Реферат по предмету "Коммуникации и связь"


Разработка и исследование унифицированных модулей широкополосных трансформаторов типа длинной ли

--PAGE_BREAK--W
;
x), соединенных на входе параллельно, а на выходах последовательно. В этом трансформаторе для обеспечения режима бегущей волны (как и в предыдущем ТШЛ 1:2) в процессе распространения колебаний в линиях нагрузка должна составлять 3W; при этом входное сопротивление равно W
/3. Для устранения шунтирующего действия, обусловленного наличием синфазных токов, вторая (проводники 3-3' и 4-4') и третья (проводники 5-5' и 6-6') линии размещаются на раздельных или общем (рис.1.1.2, в) магнитопроводах. В области нижних частот рабочего диапазона (х≈0) структура этого ТШЛ (рис.1.1.2, в) принципиально отличается от структуры обычного низкочастотного трансформатора присутствием избыточных обмоток, образованных проводниками 4-4' и 5-5'. Для этого ТШЛ 1:3 К=6 вместо Кмин=3 (согласно п.1 табл.1.1.1). Эта избыточность в значении Кявляется платой за согласование волнового процесса распространения колебаний.

Поскольку напряжения на обмотках (рис.1.1.2, в), относящихся к разным линиям, различаются вдвое, то при размещении этих линий на общем магнитопроводе (рис.1.1.2, б) число витков обмоток должно отличатся в два раза, а направление их намотки определяется полярностью напряжений на проводниках.

При этом шунтирующая индуктивность намагничивания, отнесенная к входу трансформатора (L
1), будет определяться индуктивностью обмотки, образованной проводником 3-3', т.е. обмотки, напряжение на которой равно входному. Разное число витков для второй и третьей линий, размещаемых на общем магнитопроводе (при соблюдении требований равной их длины для выполнения согласования волнового процесса), приводит к необходимости включения (рис.1.1.2, б) еще одной ФЛ (по сравнению с ШТЛ 1:2). При размещении линий на разных магнитопроводах L
1определяется параллельным соединением индуктивности обмотки, образованной проводником 3-3', и одной четвертой части индуктивности обмотки, образованной проводником 6-6'. Если эти индуктивности одинаковы, то L
1
в 5 раз меньше (соответственно в 5 раз выше fн), чем при размещении линий на общем магнитопроводе.


Рис.1.1.2, б
Для общего случая ТШЛ 1:n, построенного по принципу параллельного соединения входов и последовательного соединения выходов согласованных линий (рис.1.1.3, а), схема замещения для области нижних частот приведена на рис.1.1.3, б. Коэффициент К для этой схемы равен n
(
n
-1). При выполнении такого ТШЛ на общем магнитопроводе число витков обмоток, образованных проводниками линий, возрастает прямо пропорционально (N
-1), где N-порядковый номер двухпроводной линии, начиная с нижней. В этом случае L
1
=
L, где L-индуктивность обмотки, образованной проводником 3-3', т.е. обмотки на которой нормированное напряжение равно единице.

Для выравнивания длин двухпроводных линий (образующих обмотки с разным числом витков) с целью выполнения согласования для волнового процесса необходимо введение (n-1) ФЛ. При выполнении ШТЛ на раздельных магнитопроводах значение L
1резко снижается, поскольку в этом случае оно определяется параллельным соединением индуктивности обмотки 3-3'(L),1/4 индуктивности обмотки 5—5', 1/9 индуктивности обмотки 7—7',..., 1/(n-1)2 индуктивности обмотки (2n) — (2n)'. Квадрат нормированного значения напряжения на обмотке определяет, во сколько раз уменьшается индуктивность этой обмотки при приведении ее к входу ШТЛ. Если индуктивности обмоток, размещенных на разных магнитопроводах, одинаковы, то L
1
= 6
L
/
n
(п—1)
(2
n
— 1), а индукции В в их магнитопроводах прямо пропорциональны напряжениям на обмотках. Выровнять индукцию в магнитопроводах (для получения одинаковых допустимых потерь в каждом из них) можно, увеличивая пропорционально напряжениям на обмотках либо сечения их магнитопроводов, либо числа витков. В первом случае L
1
= 2
L
/
n
(п —
1), а во втором случае L
1
=
L
/(п —
1).

Принципиальный недостаток ШТЛ (согласно рис. 1.1.3, а) состоит в том, что продольные напряжения, т. е. напряжения на обмотках, образованных проводниками двухпроводных согласованных линий, значительно превышают их минимальные значения, имеющие место при низкочастотном исполнении трансформаторов согласно п. 1 табл. 1.1.1, т. е. К > Кмин.Это существенно сокращает реально достижимую ширину рабочего диапазона частот, так как пропорционально продольным напряжениям растут длины проводников двухпроводных линий, необходимые для получения требуемого числа витков, соответственно увеличиваются габариты трансформатора, возрастают емкости на общую шину, а также неучитываемые электромагнитные связи между линиями и разброс параметров линий. При электрических длинах двухпроводных линий, близких к 90°, возникают эффекты, приводящие к ограничению рабочего диапазона частот в области верхних частот. В целом такие ШТЛ крайне неэкономичны и не способны решать широкий круг возникающих задач.

Для улучшения параметров высокочастотных ШТ необходимо в полной мере использовать все многообразие электромагнитных связей между проводниками. Поэтому в качестве элементного базиса ШТ следует принять отрезок однородной многопроводной линии без потерь, который может быть размещен на магнитопроводе (рис. 1.1.4, а); общая модель таких трансформаторов приведена на рис.1.1.4,б. Магнитопровод вносит потери, но обеспечивает увеличение αи уменьшение габаритов. Двум последним факторам в значительной мере способствует применение многопроводной линии, проводники которой соединяются так, чтобы была максимальной шунтирующая индуктивность. Это позволяет получить на единицу длины линии наибольшее значение L
1и обеспечить существенное расширение рабочего диапазона частот в сравнении с традиционным использованием двухпроводных линий.

Рассмотрим более подробно общую модель ШТЛ (рис.1.1.4, б). В реальных устройствах наибольшие поперечные размеры линий малы по сравнению с кратчайшей рабочей длиной волны, что позволяет при описании волнового процесса распространения колебаний по ним пользоваться «ТЕМ-приближением». Известно, что передачу ТЕМ-колебаний по линиям можно представить суперпозицией n
—1колебаний противофазных типов (нечетных мод) и одного колебания синфазного типа (четной моды) [11]. Для каждого колебания противофазного типа сумма токов в проводниках 1,2,3,..., пдля любого сечения линии и ток в опорном (n+1)-м проводнике равна нулю и отсутствует индукция в магнитопроводе. Колебания противофазного типа, имеющие адекватный характер распространения и связанные с проводниками 1,2,3,...,п(рис.1.1.5,а),осуществляют передачу энергии и определяют характеристики ШТЛ в основной части рабочего диапазона частот. Эти колебания имеют единую частотно-независимую постоянную распространения, полагая, что линия имеет однородное заполнение (диэлектриком). В результате для линии на рис. 1.1.5,аправомерна система уравнений [11].


                        (1.1.1)
где U(1)=U1(1),U2(1), U3(1),...., Un(1)— вектор входных напряжений; I(1)=I1(1), I2(1), I3(1),..., In(1)— вектор входных токов; аналогично для U(2)и I(2)— векторов напряжения и токов на выходе линии; Е — единичная матрица с размерами (n

1) X
(
n

1); G— матрица волновых проводимостей линии, имеющая размеры (n

— 1) X
(
n

1); G
-1— обратная матрица.

