Реферат по предмету "Коммуникации и связь"


Анализ дискретной системы

Новосибирская государственная академия водного транспорта
Кафедра информационных систем
Курсовая работа на тему «Анализ дискретной системы»
по дисциплине «Математические модели данных, сигналов и систем»
Выполнил студент
Абросимов М.В.
Проверил
преподаватель Голышев Д.Н.
2010
Ключевые слова:
АЧХ, ФЧХ, амплитуда, колебание, импульсную характеристику, система каузальная, алгоритм, дискретная система, система, индекс, период, чистота, устойчивость, фаза.
Объем работы: 17стр.
Количество графиков: 5 рисунков
Использованная литература: 5 источников
Цель работы:
Ознакомиться с системными функциями линейных систем. Приобрести практические навыки анализа дискретной линейной системы.
а0:=1 а1:=1 а2:=1 а3:=1 b1:=0,5 b2:=0,3
Содержание
Введение
Пояснительная записка
Задание I. Разностное уравнение системы
Задание II. Импульсная характеристика
Задание III. Переходная характеристика
Задание IV. Импульсная характеристика
Задание V. Системная функция дискретной системы
Задание VI. АЧХ и ФЧХ
Задание VII. Устойчивость системы
Заключение
Список литературы
Введение
Многоскоростная обработка сигналов (multirate processing) предполагает, что в процессе преобразования цифровых сигналов возможно изменение частоты дискретизации в сторону уменьшения или увеличения и, как следствие, требуемой скорости обработки. Это приводит к более эффективной обработке сигналов, так как открывается возможность значительного уменьшения требуемой вычислительной производительности проектируемой цифровой системы. В последние годы в области многоскоростной обработки сигналов достигнуты громадные успехи. Многоскоростная фильтрация и особенности ее применения стали предметом исследований многочисленных научных работ по цифровой обработке сигналов (ЦОС). Появились десятки монографий и учебных пособий, так или иначе связанных с научными и практическими достижениями в этой области. Совершенно уникальные возможности дает использование многоскоростной обработки в системах адаптивной и нелинейной фильтрации, сжатия, анализа и восстановления речи, звука и изображений.
Пояснительная записка
Предполагается, что на вход системы поступают входные дискретные сигналы x(n), реакцию на которые называют выходом системы y(n). Здесь n – это номер дискретного отчета n = 0, 1, 2, 3 …
Основные конструктивные элементы дискретных систем.
1. Умножение сигнала на константу А.
2. Задержка сигнала на один отчет n (интервал времени, равный шагу дискретизации сигнала Td).
3. Сумматор сигналов.
Задание I. Разностное уравнение системы
Найдемразностное уравнение системы – это зависимость между дискретными сигналами x(n) и y(n).
Для данной схемы получим
y(n)=x(n)+x(n-1)+x(n-2)+x(n-3)+0,5*y(n-1)+0,3*y(n-2)
По аналогии с непрерывной системой дискретная система во временной области описывается 2 характеристиками: импульсной (весовой) w(n) и переходной g(n).
Задание II. Импульсная характеристика
Найдемимпульсную характеристику – это реакция системы на входное воздействие в виде дискретной дельта-функции δ(n), т.е.
если x(n) = δ(n), то y(n) = w(n), где
/>.
Получим для нашей системы
w(n)=1*δ(n)+1*δ(n-1)+1*δ(n-2)+1*δ(n-3)+0,5*w(n-1)+0,3*w(n-2)
При этом мы предполагаем, что наша система каузальная или физически реализуемая, что означает, что реакция (отклик) системы не может наступить раньше подачи входного сигнала.
Т.к. входной сигнал подается в момент n = 0, то импульсная характеристика должна быть равна w(n) = 0 при отрицательных значениях n.
