2|| не может выполняться, то есть (3.12.) при n=2 доказано.

Из (3.11.) получаем для Ак L(Hк, Gк), Вк L(Hк, Gк) (к = 1,…, n) соотношения

(Вк) (Ак) = (Вк Ак) (3.13.)

(Ак)* = Ак* (3.14)

(Ак) (f1 … fn) = A1 f1… An fn (3.15.)

(fк Hк; к = 1,…, n)

(3.15) однозначно определяет оператор Ак.

Приведем пример. Пусть Hк = L2((0,1), d (mк)) = L2

Действительно, вектору вида (3.1.)    поставим в соответствие функцию  L2. Такие функции образуют ортонормированный базис пространства L2, поэтому такое соответствие порождает требуемый изоморфизм между и L2.

Глава II. Задача о двух ортопроекторах

§ 1. Два ортопроектора в унитарном пространстве

Постановка задачи. Пусть дана *-алгебра P2

P2 = С

порожденная двумя проекторами, то есть двумя идемпотентными самосопряженными элементами.

Положим u = 2p1 – 1, v = 2p2 – 1, тогда u, v самосопряженные элементы.

u2 = (2p1 – 1)2 = 4p1 – 4p1 + 1 = 1, v2 = 1. Таким образом u, v – унитарные самосопряженные элементы.

Тогда *-алгебру P2 можно задать иначе:

P2 = С = C

Это групповая *-алгебра, порожденная двумя унитарными самосопряженными элементами.

Требуется найти все неприводимые представления *-алгебры P2, с точностью до унитарной эквивалентности.

1.2. Одномерные *-представления *-алгебры P2. Пусть π: P2 →L(H) — *-представление *-алгебры P2. Рассмотрим сначала случай, когда dim H = 1, то есть dim π = 1.

P2 = С

Обозначим через Рк = π(рк), к = 1,2. Поскольку рк2= рк* = рк (к = 1, 2) и π — *-представление, то Рк2 = Рк* = Рк (к =1, 2) – ортопроекторы в Н на подпространстве Нк = {y    продолжение
--PAGE_BREAK--H | Рк y = y } к = 1, 2.

Возможны следующие случаи:

Н1 = Н2 = {0}; тогда Р1 = 0, Р2 = 0.

Н1 = Н (то есть dim H1 =1), Н2 = {0}, тогда Р1 = 1, Р2 = 0.

Н1 = {0}, Н2 = Н (то есть dim H2 =1), тогда Р1 = 0, Р2 = 1.

Н1 = Н2 = Н (dim H1 = dim H2 =1), тогда Р1 = 1, Р2 = 1.

Так как dim H =1, то мы можем получить 4 одномерных неприводимых *-представлений P2, причем они неэквивалентны.

1.3. Двумерные *-представления *-алгебры P2. Обозначим через Нк область значений оператора Рк при к = 1,2. Пусть Нк┴ — ортогональное дополнение подпространства Нк (к = 1,2) в Н. Тогда Н=H1Н1┴, Н=H2Н2┴

Введем дополнительные обозначения:

Н0,0 = Н1┴ ∩Н2┴, Н0,1 = Н1┴ ∩Н2, Н1,0 = Н1 ∩Н2┴, Н1,1 = Н1 ∩Н2. (1.1.)

Пусть dim H = 2. предположим, что существуют i и j такие, что Hij нетривиально, то есть dim Hij =1. Пусть, например, dim Н1,0 = 1 (остальные случаи аналогичны). Тогда в H существует ненулевой вектор h такой, что Н1,0 = л.о. {h}, но тогда P1h = h, P2h = 0; следовательно Н1,0 инвариантное подпространство. Значит в этом случае *-представление π не может быть неприводимым.

Будем считать, что Hij ={0} для любых i = 0, 1 и j =0, 1, (то есть Hij линейно независимы) и dim H1 = dim H2 =1. Тогда в Н можно найти два ортогональных базиса {e1, e2} и {g1, g2}, в которых матрицы операторов Р1 и Р2 имеют вид . Найдем матрицу оператора Р2 в базисе {e1, e2}.

Пусть g1 = a11e1 + a12 e2

 g2 = a21e1 + a22e2

e1 = b11g1 + b12g2

e2 = b21g1 + b22g2

Рассмотримвекторыh1 = eite1 иh2 = eile2, тогда

|| h1 || = || eite1 || = || e1 || = 1, || h2 || = || eile2 || = || e2 || = 1

(h1 ,h2 ) = (eite1, eile2) = ei(t-l)(e1, e2 ) = 0, то есть {h1 ,h2} – ортонормированный базис.

Р1h1 =ei t Р1 e1 = h1, Р1h2 =eil Р1 e2 = 0.

Значит в базисе {h1 ,h2} матрица оператора Р1 также имеет вид . Тогда можно считать, что a11, a12 > 0 (так как, например, a11 e1=|a11| eite1 =|a11| h1)

(e1, e2 ) = 0, значит a11 a21 = a12 a22 = 0 или , тогда существует такое комплексное число r, что

a22 = — ra11

a21 = ra12

Базис (e1, e2 ) ортонормированный; следовательно

a112 + a122 = 1

|a22 |2 + |a21 |2 = 0

тогда| r | = 1.