Для колебания синфазного типа сумма токов в проводниках 1,2,3,...,правна по величине и противоположна по направлению току в опорном (n
+
1)-м проводнике. Это колебание создает поле в магнитопроводе и определяет шунтирующее реактивное сопротивление X
(ω)и соответственно шунтирующую индуктивность L
1, т. е. нижнюю рабочую частоту ω, (рис. 1.1.5, б). На верхних частотах снова проявится ограничение в виде ωв+ (рис. 1.1.5, б). Для большинства реальных конструкций весьма затруднительно расчетным путем определить значение ωв+. Оно зависит от дисперсии фазовой скорости для колебания синфазного типа, вызванной тем, что n-проводная линия выполняется в форме витков над общей шиной с целью получения достаточно низкой ωн, а также частотной зависимостью магнитной проницаемости магнитопровода и его добротности. Эти факторы способствуют увеличениюωв+, в результате чего достигается весьма большое значение α. В любом случае, чем меньше напряжения на обмотках, образованных линиями, тем короче необходимая длина линий и выше частота ωв+, которая дополнительно может быть увеличена ценой небольших вносимых потерь.

В свете изложенного сформулируем понятие предельно достижимых параметров ШТЛ как сочетание нулевого рассогласования, связанного с противофазными типами колебаний (Гв = 0), и минимальных напряжений на проводниках линий, обусловленных синфазным типом колебаний (К = Кмин).Выполнение этих условий обеспечивает максимально широкий рабочий диапазон частот.

При рассмотрении принципов построения ШТЛ будем пользоваться их общей моделью (рис. 1.1.5, в), содержащей участки однородной многопроводной линии, в которых учитывают только противофазные типы колебаний, описываемые системой (1.1.1). Для этих типов колебаний определяются такие соединения проводников и волновые параметры линий, при которых выполняется условие Гв=0.

Общим направлением для формализованного выбора тех или иных соединений проводников линий должно служить К → Кмин. Такой подход дает возможность осуществить целенаправленный синтез схемных решений ШТЛ. При этом будем сразу указывать на одном из проводников многопроводных (в частном случае двухпроводных) линий, размещенных на магнитопроводах, нормированное напряжение, определяемое схемой замещения для области нижних частот рабочего диапазона. Это позволит не изображать для конкретных схем ШТЛ магнитопроводов и соответствующей схемы замещения для области нижних частот. Указанные напряжения позволяют найти значение индукции в магнитопроводе и значение L
1
,определяющее ωн, как и в обычных низкочастотных трансформаторах [9,12]. В соответствии с полярностью напряжений выбирается направление намотки линий. При выполнении трансформатора на одном магнитопроводе значениеL
1всегда равно L— индуктивности проводника линии, на котором нормированное продольное напряжение равно единице. При нескольких магнитопроводах L
1определяется параллельным соединением индуктивностей. Каждая из этих индуктивностей равна индуктивности одной из обмоток на данном магнитопроводе, деленной на квадрат нормированного напряжения на ней.

После решения задачи синтеза анализ конкретных схемных решений с целью уточнения их характеристик можно проводить с учетом совместного действия синфазного и противофазного типов колебаний, как это сделано для простых устройств в [2, 3, 13].

Для удобства записи и расчетов конкретных схем обозначим номинальное сопротивление на выходе ШТЛ R
2

nR
,а на входе R
1

Rnи введем нормировку, приняв R
=1. Для определения волновых сопротивлений линий их нормированные значения W, найденные в результате расчетов, следует умножить на. Например, для схемы на рис. 1.1.1, а нормированное волновое сопротивление каждой линии равно единице. Если трансформатор предназначен для согласования сопротивлений 50 и 200 Ом (R
2= 200 Ом, R
1= 50 Ом), то фактическое волновое сопротивление каждой линии будет 100 Ом. Поскольку ШТЛ в области нижних частот сводится к определенному соединению обмоток, то коэффициент трансформации, определяемый отношением чисел витков, всегда равен отношению двух целых чисел аи b.Коэффициент трансформации п
=a
/
bсохраняется и при рассмотрении волнового процесса. Таким образом, вносимое рассогласование без учета шунтирующей индуктивности намагничивания Гв может быть равно нулю во всей полосе частот только при коэффициенте трансформации, равном отношению двух целых чисел, т.е. п
=а/b.В рамках обеспечения условия Гв=0 рассмотрение схемных решений ШТЛ целесообразно проводить раздельно для целочисленных коэффициентов трансформации (b=1, п= 1, 2, 3,...) и дробных п
= a
/
b.Для многих вариантов построения схем с дробными п ШТЛ с целочисленными пвходят в качестве составляющих узлов.
1.2 Трансформаторы на идентичных двухпроводных линиях

В табл. 1.2.1 приведены схемные решения для ШТЛ с целочисленными коэффициентами трансформации. Эти трансформаторы выполнены двухпроводными согласованными линиями, соединенными параллельно на входах и последовательно на выходах. Все линии должны быть равной длины и W
=
1, чтобы выполнялось условие Гв = 0. Ранее рассмотренные ШТЛ на рис.1.1.1 — 1.1.3 относятся к п. 1 табл. 1.2.1.

Как видно из табл. 1.2.1, с увеличением презко возрастает Кпо сравнению с Кмин, что свидетельствует о низкой эффективности таких решений при больших п. Практически могут использоваться такие ШТЛ с п=1,2,3. Кроме того, для симметрирующих ШТЛ (пп. 4—6 табл. 1.2.1) имеет место большая асимметрия плеч симметричной пары зажимов, поскольку «пути» от каждого плеча к общей шине различны.

Характеристики ШТЛ можно улучшить (уменьшить напряжения на проводниках линий либо асимметрию плеч) путем подключения к входу или к выходу трансформатора дополнительной согласованной линии. Ее нормированное волновое сопротивление в первом случае равно 1/п, а во втором—п. Структурные схемы таких ШТЛ приведены в табл. 1.2.2; отношения К/Кмин даны для случая, когда функциональными узлами (обозначенные прямоугольниками) являются ШТЛ из табл. 1.2.1. При этом зачастую один проводник дополнительной двухпроводной линии можно совместить с проводником одной из двухпроводных линий, входящих в состав того или иного функционального узла.

В качестве примера на рис. 1.2.1,а, би 1.2.2,а, бпоказаны соответственно ШТЛ 1:3 и 1: ±1, выполненные согласно п.2 и п.4 табл. 1.2.2. На рис. 1.2.1, б и 1.2.2,бпоказаны примеры конструктивной реализации этих ШТЛ при выполнении двухпроводных линий коаксиальными. В первом трансформаторе (см. рис. 1.2.1) выровнены напряжения на проводниках линий, что в сравнении с ШТЛ 1:3 на рис.1.1.3 позволяет при том же размере сердечника увеличить число витков линии с нормированным напряжением на проводниках, равным единице (практически в 1,5 раза), т.е. увеличить L, и соответственно снизить f
н. Кроме того, исключается одна ФЛ. Во втором трансформаторе (см. рис. 1.2.2) «пути» от каждого плеча симметричной нагрузки к общей шине одинаковы, что практически полностью исключает асимметрию.

Как уже отмечалось, наличие различающихся напряжений на проводниках линий требует при размещении на общем магнитопроводе разного числа витков для линий равной длины, что приводит к необходимости включения ФЛ. Эти ФЛ приводят к увеличению габаритов (см. рис.1.1.1, б и 1.1.2,б), атакже к возрастанию нежелательных связей между линиями и их емкостей на «землю».
Таблица 1.2.1



п/п

Тип ШТЛ

Схема ШТЛ

К/Кмин


1


1:n




n-1


2



±(1:n),

n-четное

 


n/2




3



±(1:n),

n-нечетное



 


(n2-1)/2n


4


n: ±1/2




2n2/(2n+1)


5



1: ±n/2,

n-четное




n/2


6



1: ±n/2,

n-нечетное






(n2+1)/2n


7


1: -n




n



Представляет интерес определить рассогласование (Гв=0), возникающее при отсутствии ФЛ, т. е. при замене их проводников непосредственными соединениями. В этом случае уместно воспользоваться     продолжение
--PAGE_BREAK--h-параметрами четырехполюсника, и тогда для ШТЛ 1:n(п.1 табл.1.2.1) имеем нормированную матрицу:
                                  (1.2.1)

; .
Таблица 1.2.2



Соответственно коэффициент отражения:
Гв=[n2(h212-h211)-1]/[n2(h212-h211)+1+j2nh11]                  (1.2.2)
Зависимости |Гв|=F(x) показаны на рис.1.2.3 непрерывными линиями.