При n = 0 импульсная характеристика системы будет равна
w(0)=δ(0)+δ(0-1)+δ(0-2)+δ(0-3)+0,5*w(0-1)+0,3*w(0-2)
w(0)=1+0+0+0+0+0=1
При n = 1 импульсная характеристика системы будет равна
w(1)=δ(1)+δ(1-1)+δ(1-2)+δ(1-3)+0,5*w(1-1)+0,3*w(1-2)
w(1)=0+1+0+0,5+0=1,5
При n = 2 импульсная характеристика системы будет равна
w(2)=δ(2)+δ(2-1)+δ(2-2)+δ(2-3)+0,5*w(2-1)+0,3*w(2-2)
w(2)=0+0+1+0+(0,5*1,5)+1=2,05
При n = 3 импульсная характеристика системы будет равна--PAGE_BREAK--
w(3)=δ(3)+δ(3-1)+δ(3-2)+δ(3-3)+0,5*w(3-1)+0,3*w(3-2)
w(3)=0+0+0+1+0,5*2,05+0,3*1,5=2,47
При n = 4 импульсная характеристика системы будет равна
w(4)=δ(4)+δ(4-1)+δ(4-2)+δ(4-3)+0,5*w(4-1)+0,3*w(4-2)
w(4)=0+0+0+0+0,5*2,47+0,3*2,05=1,85
При n = 5 импульсная характеристика системы будет равна
w(5)=δ(5)+δ(5-1)+δ(5-2)+δ(5-3)+0,5*w(5-1)+0,3*w(5-2)
w(5)=0+0+0+0+0,5*1,85+0,3*2,47=1,66
При n = 6 импульсная характеристика системы будет равна
w(6)=δ(6)+δ(6-1)+δ(6-2)+δ(6-3)+0,5*w(6-1)+0,3*w(6-2)
w(6)=0+0+0+0+0,5*1,66+0,3*1,85=1,38
При n = 7 импульсная характеристика системы будет равна
w(7)=δ(7)+δ(7-1)+δ(7-2)+δ(7-3)+0,5*w(7-1)+0,3*w(7-2)
w(7)=0+0+0+0+0,5*1,38+0,3*1,66=1,19
При n = 8 импульсная характеристика системы будет равна
w(8)=δ(8)+δ(8-1)+δ(8-2)+δ(8-3)+0,5*w(8-1)+0,3*w(8-2)
w(8)=0+0+0+0+0,5*1,19+0,3*1,38=1,01
При n = 9 импульсная характеристика системы будет равна
w(9)=δ(1)+δ(9-1)+δ(9-2)+δ(9-3)+0,5*w(9-1)+0,3*w(9-2)
w(9)=0+0+0+0+0,5*1,01+0,3*1,19=0,86
При n = 10 импульсная характеристика системы будет равна
w(10)=δ(10)+δ(10-1)+δ(10-2)+δ(10-3)+0,5*w(10-1)+0,3*w(10-2)
w(10)=0+0+0+0+0,5*0,86+0,3*1,01=0,73
При n = 11импульсная характеристика системы будет равна
w(11)=δ(11)+δ(11-1)+δ(11-2)+δ(11-3)+0,5*w(11-1)+0,3*w(11-2)
w(11)=0+0+0+0+0,5*0,73+0,3*0,86=0,62
При n = 12 импульсная характеристика системы будет равна
w(12)=δ(12)+δ(12-1)+δ(12-2)+δ(12-3)+0,5*w(12-1)+0,3*w(12-2)
w(12)= 0+0+0+0+0,5*0,62+0,3*0,73=0,53
При n = 13 импульсная характеристика системы будет равна
w(13)=δ(13)+δ(13-1)+δ(13-2)+δ(13-3)+0,5*w(13-1)+0,3*w(13-2)
w(13)=0+0+0+0+0,5*0,53+0,3*0,62=0,45
При n = 14 импульсная характеристика системы будет равна
w(14)=δ(14)+δ(14-1)+δ(14-2)+δ(14-3)+0,5*w(14-1)+0,3*w(14-2)
w(14)=0+0+0+0+0,5*0,45+0,3*0,52=0,38
При n = 14 импульсная характеристика системы будет равна
w(15)=δ(15)+δ(15-1)+δ(15-2)+δ(15-3)+0,5*w(15-1)+0,3*w(15-2)
w(15)=0+0+0+0+0,5*0,38+0,3*0,45=0,32
/>
Рисунок 1: импульсная характеристика
Задание III. Переходная характеристика
Найдемпереходную характеристику – это реакция системы на входное воздействие в виде дискретной функции единичного скачка, т.е.