Р2 e1 = Р2 ( b11g1 + b12g2) = b11g1 = b11a11e1 + b11a12e2,

Р2 e2 = Р2 ( b21g1 + b22g2) = b21g1 = b21a11e1 + b21a12e2.

Найдемb11 иb21:

e1 = b11g1 + b12g2 = b11 (a11e1 + a12 e2) + b12 (a21e1 + a22e2) = (b11a11 + b12a12)e1 + (b11a12 + b12a22)e2,

b11a11 + b12a12 = 1

b11a12 + b12a22 = 0 или

b11a11 + b12a12 r = 1

b11a12 — b12a11 r = 0,

Тогдаb11 = a11.

Аналогично

E2 = b21g1 + b22g2 = (b21a11 + b22a21)e1 + (b21a12 + b22a22)e2,

b21a11 + b22a21= 0

b21a12 + b22a22 = 1,

отсюданаходим, чтоb21 = a12.

Тогда матрица оператора Р2 в базисе {e1, e2 } будет иметь вид (обозначим ее также через Р2)

Р2 = , гдеa11>0, a12>0 иa112 + a122 =1

А) Пустьa112 = τ, тогдаa122 =1 – τ, a11a12 = . Так как a11a12 >0, то τ(0, 1).

Тогда Р2 = .

В) Положим a11 = cosφ, тогда a12 = sinφ и Р2 запишется следующим образом

Р2 = .

Найдем коммутант π(P2). Пусть Т =  оператор перестановочный с Р1 и Р2, тогда

ТР1 =  =

Р1Т =  =

Следовательно b = c = 0.

ТР2 =  =

Р2Т =  =

Следовательно a = d. Тогда Т скалярный оператор и по лемме Шура (теорема 2.6. глава I) представление π неприводимо.

Покажем, что все эти представления неэквивалентны.

Пусть τ, ν(0, 1), τ ≠ ν. Предположим, что существует унитарный оператор в Н, устанавливающий эквивалентность. Тогда

UР1 = Р1U, следовательно U= , a, b C

UР2 (τ) =  =

Р2 (ν) U =  = .

Тогда τ = ν, следовательно U = 0 и представления неэквивалентны.

Теорема 1.1. Пусть π: P2 →L(H) — *-представление *-алгебры P2 .

Тогда:

(i) Все одномерные и неэквивалентные представления имеют вид: π0,0(p1) = 0; π0,0(p2) = 0; π1,0(p1) = 1; π1,0(p2) = 0; π0,1(p1) = 0; π0,1(p2) = 1; π1,1(p1) = 1; π1,1(p2) = 1;

(ii) Все двумерные неприводимые и неэквивалентные представления имеют вид: π(p1)  , π(p2)  τ (0, 1).

Доказательство следует из сказанного выше и в пункте (ii) можно положить π(p2) =  φ (0, ).

1.4. n – мерные *-представления *-алгебры P2. Рассмотрим случай нечетной размерности пространства Н. Если dimН=2n+1, где n>1 натуральное, то выполняется неравенство

max (dimН1, dimН1┴) + max (dimН2, dimН2┴) > 2n+1 (1.4.)

Тогда обязательно найдутся такие i = 0,1 и j= 0,1, что Нi,j ≠ {0}, следовательно, существует нетривиальное инвариантное подпространство относительно *-представления π, но тогда π приводимо.

Пусть теперь dimН=2n, n>1 натуральное. Будем считать, что dimН1 = n, dimН2 = n и Нi,j = {0} для любых i = 0,1 и j= 0,1, то есть Нi,j линейно независимы. Если это не так, то снова будет выполнятся неравенство (1.4.) и *-представление π окажется приводимым. При этих условиях справедлива лемма.

Лемма 1.1. Существует х ≠ 0, хН1 такой, что Р1Р2х = λх, где λС.

Доказательство. Пусть ,  ортонормированный базисы в Н, в которых матрицы операторов Р1 и Р2 имеют вид , где I – единичная матрица порядка n. Пусть базисы (е) и (g) связаны уравнениями

 

к = 1,…, n к = 1,…, n

Так как хН1, то , gk C, к = 1,…, n. Тогда

Р1Р2х = Р1Р2= Р1Р2= Р1=

= Р1= = () =

Таким образом получаем систему линейных однородных уравнений относительно q1,…, qn:

=

j = 1,…, n

Подбирая λC так, чтобы определитель этой системы обратился в нуль, получим ненулевое решение q1,…, qn. Это доказывает лемму.

Лемма 1.2. Пусть элемент х удовлетворяет условиям леммы 15. Тогда L=л.о. {х, Р2х} – инвариантное подпространство в Н относительно Р1 и Р2.

Доказательство. Проверим инвариантность L. Для любых a, b С имеем

Р1 (aх + bР2х) = aх + λbх = (a + λb) х L,

Р2 (aх + bР2х) = aР2х + bР2х = (a + b) Р2 х L

dimL = 2, так как Нi,j = {0} (для всех i, j= 0,1).