Для ШТЛ 1:—п(п.7 табл.1.2.1) при исключении ФЛ матрица[H]2 имеет тот же вид (1.2.1), но h11=∑tg[ix/(n-1)]; h12=∑cos[ix/(n-1)].По аналогии с предыдущимслучаем, находим модуль коэффициента отражения — штриховые линии на рис. 1.2.3.

Для ШТЛ с дополнительной линией (пп.1.2 табл. 1.2.2), матрица [Н] которого равна [Н]1+[Н]2, при тех же значениях nвеличина |ГВ| значительно меньше (рис. 1.2.4).

В заключение покажем, что при исключении ФЛ рассогласование можно существенно снизить с помощью сосредоточенных корректирующих элементов: индуктивности LK
=
l

x
в
W
/
ω
в
впродольной ветви на выходе и шунтирующей емкости Ск = c

xB
/

вна входе трансформатора (рис. 1.2.5, а), где l
и с0— безразмерные (нормированные) значения индуктивности и емкости, а хв—длина линии для верхней частоты диапазона (f
в). Полагая l
= с0, что физически обусловлено антиметричностью корректируемой цепи, в соответствии с элементами матрицы (1.2.1) коэффициент отражения:
Гв
=(A-1)/[A+1+j2n(h11+l0x)],


где А=n2(h212 — h211-2h11lx-l2x2). Как показано на рис. 1.2.5, б-г, для ШТЛ 1:n(п. 1 табл. 1.2.1) при обычно приемлемых малых значениях Гв (|ГВ|≤0,05) достигается вдвое и более расширенный рабочий диапазон частот.
1.3 Широкополосные трансформаторы на линиях с целочисленными коэффициентами трансформации
Усовершенствуя рассмотренный выше принцип образования ШТЛ, можно реализовать и при п>2 минимальные напряжения на проводниках согласованных двухпроводных линий и соответственно минимальные их длины. Этот усовершенствованный принцип проиллюстрируем на примере ШТЛ 1:4 (рис.1.3.1, а), выполненного из трех двухпроводных линий, на проводниках которых указаны продольные напряжения, имеющие место для низкочастотного аналога (рис.1.3.1, б), и трех ФЛ. В дальнейшем линии, на проводниках которых указаны продольные напряжения, будем называть основными.

Пусть волновые сопротивления первой основной линии и трех ФЛ равны W
. Тогда по каждой из этих четырех линий, входы которых соединены параллельно, будут распространяться колебания с амплитудами напряжения Uи тока I=U
/
W. Если электрические длины первой основной линии и ФЛ, подключенной последовательно к ее выходу, одинаковы и равны х, то колебания на выходах этих линий сложатся синфазно. Чтобы это суммарное колебание амплитудой 2Uраспространялось без отражения по второй основной линии, ее волновое сопротивление должно быть 2W. Тогда амплитуда тока останется равной U
/
W. Для сохранения неизменным тока в третьей основной линии при амплитуде напряжения 3Uее волновое сопротивление должно составлять 3W, а электрическая длина второй ФЛ должна быть 2х. Для синфазного суммирования напряжений на согласованной нагрузке R
2

4
Wдлина третьей ФЛ должна составлять Зх. В результате получаем трансформацию напряжения в 4 раза при полном согласовании для волнового процесса передачи мощности в нагрузку R
2, т. е. Гв=0. Фазокомпенсирующие линии для такого трансформатора удобно выполнять коаксиальными линиями, которые могут соединяться своими внешними проводниками. На рис. 1.3.1, в показан вариант выполнения ШТЛ 1:4 для согласования сопротивлений 50 и 3,125 Ом при использовании стандартных кабелей РК-50 и РК.-75. Для реализации требуемых волновых сопротивлений линий отрезки кабелей соединяются параллельно.

Широкополосные трансформаторы на линиях различных типов, полученные при использовании рассмотренного принципа, приведены в табл. 1.3.1. При этом трансформатор (рис. 1.3.1, а) относится к п. 1 табл. 1.3.1. Для всех ШТЛ табл.1.3.1 нормированные значения продольных напряжений на проводниках линий не превышают единицы и соответственно их длины минимальны.

Рассмотрим теперь пути уменьшения числа ФЛ в схемах ШТЛ табл. 1.3.1 при сохранении тех же значений К и условия Гв=0. На рис.1.3.1, а точки фазокомпенсирующих линий, отстоящие на одинаковых электрических «расстояниях» от входа, эквипотенциальны для волн, распространяющихся в обоих направлениях. Поэтому их можно соединить и заменить все ФЛ одной трехступенчатой (рис.1.3.2). Волновые сопротивления ее первой, второй и третьей ступеней равны соответственно: W
/3,
W
/2и W.Напряжение бегущей волны вдоль этой трехступенчатой ФЛ неизменно по амплитуде, а амплитуда тока в ней уменьшается от 3U
/
Wдля первой ступени до U
/
Wдля третьей ступени. Для основных линий возрастает амплитуда напряжения бегущей волны от линии к линии от Uдо 3U, а амплитуда тока остается неизменной. Рассмотренный принцип уменьшения числа ФЛ можно развить на все типы ШТЛ табл.1.3.1.


Таблица 1.3.1



п/п

Тип ТШЛ

Схема ТШЛ

К/Кмин


1


1:n




2(n-1)/n


2



±(1:n)

n-четное




2(n-1)/n


3



±(1:n)

n-нечетное




2(n-1)/n


4


1:-n




2n/(n+1)


5


±(1:n)

n-четное




2n/(n+1)


6


±(1:n)

n-нечетное




2n/(n+1)



Для схем ШТЛ табл. 1.3.1существуют дуальные схемы с теми же минимальными продольными напряжениями на проводниках линий. Дуальная схема образуется путем замены последовательного соединения линий между собой на параллельное и наоборот, а нормированных волновых сопротивлений — на проводимости. В таблице 1.3.1отсутствуют схемы, дуальные, поскольку они оказываются гальванически связанными и имеют худшие параметры. Выбор того или иного варианта ШТЛ обусловлен возможностью реализации волновых сопротивлений основных линий при задаваемых значениях R
1и R
2
. Количество возможных решений возрастает при использовании рассмотренных ШТЛ в структурных схемах табл. 1.2.2.

Конструктивное выполнение схем ШТЛ табл. 1.3.1 существенно упрощается, если исключить все ФЛ, заменив их проводники непосредственными соединениями. В этом случае появляются проводники основных линий с эквипотенциальными зажимами. Это позволяет объединить такие проводники и образовать ШТЛ, для которых К=Кмин согласно табл.1.1.1. Объединение проводников дает возможность уменьшить размеры магнитопровода или увеличить число витков на выбранном магнитопроводе. Однако исключение ФЛ дается (как и для ШТЛ в разд.1) ценой рассогласования, возрастающего с увеличением хдля основных линий. Схемы ШТЛ по табл. 1.2.1 без ФЛ сводятся к единым и соответствуют двум конструктивным реализациям. Первая предполагает, что волновая проводимость, отличная от нуля, имеет место только между одним (общим) проводником и каждым из остальных, что условно изображено набором коаксиальных линий с объединенными внешними проводниками, образующими общий проводник. Это условие для волновых параметров может быть реализовано и по-другому, например, при расположении над общим проводником полосковых проводников, торцевыми связями между которыми можно пренебречь. Вторая конструктивная реализация предполагает не равными нулю волновые проводимости только между смежными проводниками. Это обеспечивается, например, при расположении полосковых проводников друг над другом.




Рис.1.3.3
Характеристики ШТЛ могут быть улучшены (увеличивается хви уменьшается разброс волновых сопротивлений) при использовании корректирующих элементов (рис. 1.3.3): разомкнутой на конце линии,подключенной параллельно входу ШТЛ, и короткозамкнутой на конце линии, подключенной последовательно на выходе ШТЛ.