если x(n) = h(n), то y(n) = g(n), где
/>
Получим для нашей системы
g(n)=1*h(n)+1*h(n-1)+1*h(n-2)+1*h(n-3)+0,5*g(n-1)+0,3*g(n-2)
При этом мы предполагаем, что наша система каузальная или физически реализуемая, что означает, что переходная характеристика должна быть равна g(n) = 0 при отрицательных значениях n.
При n = 0 переходная характеристика системы будет равна
g(0)=h(0)+h(0-1)+h(0-2)+h(0-3)+0,5*g(0-1)+0,3*g(0-2)
g(0)=1+0+0+0+0+0=1
При n = 1 переходная характеристика системы будет равна    продолжение
--PAGE_BREAK--
g(1)=h(1)+h(1-1)+h(1-2)+h(1-3)+0,5*g(1-1)+0,3*g(1-2)
g(1)=1+1+0+0+0,5+0=2,5
При n = 2 переходная характеристика системы будет равна
g(2)=h(2)+h(2-1)+h(2-2)+h(2-3)+0,5*g(2-1)+0,3*g(2-2)
g(2)=1+1+1+0+0,5*2,5+0,3=4,55
При n = 3 переходная характеристика системы будет равна
g(3)=h(3)+h(3-1)+h(3-2)+h(3-3)+0,5*g(3-1)+0,3*g(3-2)
g(3)=1+1+1+1+0,5*4,55+0,3*2,5=7,02
При n = 4 переходная характеристика системы будет равна
g(4)=h(4)+h(4-1)+h(4-2)+h(4-3)+0,5*g(4-1)+0,3*g(4-2)
g(4)=1+1+1+1+0,5*7,02+0,3*4,55=8,87
При n = 5 переходная характеристика системы будет равна
g(5)=h(5)+h(5-1)+h(5-2)+h(5-3)+0,5*g(5-1)+0,3*g(5-2)
g(5)= 1+1+1+1+0,5*8,87+0,3*7,02=10,54
При n = 6 переходная характеристика системы будет равна
g(6)=h(6)+h(6-1)+h(6-2)+h(6-3)+0,5*g(6-1)+0,3*g(6-2)
g(6)= 1+1+1+1+0,5*10,54+0,3*8,87=11,93
При n = 7 переходная характеристика системы будет равна
g(7)=h(7)+h(7-1)+h(7-2)+h(7-3)+0,5*g(7-1)+0,3*g(7-2)
g(7)= 1+1+1+1+0,5*11,93+0,3*10,54=13,12
При n = 8 переходная характеристика системы будет равна
g(8)=h(8)+h(8-1)+h(8-2)+h(8-3)+0,5*g(8-1)+0,3*g(8-2)
g(8)= 1+1+1+1+0,5*13,12+0,3*11,93=14,13
При n = 9 переходная характеристика системы будет равна
g(9)=h(9)+h(9-1)+h(9-2)+h(9-3)+0,5*g(9-1)+0,3*g(9-2)
g(9)= 1+1+1+1+0,5*14,13+0,3*13,12=15,0
При n = 10 переходная характеристика системы будет равна
g(10)=h(10)+h(10-1)+h(10-2)+h(10-3)+0,5*g(10-1)+0,3*g(10-2)
g(10)= 1+1+1+1+0,5*15,0+0,3*14,13=15,73
При n = 11 переходная характеристика системы будет равна
g(11)=h(11)+h(11-1)+h(11-2)+h(11-3)+0,5*g(11-1)+0,3*g(11-2)
g(11)= 1+1+1+1+0,5*15,73+0,3*15,0=16,36
При n = 12 переходная характеристика системы будет равна
g(12)=h(12)+h(12-1)+h(12-2)+h(12-3)+0,5*g(12-1)+0,3*g(12-2)
g(12)= 1+1+1+1+0,5*16,36+0,3*15,73=16,90
При n = 13 переходная характеристика системы будет равна
g(13)=h(13)+h(13-1)+h(13-2)+h(13-3)+0,5*g(13-1)+0,3*g(13-2)
g(13)= 1+1+1+1+0,5*16,90+0,3*16,36=17,36
При n = 14 переходная характеристика системы будет равна
g(14)=h(14)+h(14-1)+h(14-2)+h(14-3)+0,5*g(14-1)+0,3*g(14-2)
g(14)= 1+1+1+1+0,5*17,36+0,3*16,90=17,75
При n = 15 переходная характеристика системы будет равна
g(15)=h(15)+h(15-1)+h(15-2)+h(15-3)+0,5*g(15-1)+0,3*g(15-2)
g(15)= 1+1+1+1+0,5*17,75+0,3*17,36=18,08
/>
Рисунок 2: переходная характеристика
Задание IV. Импульсная характеристика
Найдемотклик системы на входное воздействие следующего вида
/>.
