Реферат по предмету "Математика"


Парная линейная регрессия

Контрольная работа по эконометрике

«Парная линейная регрессия»
Вариант №6
В таблице приведены значения выручки от экспорта 1 тонны синтетического каучука за 10 кварталов и цены его на внутреннем рынке.

Период

Выручка от экспорта 1 тонны, долл.

Цена внутреннего рынка, долл. За 1 тонну

1-й квартал

2010

1030

2-й квартал

1190

1550

3-й квартал

1340

2180

4-й квартал

1370

2370

5-й квартал

1470

2380

6-й квартал

1510

2560

7-й квартал

1535

2590

8-й квартал

1570

2700

9-й квартал

1540

2759

10-й квартал

1635

2760

Линейное уравнение парной регрессии имеет вид:

ŷ = b0+ b1 · x
где ŷ — оценка условного математического ожидания y;
b0, b1 — эмпирические коэффициенты регрессии, подлежащие определению.
Эмпирические коэффициенты регрессии b0, b1 будем определять с помощью инструмента Регрессия надстройки Анализ данных табличного процессора MS Excel.
Из таблицы «Линейн» видно, что эмпирические коэффициенты регрессии соответственно равны:

b0= 1738,671

b1 = — 0,097

Тогда уравнение парной линейной регрессии, связывающей величину выручки от экспорта y и его цены на внутреннем рынке x, имеет вид:

ŷ = 1739 – 0,097 · x
1.Рассчитайте параметры уравнения линейной зависимости выручки от экспорта 1тонны синтетического каучука от цены его на внутреннем рынке.
При помощи статистической функции «ЛИНЕЙН» получим:

Линейн

-0,096888247

1738,670621

0,129769731

305,1064952

0,065140593

222,2670586

0,55743649

8

27538,83722

395221,1628



Где соответственно

Значение коэффициента b

Значение коэффициента a

Среднеквадратическое отклонение b

Среднеквадратическое отклонение a

Коэффициент детерминации R2

Среднеквадратическое отклонение y

F-статистика

Число степеней свободы

Регрессионная сумма квадратов

Остаточная сумма квадратов

2. Найти оценки дисперсий
S2, D(b), D(b1), D(ŷ).

а) Найдем S2

S2=∑ ei2/ n-2



Наблюдение

Остатки ei

Квадрат отклонений

1

371,1242736

137733,2264

2

-398,4938378

158797,3387

3

-187,4542419

35139,0928

4

-139,0454749

19333,64409

5

-38,07659241

1449,82689

6

19,36329212

374,9370817

7

47,26993954

2234,447184

8

92,92764676

8635,547532

9

68,64405335

4712,006061

10

163,7409416

26811,09596

Сумма

 

395221,1628



Используя данные таблицы, получим S2 = 395221,1628 / 10 – 2 = 395221,1628 / 8 = 49402,64535

б) Найдем D(b0)

D(b) = S2 · (∑ xi2 / n ∑ (xi— x)2)

Период

Цена внутреннего рынка, долл. За 1 тонну, x

x — x ср.

квадрат(x — x ср.)

Квадрат x

1-й квартал

1030

-1257,9

1582312,41

1060900

2-й квартал

1550

-737,9

544496,41

2402500

3-й квартал

2180

-107,9

11642,41

4752400

4-й квартал

2370

82,1

6740,41

5616900

5-й квартал

2380

92,1

8482,41

5664400

6-й квартал

2560

272,1

74038,41

6553600

7-й квартал

2590

302,1

91264,41

6708100

8-й квартал

2700

412,1

169826,41

7290000

9-й квартал

2759

471,1

221935,21

7612081

10-й квартал

2760

472,1

222878,41

7617600

сумма

22879

 

1805190,82

8678500

Среднее значение x

2287,9

 

 

 


D(b) = 49402,64535· (8678500/ 10 · 1805190,82) = 49402,64535· (8678500/ 18051908,2) = 49402,64535· 0,48075 = 23750,32175
в) Найдем D(b1)

D(b1) = S2 · (1/ ∑ (xi— x)2)

D(b1) = 49402,64535· (1/1805190,82) = 49402,64535· 0,000000554 = 0,02737
г) Найдем D(ŷ)

D(ŷ) = S2 · ( 1 + 1/n + ((xi— x)2/∑ (xi— x)2)) = 49402,64535 · (1 + 1/10 + )
3. Постройте таблицу дисперсионного анализа.

Таблица построена при помощи инструмента Регрессия надстройки Анализ данных.

Дисперсионный анализ

 

 

df

SS

MS

F

Значимость F

Регрессия

1

27538,83722

27538,83722

0,55743649

0,476661041

Остаток

8

395221,1628

49402,64535

 

 

Итого

9

422760

 

 

 

4. Оцените тесноту связи с помощью коэффициента корреляции и детерминации.