Отметим, что при использовании ШТЛ без ФЛ в структурных схемах табл.1.2.2 проводник дополнительной линии также можно объединить с проводником ШТЛ, имеющим с ним эквипотенциальные зажимы, сохраняя в целом К=Кмин. Очевидно, что корректирующие элементы должны быть включены до дополнительной линии.
1.4 Широкополосные трансформаторы с минимальным числом линий

Число основных линий и значительный разброс номиналов их волновых сопротивлений можно уменьшить при п ≥5, если использовать в одном ШТЛ составляющие узлы (рис. 1.4.1, а,б) дуальных схем ШТЛ.

Например, для ШТЛ 1:5 возможны два варианта построения (рис.1.4.2,а, б). При этом в обоих случаях обе линии первого составляющего узла соединяются по входам параллельно, образуя вход ШТЛ. К крайним выходным зажимам последнего составляющего узла (выход ШТЛ) подключается нагрузка, а два других выходных зажима остаются свободными. Эти граничные условия сохраняются для ШТЛ 1:nс произвольным целым п.

На примере рис.1.4.2,апоясним принцип определения волновых сопротивлений линий, при которых Г=0. Поскольку в линиях должен быть режим бегущей волны, то амплитуды напряжений и токов на входах и выходах всех линий определяются в соответствии с их соединениями по законам Кирхгофа. При этом нормированное напряжение на входе и ток на выходе равны единице. Поделив нормированные напряжения на соответствующие токи (эти значения указаны на рис. 1.4.2, а), получим искомые нормированные волновые сопротивления всех линий: для основных линий 1/2, 1 и 2, а для ФЛ 1/3, 1 и 3. Отметим, что при выполнении ШТЛ 1:5 для основных линий 1, 2, 3, 4, а для ФЛ 1/4, 1/3, 1/2, 1.

Приведенные варианты ШТЛ 1:5 (рис.1.4.2,а, б)отличаются тем, что основные и Фазокомпенсирующие линии меняются ролями. Обусловлено это тем, что общая шина переносится с одной группы линий на другую. Если это различие не принимать во внимание (т. е. исключить соединения с общей шиной), то можно обе схемы представить единой топологической схемой (рис. 1.4.2,в). На схеме каждая двухпроводная линия изображается одним отрезком, на котором указаны в порядке следования напряжения бегущей волны и нормированное волновое сопротивление. В кружочках указаны нормированные значения продольных напряжений на проводниках двухпроводных линий, имеющие место либо для верхней группы линии (если они в соответствии с выбранными соединениями с общей шиной являются основными), либо для нижней, когда верхняя группа линий является ФЛ. Стрелки на соединительных проводниках указывают на процесс суммирования напряжения, а точки -на суммирование токов.

Используя рассмотренный принцип построения, можно составить и рассчитать различные варианты схем ШТЛ 1:nс минимальным числом линий для п≥5. Эти варианты для п=5,6,...,13 в рассмотренном топологическом изображении. При п=6,7,8 минимальное число составляющих узлов (см. рис. 1.4.1) равно четырем, а при п= 9, 10, 11, 12, 13 -пяти. При задаваемом числе составляющих узлов всегда существует определенный наибольший коэффициент трансформации для ШТЛ 1:n. Для получения наибольшего п(при заданном числе составляющих узлов) необходимо при каждом соединении составляющих узлов вводить в одну двухпроводную линию последующего узла максимальное напряжение с выхода двухпроводной линии предыдущего узла, а суммарное напряжение с выходов обеих двухпроводных линий предыдущего узла вводить в другую двухпроводную линию последующего узла. При этом на вход каждого последующего узла поступает максимально возможное напряжение. Получаемый ряд наибольших коэффициентов трансформации отвечает последовательности Фибоначчи (без первых ее двух членов, равных единице), для которой каждый последующий ее член равен сумме двух предыдущих. Соответственно имеем ряд наибольших коэффициентов трансформации: 2, 3, 5, 8, 13,...

Широкополосные трансформаторы на линиях типа ±(1:n)с минимальным числом линий, построены по тому же принципу, что и ШТЛ 1:n. При этом использовано аналогичное топологическое изображение, что и для ШТЛ 1:n, только введенная третья цифра означает значение нормированного напряжения на проводниках линий. В качестве примера на рис. 1.4.3 показан ШТЛ ±(1:11). Обеспечивая при каждом соединении составляющих узлов передачу максимально возможной суммы напряжений с выхода предыдущего узла на вход последующего узла, получаем ряд наибольших коэффициентов трансформации при задаваемом числе составляющих узлов. Этот ряд наибольших коэффициентов трансформации, для которого каждый последующий член равен сумме предыдущего и удвоенного значения члена, стоящего перед предыдущим (учитывая, что первых два члена равны единице), имеет вид: 3, 5, 11, 21, ...

Альтернативный вариант построения ТШЛ типа ±(1:n) состоит в каскадном подключении к входу ШТЛ ±(1:n) простейшего ШТЛ ±(1:1).


    продолжение
--PAGE_BREAK--1.5 Патентное исследование
Описание изобретения к авторскому свидетельствуSU
675455

(61) Дополнение к авторскому свидетельству -

(22) Заявлено 15.04.77 (21) 2474423/24-07 с присоединением заявки № -

(23) Приоритет — Опубликовано 25.07.79. Бюллетень №27 Дата опубликования описания 27.07.79.

(51) М. Кл Н 01 F19/04

(72) Авторы изобретения С.Е. Лондон и С.В. Томашевич.

(71) Заявитель –

(53) УДК 621.314.26 (088.8)

(54) Широкополосный трансформатор

Изобретение относится к области радиотехники, в частности к высокочастотным симметричным трансформаторам.

Целью изобретения является упрощение конструкций широкополосного трансформатора и повышение его КПД.

Это достигается тем, что в предложенном широкополосном трансформаторе, содержащем две двухпроводные (в частности и коаксиальные) линии 1 и 2 (рис.1.5.1 и рис. 1.5.2.), размещенные на магнитопроводе 3, входные концы которых соединены между собой, а к выходным концам подключена симметричная относительно обшей шины 4 нагрузка 5, и дополнительную двухпроводную линию 6, размещенную на магнитопроводе 3 рядом с первой из упомянутых линий 1 и подключенную с одного конца к выходу несимметричного относительно обшей шины 4 источника сигнала 7, а с другого конца соединенную параллельно с первой из упомянутых линий 1, внешний проводник дополнительной линии 6 соединен непосредственно по всей длине с внешним проводником первой из упомянутых линий 1, размещенных на магнитопроводе 3, до ее середины, при этом середины внешних проводников линий, размещенных на магнитопроводе, подключены к общей шине.

Описание изобретения к авторскому свидетельствуSU
630652

(61) Дополнение к авторскому свидетельству -

(22) Заявлено 03.06.77 (21) 2491969/24-07 с присоединением заявки № -

(23) Приоритет -

(43) Опубликовано 30.10.78. Бюллетень №40

(45) Дата опубликования описания 30.10.78.

(51) М. Кл Н 01 F19/04

(53) УДК 621.314.225 (088.8)

(72) Авторы изобретения С.Е. Лондон и С.В. Томашевич.

(71) Заявитель –

(54) Широкополосный трансформатор

Изобретение относится к области радиотехники в частности, к конструированию и изготовлению высокочастотных трансформаторов с гальванической развязкой между входом и выходом.

Целью изобретения является упрощение конструкции и увеличение уровня передаваемой мощности.

Широкополосный трансформатор с гальванической развязкой между входом и выходом, содержащий две двухпроводные линии 1 и 2 (например, коаксиальные), размещенные на магнитопроводе 3, начало первого проводника первой линии 1 соединено с концом первого проводника второй линии 2, а начало второго проводника первой линии 1 и конец второго проводника второй линии 2 образуют входные зажимы, к которым подключен источник сигнала 4, и нагрузку 5, отличающейся тем, что, с целью упрощения конструкции и увеличения уровня передаваемой мощности, начало и конец второго проводника одной из упомянутых линий 1 соединены соответственно с началом и концом второго проводника другой линии 2, а между свободными зажимами первых проводников линий подключена нагрузка 5 (рис. 1.5.3).