y(n)=1*x(n)+1*x(n-1)+1*x(n-2)+1*x(n-3)+0,5*y(n-1)+0,3*y(n-2)
При n = 0 выходной сигнал системы будет равна
y(0)=x(0)+ x(0-1)+x(0-2)+x(0-3)+0,5*y(0-1)+0,3*y(0-2)
y(0)=1+0+0+0+0+0=1
При n = 1 выходной сигнал системы будет равна
y(1)=x(1)+x(1-1)+x(1-2)-x(1-3)+0,5*x(1-1)+0,3*x(1-2)
y(1)=1+1+0+0+0,5+0=2,5
При n = 2 выходной сигнал системы будет равна
y(2)=x(2)+x(2-1)+x(2-2)+x(2-3)+0,5*y(2-1)+0,3*y(2-2)
y(2)=1+1+1+0+0,5*2,5+0,3=4,55
При n = 3 выходной сигнал системы будет равна
y(3)=x(3)+x(3-1)+x(3-2)+x(3-3)+0,5*y(3-1)+0,3*y(3-2)
y(3)=1+1+1+1+0,5*4,55+0,3*2,5=7,02
При n = 4 выходной сигнал системы будет равна
y(4)=x(4)+x(4-1)+x(4-2)+x(4-3)+0,5*y(4-1)+0,3*y(4-2)    продолжение
--PAGE_BREAK--
y(4)=1+1+1+1+0,5*7,02+0,3*4,55=8,87
При n = 5 выходной сигнал системы будет равна
y(5)=x(5)+x(5-1)+x(5-2)+x(5-3)+0,5*x(5-1)+0,3*x(5-2)
y(5)=1+1+1+1+0,5*8,87+0,3*7,02=10,54
При n = 6 выходной сигнал системы будет равна
y(6)=x(6)+x(6-1)+x(6-2)+x(6-3)+0,5*y(6-1)+0,3*y(6-2)
y(6)= 1+1+1+1+0,5*10,54+0,3*8,87=11,93
При n = 7 выходной сигнал системы будет равна
y(7)=x(7)+x(7-1)+x(7-2)+x(7-3)+0,5*y(7-1)+0,3*y(7-2)
y(7)= 1+1+1+1+0,5*11,93+0,3*10,54=13,12
При n = 8 выходной сигнал системы будет равна
y(8)=x(8)+x(8-1)+x(8-2)+x(8-3)+0,5*y(8-1)+0,3*y(8-2)
y(8)= 1+1+1+1+0,5*13,12+0,3*11,93=14,13
При n = 9 выходной сигнал системы будет равна
y(9)=x(9)+x(9-1)+x(9-2)+x(9-3)+0,5*y(9-1)+0,3*y(9-2)
y(9)= 1+1+1+1+0,5*14,13+0,3*13,12=15,0
При n = 10 выходной сигнал системы будет равна
y(10)=x(10)+x(10-1)+x(10-2)+x(10-3)+0,5*y(10-1)+0,3*y(10-2)
y(10)= 1+1+1+1+0,5*15,0+0,3*14,13=15,73
При n = 11 выходной сигнал системы будет равна
y(11)=x(11)+x(11-1)+x(11-2)+x(11-3)+0,5*y(11-1)+0,3*y(11-2)
y(11)=0+1+1+1+0,5*15,73+0,3*15,0=15,36
При n = 12 выходной сигнал системы будет равна
y(12)=x(12)+x(12-1)+x(12-2)+x(12-3)+0,5*y(12-1)+0,3*y(12-2)
y(12)=0+0+1+1+0,5*15,36+0,3*15,73=14,40
При n = 13 выходной сигнал системы будет равна
y(13)=x(13)+x(13-1)+x(13-2)+x(13-3)+0,5*y(13-1)+0,3*y(13-2)
y(13)=0+0+0+1+0,5*14,40+0,3*15,36=12,81
При n = 14 выходной сигнал системы будет равна
y(14)=x(14)+x(14-1)+x(14-2)+x(14-3)+0,5*y(14-1)+0,3*y(14-2)
y(14)=0+0+0+0+0,5*12,81+0,3*14,40=10,72
При n = 15 выходной сигнал системы будет равна
y(15)=x(15)+0*x(15-1)+x(15-2)+x(15-3)+0,5*y(15-1)+0,3*y(15-2)