Действительно, если aх + bР2х = 0, где, например, а ≠ 0, то х =  Р2х, значит = 0 или 1 и х Н1,1; тогда Н1,1≠{0}.

Итак, получаем предложение.

Теорема 1.2. Если dimН = n, n>2, то нет неприводимых *-пред- ставлений *-алгебры P2. Все неприводимые конечномерные *-представления одномерны и двумерны.

1.5. Спектральная теорема. Пусть dimН = n. В этом пункте мы получим разложение на неприводимые *-подпредставления исходного *-представления π *-алгебры P2, а также разложение пространства Н на инвариантные подпространства относительно π.

Теорема 3.1. (спектральная теорема). Существует единственное разложе- ние Н в ортогональную сумму инвариантных относительно Р1 и Р2 подпространств

Н = Н0,0Н0,1Н1,0Н1,1  ((С2Нк)), (1.1.)

где каждому подпространству Нк соответствует одно φк (0, ), φк ≠ φi при к≠i, dimНк = nк (к = 1,…, m). Пусть Рi,j: Н → Нi,j, Рφк: Н → С2Нк – ортопроекторы к = 1,…, m. Тогда существуют единственные разложения операторов

I = P0,0 P0,1 P1,0 P1,1(Рφк), (1.2.)

P1 = P1,0P1,1((Iк)) (1.3)

Р2 = P0,1 P1,1  (Iк )) (1.4)

где Iк – единичный оператор на Нк (к = 1,…, m).

Доказательство. Пусть dimНi,j = ni,j. Сразу можем записать разложение

Н = Н0,0 Н0,1 Н1,0 Н1,1  Н΄, где dimН΄ четное число. Используя лемму 1.2. и теорему 2.1. главы I можем написать разложение Н΄ в ортого- нальную сумму инвариантных двумерных подпространств, определяемых параметром φк (0, ):

Н΄ = Нφк, (l = n — )

Собирая вместе все Нφк, у которых одно φк, получим изоморфизм

Нφк…Нφк ≈ С2Нк, где Нφк nк экземпляров, dim(Нφк…Нφк )=2nк dim(С2Нк) = dimС2 dimНк = 2nк. Следовательно, получаем разложение (1.1.)

Н = Н0,0  Н0,1 Н1,0 Н1,1  ((С2Нк))

Пусть πi,j – сужение π на Нi,j ( i, j= 0,1), πк – сужение π на Нφк (к = 1,…, m), то есть πi,j и πк — *-подпредставления.

Учитывая кратности подпредставлений получаем

π = n0,0π0,0n0,1π0,1n1,0π1,0n1,1π1,1(nкπк) (1.5.)

В силу теоремы 2.8. главы I разложения (1.1.) и (1.5.) единственные.

Из (1.1.) следует разложение единичного оператора I (1.2.)

I = P0,0  P0,1 P1,0 P1,1  (Рφк)

Тогда ортопроекторы Р1 и Р2 примут вид

P1 = P1,0 P1,1  ((Iк ))

Р2 = P0,1 P1,1  (Iк ))

Причем n1,0π1,0(р1) = P1,0, n0,1π0,1(p2) = P0,1, n1,1π1,1(р1) = P1,1, n0,0π0,0(p2) = P0,0. В силу теоремы 2.8. главы I разложения I, Р1 и Р2 также определяются однозначно.

§ 2. Два ортопроектора в сепарабельном гильбертовом пространстве

2.1. Неприводимые *-представления *-алгебры P2. Пусть А = Р1 — Р1┴ = 2Р1 – I и В = Р2 – Р2┴ = 2Р2 – I. Тогда А2 = I, В2 = I. Следовательно А и В самосопряженные унитарные операторы в Н. Положим U=АВ, тогда U-1=ВА и А-1UА = АUА = А2ВА = ВА = U-1, следовательно

UА = АU-1 или АU = U-1А (2.1.)

Лемма 2.1. Операторы А и В неприводимы тогда и только тогда, когда операторы А и U неприводимы.

Доказательство. Допустим, что А и В неприводимы. Пусть существует нетривиальное инвариантное подпространство L относительно операторов А и U. Тогда UL = АВL    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Анализ финансовой устойчивости и платежеспособности предприятия (на примере ОАО "Нижнекамскшина")
Реферат Устройства СВЧ
Реферат Александр Зеличенко. История афганской наркоэкспансии 1990-х © Copyright Александр Зеличенко Email: zelitchenko@yahoo
Реферат Влияние рекламы на формирование потребительского спроса
Реферат Развитие пространственного мышления школьников на уроках черчения
Реферат Вечер общения
Реферат Логістика складування
Реферат Отто Варбург
Реферат Понятие значение стороны содержание трудового договора
Реферат Три смерти
Реферат Dying With Love Through Hospice Essay Research
Реферат XXI век: новые международные отношения
Реферат Калат-аль-Бахрейн
Реферат Российская практика использования тарифных средств таможенного регулирования внешнеэкономической
Реферат Диагностика индивидуальных различий, определяющих интра-индивидуальную вариативность данных