Описание изобретения к авторскому свидетельствуSU
725095

(61) Дополнение к авторскому свидетельству -

(22) Заявлено 30.10.78 (21) 2678590/24-07 с присоединением заявки № -

(23) Приоритет -

(43) Опубликовано 30.03. 80. Бюллетень №12

(45) Дата опубликования описания 30.03.80.

(51) М. Кл Н 01 F19/04

(53) УДК 621.314.26 (088.8)

(72) Авторы изобретения С.Е. Лондон и С.В. Томашевич.

(71) Заявитель –

(54) Широкополосный трансформатор

Изобретение относится к радиотехнике, в частности к конструированию и изготовлению высокочастотных широкополосных трансформаторов.

Цель изобретения – упрощение устройства.

Широкополосный трансформатор с коэффициентом трансформации, равным целому числу, содержащий проводник 1, состоящий из последовательно соединенных участков, объединенных в две многопороводные линии, в первой из которых расположены не четные участки проводника, а во второй — четные его участки, при этом конец проводника соединен с общей шиной 2, отличающейся тем, что, с целью упрощения устройства, в первую многопорводную линию введен дополнительный проводник, начало которого соединено с общей шиной 2, а число участков основного проводника равно удвоенному значению коэффициента трансформации (рис. 1.5.4).

Описание изобретения к авторскому свидетельствуSU
691934

(61) Дополнение к авторскому свидетельству -

(22) Заявлено 10.02.78 (21) 2576772/24-07 с присоединением заявки № -

(23) Приоритет — Опубликовано 15.10. 79. Бюллетень №38 Дата опубликования описания 25.10.79.

(51) М. Кл Н 01 F19/04

(53) УДК 621.314.26 2(088.8)

(72) Авторы изобретения С.Е. Лондон и С.В. Томашевич.

(71) Заявитель –

(54) Широкополосный трансформатор

Изобретение относится к радиотехнике, в частности к конструированию и изготовлению высокочастотных согласующих трансформаторов.

Целью изобретения является расширение рабочей полосы частот.

1.Широкополосный трансформатор, содержащий обмотку, проводник которой разделен на участки 1 и 2, образующие между собой линии передачи с переменным вдоль линии волновым сопротивлением, отличающийся тем, что, с целью расширения рабочей полосы частот, каждая из линий передачи выполнена из двух ступеней 3-1 и 3-2, равных по длине с разным волновым сопротивлением, постоянным в пределах одной ступени (рис.1.5.5).

2. Трансформатор по п. 1, отличающийся тем, что участки проводника образуют Nдвухпроводных линий передачи, соединенных по входам в параллель, а по выходам последовательно между собой и с упомянутыми входами, при этом волновое сопротивление каждой из ступеней, соединенных в параллель, в N+2/Nраз меньше волнового сопротивления каждой из ступеней 4-1 и 4-2, соединенных по выходу последовательно (рис. 1.5.6).

Описание изобретения к авторскому свидетельствуSU
691934

(61) Дополнение к авторскому свидетельству -

(22) Заявлено 10.05.78 (21) 2618793/24-07 с присоединением заявки № -

(23) Приоритет -

(43) Опубликовано 30.07. 80. Бюллетень №28

(45) Дата опубликования описания 30.07.80.

(51) М. Кл Н 01 F19/06

(53) УДК 621.317.225 (088.8)

(72) Автор изобретения И.М. Черкашин

(71) Заявитель –

(54) Широкополосный трансформатор

Изобретение относится к электротехнике, в частности к широкополосному трансформатору, предназначенному для согласования транзисторных каскадов с нагрузкой в различных радиотехнических устройствах, в частности радиопередающих устройствах.

Целью изобретения является улучшение характеристик и повышение технологичности изготовления трансформатора.

Широкополосный трансформатор, содержащий ферритовый тороидальный магнитопровод 1 и обмотки 2 (рис.1.5.7), свитые из изолированных проводов в общий жгут, намотанный несколькими витками на тороидальный магнитопровод 2, отличающийся тем, что, с целью улучшения характеристик и повышения технологичности изготовления, в жгуте выполнены отводы ,,…,  (рис.) из составляющих его проводов через промежутки, величины которых кратны длине витка жгута.

Описание изобретения к авторскому свидетельствуSU
1453456

(21) 4196794/24-07

(22) 25.12.86

(46) 23.01.89. Бюллетень №3

(72) Г.И. Невмержицкий, И.М. Симонтов и А.И. Тихонов

(53) 621.314.222 (088.8)

(56) Лондон С.Е. Томашевич С.В. Справочник по высокочастотным трансформаторным устройствам. – М.: Радио и связь, 1984.

(51) М. Кл Н 01 F19/04

(54) Широкополосный трансформатор

Изобретение относится к радиотехнике и может быть использовано в широкополосных усилителях и согласующих устройствах.

Целью изобретения является увеличение широкополосности трансформатора.

Широкополосный трансформатор, содержащий ферритовый тороидальный магнитопровод 1 (рис.1.5.8) и три намотанных на нем проводника 3-5, представляющих три длинные линии, отличающиеся тем, что, с целью увеличения широкополосности и уменьшении габаритов, проводники 3-5 намотаны равномерно в плоскости обмотки так, что последний и первый проводники каждых соседних витков, кроме первого и последнего, образуют дополнительную длинную линию.

В процессе анализа патентов не было обнаружено устройств, близких по техническим показателям к требованиям задания дипломного проекта: получение максимально возможной величины коэффициента широкополосности КШ≈ 6000-10000;

иметь как можно меньшую величину волнового сопротивления ρ, с целью облегчения согласования ТДЛ со стандартной величиной импедансов источников сигнала и нагрузок с сопротивлением RГ = RН=75Ом (или 50Ом);

получение постоянства волнового сопротивления ρ во всем диапазоне частот, но не более стандартных величин;

иметь минимальные габариты, большую эксплуатационную надежность и экономический эффект.

Наиболее близкими оптимальными характеристиками обладает широкополосный трансформатор А.С. № SU1453456 – Бюл. 3, опубл. 23.01.89, Авт. Г.И. Невмержицкий, И.М. Симонтов, А.И. Тихонов.


2. Разработка и исследование оптимального варианта ТДЛ
Результаты разработки ТДЛ с коэффициентом трансформации «nТР» по R [1:9] или по U [1:3] для усилителей с повышенными требованиями по блокированию.

На основе приведенного обзора технической литературы и проработки патентных источников, для исследования и разработки широкополосного трансформатора, был взят за основу ТДЛ с выполнением обмотки в виде двух одинаковых двухпроводных линийW, каждая с волновым сопротивлением ρ и электрической длиной х (рис.1.1.1а), образующих длинные линии, намотанные на тороидальный ферритовый магнитопровод.

Целью разработки и исследования является расширение рабочей полосы частот трехпроводникового ТДЛ без увеличения его габаритов.

При разработке ТДЛ необходимо ориентироваться на выполнение следующих противоречивых требований:

получение максимально возможной величины коэффициента широкополосности КШ≈ 6000-10000, для чего необходимо расширять полосу пропускания ТДЛ как «вверх», так и «вниз»;

иметь как можно меньшую величину волнового сопротивления ρ, с целью облегчения согласования ТДЛ со стандартной величиной импедансов источников сигнала и нагрузок с сопротивлением RГ = RН=75Ом (или 50Ом);

получение постоянства волнового сопротивления ρ во всем диапазоне частот, но не более стандартных величин;

иметь минимальные габариты, большую эксплуатационную надежность и экономический эффект.