В соответствии с заданием, необходимо оценить тесноту статистической связи между величиной выручки от экспорта y и ценой на внутреннем рынке x. Эту оценку можно сделать с помощью коэффициента корреляции rxy. Величина этого коэффициента в таблице «Регрессионная статистика» обозначена как множественный R и равна 0,255. Поскольку теоретически величина данного коэффициента находится в пределах от –1 до +1, то можно сделать вывод о несущественности статистической связи между величиной выручки от экспорта y и ценой на внутреннем рынке x.

Параметр R-квадрат, представленный в таблице «Регрессионная статистика» представляет собой квадрат коэффициента корреляции rxy2 и называется коэффициентом детерминации. Соответственно величина 1 — rxy2 характеризует долю дисперсии переменной y, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных. Из таблицы «Регрессионная статистика» видно, что доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет: 1 — 0,06514 = 0,93486 или 93,5%.

Таким образом, при R R=0,255, 0,255
Регрессионная статистика

 

Множественный R

0,255226553

R-квадрат

0,065140593

Нормированный R-квадрат

-0,051716833

Стандартная ошибка

222,2670586

Наблюдения

10

5. Оцените с помощью средней ошибки аппроксимации качество уравнения.

Определим среднюю ошибку аппроксимации по зависимости:
Для этого исходную таблицу дополняем двумя колонками, в которых определяем значения ŷ, рассчитанные с использованием зависимости и значения разности />.

Период

Выручка от экспорта 1 тонны, долл. Y

Цена внутреннего рынка, долл. За 1 тонну x

ŷ

 />

1-й квартал

2010

1030

1639,09

0,184532

2-й квартал

1190

1550

1588,65

0,335

3-й квартал

1340

2180

1527,54

0,13996

4-й квартал

1370

2370

1509,11

0,10154

5-й квартал

1470

2380

1508,14

0,02595

6-й квартал

1510

2560

1490,68

0,012795

7-й квартал

1535

2590

1487,77

0,030769

8-й квартал

1570

2700

1477,1

0,059172

9-й квартал

1540

2759

1471,377

0,04456

10-й квартал

1635

2760

1471,28

0,100135

сумма

15170

22879

 

1,034413

Тогда средняя ошибка аппроксимации равна:
Практически полагают, что значение средней ошибки аппроксимации не должно превышать 12—15% для грубого приближения регрессии к реальной зависимости. В нашем же случае средняя ошибка аппроксимации, т.е. среднее отклонение расчетных значений от фактических равна 10,34%. Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
6. Оцените значимость коэффициента корреляции и значимость коэффициента регрессии b1с помощью t-критерия Стьюдента.

На этом этапе необходимо оценить статистическую значимость коэффициентов регрессии с помощью t-критерия Стьюдента. Технология оценки статистической значимости коэффициентов регрессии основывается на проверке нулевой гипотезы о незначимости коэффициентов регрессии. При этом проверяется выполнение условия: если tT > tКРИТ, то нулевая гипотеза отвергается и коэффициент регрессии принимается значимым. Из таблицы №3 в приложении видно, что tT для коэффициента регрессии равен -0,7466. Критическое значение tКРИТ при уровне значимости α = 0,05 равно 2,3060.

Поскольку tTКРИТ для коэффициента регрессии (0,7466
7. Оцените с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования.

Из таблицы дисперсионного анализа:

Дисперсионный анализ

 

df

SS

MS

F

Значимость F

Регрессия

1

27538,83722

27538,837

0,5574365

0,476661041

Остаток

8

395221,1628

49402,645

 

 

Итого

9

422760

 

 

 

следует, что FT = 0,56. FКРИТ определяем с помощью таблицы значений F-критерия Фишера. Для модели парной линейной регрессии число степеней свободы равно 8 и n — k — 1 (где k = 1 — число объясняющих переменных). И второе число степеней свободы равно: 10 — 2 = 8. FКРИТ = 3,44. Следовательно, FTКРИТ (0,56
Добавить реферат в свой блог или сайт


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Перевод. Искусство перевода и его проблемы
Реферат Экономическая теория. Социальная политика государства
Реферат Средства размещения в сфере туризма. Создание туристического продукта
Реферат Спортивная классификация. Студенческий спорт
Реферат Спорт и допинг
Реферат Генезис советской индустриализации
Реферат Простые числа Мерсенна, совершенные числа
Реферат Стороны работы туристической фирмы ООО Пилигрим-НН
Реферат Кодирование и декодирование
Реферат Стороны работы туристической фирмы ООО Пилигрим НН 2
Реферат "Возврат в детство" как универсальный механизм психотерапии. Введение в метод Ретри
Реферат Бухгалтерский учет в России и США
Реферат Средства ускоряющие процессы восстановления в спортивной практике
Реферат Family Relationships Essay Research Paper Family relationships
Реферат Средства восстановления в пауэрлифтинге