Коэффициент передачи ТДЛ измеряется по схеме рис.2.1. следующим образом. На вход трансформатора от генератора Г подается фиксированное напряжение ЕГ =100 мВ (точка 1). На входном зажиме 2 измеряется входное напряжение UВХна нескольких частотах. Выходное напряжение UВЫХизмеряется на нагрузке RН. Результаты измерений заносятся в таблицу.

Для достижения наибольшей полосы рабочих частот в широкополосном трансформаторе должно быть выполнено условие постоянства волнового сопротивления по всей длине линии передачи.

Волновое сопротивление
,
где - индуктивность ДЛ при КЗ на выходе;   — емкость ДЛ при ХХ на выходе; измеряется по схеме рис.3.1

Коэффициент усиления
,
где  и   — соответственно действующее значение выходного и входного напряжений усилителя (при частоте ), измеряется в диапазоне частот по схеме рис.2.1. Экспериментальные данные сводятся в таблицу.

Результаты исследования ТДЛ-1.

Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0.33мм; количество витков N=14; межвитковая емкость С=100пФ; межвитковая индуктивность L=0.07мкГн.
Таблица 2.1

f, МГц

0,1

1

10

20

30

40

50

60

70

Uвх, мкВ

50

50

48

43

44

44

42

48

50

Uвых, мкВ

150

150

150

145

145

145

145

145

78

К

3

3

3,12

3,3

3,3

3,3

3,4

3

1,6






Рис.2.2. Амплитудно – частотная характеристика ТДЛ-1.
Вывод: рабочий частотный диапазон 100кГц – 60МГц
,
что не удовлетворяет условиям, изложенным выше. Возможно, выбор сердечника большего диаметра, например, типа К-20, а также увеличение диаметра провода (D=1,07мм) и уменьшение количества витков до величины N=2,5 даст более лучший результат.

Результаты исследования ТДЛ-2



f, МГц

0,1

10

30

50

60

70

80

98

100

Uвх, мкВ

40

42

42

38

41

40

40

48

56

Uвых, мкВ

122

132

132

114

112

110

110

105

112

К

5,5

3,14

3,14

3,0

2,73

2,75

2,75

2,18

2,0



Марка магнитопровода К-20; магнитная проницаемость µ=4000; диаметр проводника D=1,07мм; количество витков N=2,5; межвитковая емкость С=27пФ; межвитковая индуктивность L=0.039мкГн.


Таблица 2.2



Рис.2.3. Амплитудно – частотная характеристика ТДЛ-2.
Вывод: рабочий частотный диапазон 100кГц – 50МГц
,
что не удовлетворяет условиям изложенным выше. Возможно следует уменьшить количество витков до N=2.

Результаты исследования ТДЛ-3



f, МГц

0,1

10

30

40

50

60

70

80

Uвх, мкВ

30

36

39

38

40

42

35

28

Uвых, мкВ

90

120

122

120

120

122

100

70

К

3

3,3

3,12

3,16

3,0

2,9

2,86

2,5



Марка магнитопровода К-20; магнитная проницаемость µ=4000; диаметр проводника D=1,07мм; количество витков N=2; межвитковая емкость С=51пФ; межвитковая индуктивность L=0.03мкГн.


    продолжение
--PAGE_BREAK-- 

Рис.2.4. Амплитудно – частотная характеристика ТДЛ-3.
Вывод: рабочий частотный диапазон 100кГц – 50МГц
,
что не удовлетворяет условиям изложенным выше. Перейдем на сердечник с меньшей магнитной проницаемостью µ=1000.
Результаты исследования ТДЛ-4

f, МГц

0,1

1

10

30

40

50

60

70

80

90

Uвх, мкВ

13

46

46

45

45

46

49

50

47

44

Uвых, мкВ

40

132

140

135

130

128

128

118

105

72

К

3

2,86

3,04

3

2,88

2,78

2,61

2,36

2,23

1,64



Марка магнитопровода К-16; магнитная проницаемость µ=1000; диаметр проводника D=1,07мм; количество витков N=2; межвитковая емкость С=62пФ; межвитковая индуктивность L=0.029мкГн.


Таблица 2.4



Рис.2.5. Амплитудно – частотная характеристика ТДЛ-4.
Вывод: однако спад АЧХ на 30-60МГц во всех вариантах побуждает искать иной выход. Очевидно внутриобмоточная проходная емкость (особенно первичной обмотки) ограничивает частотный диапазон «сверху». Поэтому исследуем вариант трех отдельных ТДЛ с двойными проводами по схеме рис.2.6.
Результаты исследования ТДЛ-5





f, МГц

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

40

47

46

46

46

46

46

47

49

50

50

Uвых, мкВ

125

148

142

140

138

133

140

127

125

120

112

К

3,12

3,15

3,08

3,04

3,0

2,9

3,04

2,7

2,55

2,4

2,24




Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,54мм; количество витков N=5; межвитковая емкость С=9,4пФ; межвитковая индуктивность L=0.067мкГн.
Таблица 2.5



Рис.2.7. Амплитудно – частотная характеристика ТДЛ-5.
Вывод: рабочий частотный диапазон 100кГц – 60МГц
,
что не удовлетворяет условиям изложенным выше. Возможно следует уменьшить количество витков до N=4.
Результаты исследования ТДЛ-6

f, МГц

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

36

47

46

46

46

46

46

46

46

48

49

Uвых, мкВ

112

142

140

138

132

130

128

120

120

115

112

К

3,11

3,02

3,04

3,0

2,9

2,82

2,8

2,6

2,6

2,4

2,28




Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,54мм; количество витков N=4; межвитковая емкость С=10,5пФ; межвитковая индуктивность L=0.072мкГн.


Рис.2.8. Амплитудно – частотная характеристика ТДЛ-6.
Вывод: рабочий частотный диапазон 100кГц – 30МГц
,
что не удовлетворяет условиям изложенным выше. Попробуем уменьшить диаметр провода D=0,33мм и увеличить количество витков до N=7.
Результаты исследования ТДЛ-7

f, МГц

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

45

48

47

46

47

47

47

46

47

48

49

Uвых, мкВ

140

148

145

140

138

135

130

120

115

110

105

К

3,11

3,08

3,08

3,04

2,94

2,87

2,76

2,6

2,44

2,29

2,14




Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,33мм; количество витков N=7; межвитковая емкость С=21,5пФ; межвитковая индуктивность L=0.045мкГн.


Рис.2.9. Амплитудно – частотная характеристика ТДЛ-7.
Вывод: рабочий частотный диапазон 100кГц – 30МГц
,
что неудовлетворяет условиям изложенных выше. Возможно, уменьшение количества витков до N=5, даст лучший результат.
Результаты исследования ТДЛ-8.

f, МГц

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

42

47

47

46

47

47

48

48

48

49

50

Uвых, мкВ

130

140

140

138

135

130

128

120

145

112

110

К

3,09

2,97

2,97

3

2,87

2,76

2,66

2,5

2,4

2,28

2,2




Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,33мм; количество витков N=5; межвитковая емкость С=24,6пФ; межвитковая индуктивность L=0.042мкГн.


Рис.2.10. Амплитудно – частотная характеристика ТДЛ-8.
Вывод: так как увеличение числа витков с N=5 до N=7 дает улучшения передачи, следовательно при одинаковых сердечниках длина выводов при 5 витках соизмерима с длиной ДЛ, а при одинаковом числе витков лучшие результаты дает увеличение диаметра провода с 0.33мм до 0.54мм. Попробуем N=7, D=0,54мм на кольце К-12.
Результаты исследования ТДЛ-9

f, МГц

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

48

48

48

47

46

47

46

44

44

45

45

Uвых, мкВ

150

152

150

145

142

137

135

132

125

120

115

К

3,12

3,16

3,12

3,08

3,08

2,9

2,93

3

2,84

2,66

2,55



Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,54мм; количество витков N=7; межвитковая емкость С=24,6пФ; межвитковая индуктивность L=0.042мкГн.




Рис.2.11. Амплитудно – частотная характеристика ТДЛ-9.
Вывод: рабочий частотный диапазон 100кГц – 70МГц
,
что неудовлетворяет условиям изложенных выше. Возможно, следует увеличить диаметр провода до 0.84мм на кольце К-16 (µ=1000).
Результаты исследования ТДЛ-10

f, МГц

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

46

46

45

42

39

38

29

30

37

46

50

Uвых, мкВ

145

150

145

142

139

130

88

76

83

70

54

К

3,15

3,26

3,22

3,38

3,56

3,42

3,03

2,53

2,24

1,52

1,08



Марка магнитопровода К-16; магнитная проницаемость µ=1000; диаметр проводника D=0,84мм; количество витков N=7; межвитковая емкость С=27пФ; межвитковая индуктивность L=0.0264мкГн.




Рис.2.12. Амплитудно – частотная характеристика ТДЛ-10.
Вывод: рабочий частотный диапазон 100кГц – 85МГц
,
что неудовлетворяет условиям изложенных выше. Применение схемы с тремя отдельными ТДЛ рис.2.6. особых результатов не принесло. Появляется необходимость внести некоторые изменения в конструкцию ТДЛ. Используем другую схему широкополосного трансформатора рис.2.13. в виде трех симметричных длинных линий, равномерно намотанных на тороидальный магнитопровод, причем третьим проводником длинной линии служит экранированная проводящая оплетка.
Результаты исследования ТДЛ-11 (в экране).

f, МГц

0,01

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

42

44

48

46

43,5

41

37

29

26

26

29

29

Uвых, мкВ

126

140

150

148

145

140

118

94

90

84

70

54

К

3,02

3,18

3,12

3,21

3,33

3,41

3,19

3,24

3,46

3,23

2,41

1,86


Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,54мм; количество витков N=6; межвитковая емкость С=27,8пФ; межвитковая индуктивность L=0.035мкГн; ЭКР=12см.

Особенностью трансформатора является его обмотки в виде трех симметричных длинных линий, равномерно намотанных на тороидальный магнитопровод, причем третьим проводником длинной линии служит экранированная проводящая оплетка.


Рис.2.14. Амплитудно – частотная характеристика ТДЛ-11.
Вывод: рабочий частотный диапазон 10кГц – 85МГц
,
что удовлетворяет условиям изложенным выше. С целью увеличения КШ используем провод меньшего сечения D=0,33мм; N=7; ЭКР=10см.



f, МГц

0,01

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

42

47

50

47

42

40

26

24

20

19,5

23,5

28

Uвых, мкВ

126

145

150

145

140

130

82

74

61

50

40

30

К

3,02

3,09

3,0

3,08

3,33

3,25

3,15

3,08

3,05

2,55

1,7

1,07




Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,33мм; количество витков N=7; межвитковая емкость С=29,3пФ; межвитковая индуктивность L=0.043мкГн; ЭКР=10см.


Рис.2.15. Амплитудно – частотная характеристика ТДЛ-12.
Вывод: уменьшение диаметра провода и длины экранирующей оплетки ожидаемых результатов не принесло КШ=7000. Поэтому снова увеличим диаметр провода до ЭКР=2см.         
Результаты исследования ТДЛ-13

f, МГц

0,01

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

32

34

45

44

41

30

24

21,5

18,5

23

28

33

Uвых, мкВ

96,4

105

145

148

140

110

84

74

60

58

44

32

К

3,02

3,08

3,22

3,36

3,41

3,33

3,5

3,44

3,24

2,52

1,57

1,03



Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,54мм; количество витков N=7; межвитковая емкость С=29,3пФ; межвитковая индуктивность L=0.043мкГн; ЭКР=2см.




Рис.2.16. Амплитудно – частотная характеристика ТДЛ-13.
Вывод: рабочий частотный диапазон 10кГц – 75МГц
,
что удовлетворяет условиям изложенным выше. Для увеличения КШ увеличим длину экранирующей оплетки ЭКР=11см.
Результаты исследования ТДЛ-14

f, МГц

0,01

0,1

10

20

30

40

50

60

70

80

90

100

Uвх, мкВ

42

46

50

47

43

41,5

37,5

21,5

23,5

24

26,5

29

Uвых, мкВ

126

140

152

150

148

140

115

80

84

80

68

48

К

3,0

3,04

3,04

3,2

3,44

3,37

3,06

3,72

3,57

3,33

2,56

1,65



Марка магнитопровода К-12; магнитная проницаемость µ=4000; диаметр проводника D=0,54мм; количество витков N=6; межвитковая емкость С=29,3пФ; межвитковая индуктивность L=0.043мкГн; ЭКР=11см.




Рис.2.17. Амплитудно – частотная характеристика ТДЛ-14.
Вывод: с увеличением длины экранирующей оплетки до ЭКР=11см диапазон рабочих частот расширился до
.
Результаты исследования ТДЛ-15

f, МГц

0,01

0,1

10

20

30

40

50

60

70

80

Uвх, мкВ

50

50

49

48

46

44

39

37,5

38

42

Uвых, мкВ

150

150

155

150

150

145

135

115

108

92

К

3,0

3,0

3,16

3,12

3,26

3,29

3,46

3,06

2,84

2,19



Марка магнитопровода К-20; магнитная проницаемость µ=4000; диаметр проводника D=0,84мм2; количество витков N=6; межвитковая емкость С=93пФ; межвитковая индуктивность L=0.03мкГн.




Рис.2.18. Амплитудно – частотная характеристика ТДЛ-15.
Таким образом, в результате проработки 15ти вариантов широкополосных трансформаторов были выявлены наилучшие характеристики у ТДЛ-11 (КШ=8500) и ТДЛ-14 (КШ=8500) максимально удовлетворяющие требованиям технического задания.

Вывод: в результате исследований появилась необходимость выявить оптимальное решение между µ сердечника и количеством витков W, технологию намотки (плоская, скручиваемая, намотанная). Также получены следующие рекомендации по намотке ТДЛ:

Для расширения диапазона рабочих частот «вверх» — число витков должно быть минимальным, а сердечник – с меньшим диаметром.

ρ≈50 Ом (т.е. больший диаметр провода D≈0.52-1мм).

µ сердечника – максимальное.

Для расширения диапазона «вниз» µ необходимо снижать, а диаметр сердечника увеличивать.

Чем больше скруток, тем меньше ρ.

Чем толще провод, тем меньше ρ.


    продолжение
--PAGE_BREAK--3. Анализ и исследование оптимального варианта ТДЛ
В общем решении задачи синтеза широкополосных трансформирующих цепей без потерь, служащих для согласования активных сопротивлений, можно выделить два этапа. Первый из них состоит в установлении принципа построения трансформатора, позволяющего определить его схемную структуру. Второй этап заключается в отыскании элементов цепи (значений индуктивностей и емкостей, волновых сопротивлений и длин линий). Во всех случаях для упрощения численных расчетов, повышения их точности и выявления общих закономерностей целесообразно установить пути аналитического определения возможно большего числа параметров.

Для дальнейшего исследования выбираем широкополосный трансформатор ТДЛ-11 и ТДЛ-14 поскольку они показали наилучшие характеристики. Критерием выбора послужил КШ=8500.

Как известно, для достижения наибольшей полосы рабочих частот в широкополосном трансформаторе должно быть выполнено условие постоянства волнового сопротивления по всей длине линии передачи.

Волновое сопротивление ТДЛ-11:
                        (3.1)
Волновое сопротивление ТДЛ-11:
 (3.2)
Рассмотрим ТДЛ 1:3, нагруженный на входе и выходе (рис. 3.1). Для него дуальная схема приведена на рис.3.2.



Сопоставляя схемы на рис. и рис., видим, что они идентичны. Это означает, что схема рассматриваемого ТДЛ является самодуальной, т.е. . Самодуальной будем называть структуру, дуальная которой тождественна исходной, имея в общем случае различающиеся параметры.

Для согласования при  необходимо, чтобы напряжение на выходе второй ступени () было в 3 раза больше входного напряжения и имело обратный знак. Отсюда следует, что . В результате имеем систему уравнений:
, (3.3)
из которой следует, что
, а .



Соотношение волновых сопротивлений во взаимосвязи с сопротивлениями сигнала и нагрузки при бесконечной длине линий должно удовлетворять уравнению[1]:
; (3.4)
Из рассмотрения эквивалентной схемы ТДЛ на низкой частоте (рис. 3.3), получим для отношения мощности, выделяемой в нагрузке РН, к номинальной мощности источника возбуждения РВХ [1]:
;                     (3.5)

 (3.6)

;



L— индуктивность первичной обмотки при частоте .


Рис.3.3.


Приняв на нижней частоте диапазона fНдопустимое уменьшение мощности на 3 дБ, получим для требуемой индуктивности первичной обмотки: .


4. Разработка широкополосного высоколинейного экспериментального усилителя на основе выбранного оптимального ТДЛ
Необходимо разработать усилитель, функционирующий в диапазоне частот 0.01-100 МГц с усилением 12±1 дБ и динамическим диапазоном по нелинейности (интермодуляционным составляющим) второго и третьего порядков 90-120 дБ, допускающим уровень блокирующей помехи менее 1.5В, при котором δБЛ≤20%. Спроектировать в соответствии с требованиями, предъявляемыми к современным перспективным широкополосным усилителям (ШПУ). Усилитель в рабочем диапазоне частот имеет следующие технические показатели:

коэффициент усиления — 12±1 дБ;

коэффициент шума – не более 3.0 дБ;

входные и выходные сопротивления – в пределах 30-80 Ом;

сопротивления источника сигнала (генератора) и нагрузки – 75 Ом;

нелинейные искажения, оцениваемые динамическим диапазоном по интермодуляции третьего порядка, — 90-120 дБ;

напряжение питания при токе потребления 100мА — 15±1В;

амплитуда блокирования помехи не менее 1.5В;


Рис.4.1. Принципиальная схема усилителя.


На основании проработки и анализа оптимальных технических решений, взят за основу усилитель на линейном транзисторе 2Т339А [А.С. №1166270 Авт. Невмержицкий Г.И., Сартасов Н.А., Симонтов И.М., Тихонов А.И. Бюл.25 07.07.85. Широкополосный усилитель], в результате чего разработан и исследован наиболее перспективный его вариант на входе и выходе которого включены выбранные ТДЛ-11 и ТДЛ-14 соответственно, волновое сопротивление (ρ) которых полностью определяет широкополосность усилителя. Принципиальная схема усилителя приведена на рис.4.1. В схеме использованы трансформаторы разработанные в разделе № 3.

Коэффициент усиления
,
где  и   — соответственно действующее значение выходного и входного напряжений усилителя (при частоте ), измеряется в диапазоне частот по схеме рис.4.2. Экспериментальные данные сведены в таблицу 4.1.


Рис.4.2. Схема для измерения коэффициента усиления, входного и выходного сопротивлений усилителя.


Для достижения в ТДЛ максимальной широкополосности ДЛ согласуют с источником сигнала  и нагрузки , т.е. как со стороны входа, так и со стороны выхода усилителя.
,
где  и   — соответственно действующее значение выходного и входного напряжений усилителя (при частоте ).



f, МГц

0,01

0,05

0,1

10

20

30

40

50

60

70

80

90

100

UВХ, мВ

21

24

70

86

72

60

45

35

50

60

82

88

78

UБ, мВ

5,0

8,0

23

32

28

28

25

27

26

27

24

14

16

UВЫХ, мВ

67,2

115

380

520

550

500

470

500

400

300

300

200

80

КЗ

48

55

58

62

64

65

65

60

62

60

58

45

43

КУ

3,2

4,8

5,4

6,0

7,6

8,3

10,4

14,3

8,0

5,0

3,6

2,3

1,02

ДКЗВЫХ, дБ

100

100,3

101,3

102,6

103,3

103,6

103,6

104

102,6

102

101,3

97

82,3

IP3ВЫХ

36,0

38,5

40

42,7

43

44,2

44,2

44,5

42,7

42

40

33,7

22,8

RВХ, Ом

6,0

23,68

175

460,7

192,8

112,5

61,36

40,38

75

112,5

341,6

550

266



Основным показателем, характеризующим амплитуду напряжений продукта нелинейного преобразования на выходе усилителя, является коэффициент нелинейности интермодуляционных (комбинационных) составляющих соответствующих порядков. В частности, для составляющей третьего порядка этот коэффициент определяется формулой:
,
где - амплитуда напряжения третьего порядка на выходе усилителя; - амплитуда напряжения выходного полезного сигнала с частотой . Коэффициент нелинейности  измеряется в диапазоне частот по схеме рис.4.3 двухсигнальным методом. Результат измерений приведен в таблице 4.1.

Широкополосность усилителя в целом определяется нижней и верхней граничными частотами, на которых коэффициент усиления уменьшается на 3 дБ (1.7 раз). При этом нижняя граничная частота определяется максимальным значением магнитной проницаемости µ≥4000 и наибольшим числом витков.


Рис.4.3. Схема для измерения коэффициента нелинейности К3 двухсигнальным методом.
Верхняя граничная частота усилителя определяется максимальной граничной частотой биполярного транзистора (БПТ), а также минимальными геометрическими размерами ферритового кольца. При этом для уменьшения входного сопротивления усилителя на низких частотах необходимо увеличить погонную емкость С, что достигается скручиванием проводников.

Кроме того, для уменьшения шумов и нелинейных искажений в схему ШПУ введена «бесшумная» отрицательная обратная связь (ООС) по току за счет дополнительной обмотки , шунтирование которой резистором малой величины компенсирует ограничение широкополосности из-за введения ООС.




Рис.5.4. Амплитудно — частотная характеристика экспериментального усилителя функционирующий в диапазоне частот 10кГц – 85МГц


Рис.5.5. Экспериментальная зависимость величины входного сопротивления RВХот частоты усилителя.


Рис.5.6. Зависимость величины динамического диапазона ДКЗ по интермодуляциии третьего порядка от частоты усилителя.


Для обеспечения определенного качественного усиленного сигнала приходится задавать, с одной стороны, минимально допустимое отношение сигнал/шум или сигнал/фон, ограничивающее минимальный уровень усиливаемых сигналов, а с другой, максимально допустимую нелинейность усилителя, что ограничивает наибольший уровень усиливаемых сигналов. Отношение максимального сигнала к минимальному (в любой, но одной и той же точке усилителя, например на выходе) при определенных критериях качества выходного сигнала называется динамическим диапазоном усилителя.

Динамический диапазон Д, дБ,
 (4.1)


где - коэффициент нелинейности интермодуляционной (комбинационной) составляющей третьего порядка, - амплитуда напряжения выходного полезного сигнала с частотой .

Точка пересечения третьего порядка, т.е. точка при которой комбинационная составляющая была равна зондирующему входному сигналу.





Рис.4.7. Зависимость параметра нелинейности третьего порядка IP3от частоты усилителя.
Особенностью такого усилителя является его сверхширокополосность, минимальные нелинейные искажения, шумы и потребляемая мощность, а также стабильность параметров при изготовлении и эксплуатации, технологичность изготовления, что достигается с помощью схемы на биполярном транзисторе с параллельной отрицательной обратной связью по напряжению и бесшумной ООС – по току, а также включением в нагрузку усилителя трансформатора типа длинной линии.


5. Технико-экономический расчет
5.1 Расчет стоимости покупных комплектующих изделий

Таблица 5.1

Наименование

Габариты

Количество

Стоимость за ед.

Стоимость, руб.

Провод

d=0,45 мм

0,5 м

1,2 руб./м

0,6руб.

Сердечник

d=20 мм

1 шт.

40 руб.

40руб

Кембрик

d=0,4 мм

0,2 м

20 руб./м

4руб

 Итог 44,6руб.



Стоимость провода:

Стоимость всех комплектующих:

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.