y(15)=0+0+0+0+0,5*10,72+0,3*12,81=9,20
/>
Рисунок 3: выходной сигнал
Задание V. Системная функция дискретной системы
Найдемсистемную функцию дискретной системы.
Преобразуем разностное уравнение из области отчетов nв область некоторой комплексной переменной zпо следующим правилам:
/>, />, />и т.д.
Тогда получим
y(n)=1*x(n)+1*x(n-1)+1*x(n-2)+1*x(n-3)+0,5*y(n-1)+0,3*y(n-2)
y(z)=1*x(z)+1*x(z)*z-1+1*x(z)*z-2+1*x(z)z-3+0,5*y(z)*z-1+0,3*y(z)*z-2
Системная функцияW(z) – это отношение выходного и входного сигналов в области z, равная
/>.
Разделим наше выражение на X(Z)
Тогда получим:
w(z)=1+z-1+z-2+z-3+0,5*w(z)*z-1+0,3*w(z)*z-2
отсюда получим конечное выражение
/>
Задание VI. АЧХ и ФЧХ
Найдемамплитудно-частотную и фазово-частотную характеристику системы (АЧХ и ФЧХ).
Для вычисления АЧХ и ФЧХ используем программу MathCad
Зададим коэффициенты системы
а0:=1    продолжение
--PAGE_BREAK--
а1:=1
а2:=1
а3:=1
b1:=0,5
b2:=0,3
L:=10
ω:=-L,-L+0.05..L
j:=/>
Передаточная функция системы
/>
/>
Рисунок 4: АЧX
/>
Рисунок 5: ФЧХ


Обратим внимание, что обе частотные характеристики являются периодическими функциями с периодом повторения, равном частоте дискретизации
/>,
где Td – это шаг дискретизации сигнала.
Задание VII. Устойчивость системы
Оценим устойчивость системы
Понятие устойчивости системы связано с ее способностью возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния.
Естественно, что существует граница устойчивости – это мощность силы, выведшей систему из состояния равновесия.
Для этих целей необходимо вычислить полюса системной функции W(z), т.е. такие значения z, при которых знаменатель системной функции равен нулю. Получим
1-0,5*z-1-0,3*z-2 =0
Умножим правую и левую часть на z2
Z2-0,5*z-0,3=0
Z1;2=/>
Z1;2=0.85;-0.35
Если хотя бы одно из полученных значений корня />, то система считается неустойчивой Z1=0.85
Данная система устойчива.
Вывод
Мы ознакомились с системными функциями линейных систем. Приобрели практические навыки анализа дискретной линейной системы, научились строить графики АЧХ и ФЧХ с помощью программы MathCad.
Подводя общий итог проведенных выше исследований, можно утверждать что наша система неустойчива.
Список литературы
Основы цифровой обработки сигналов. Курс лекций / А.И. Солонина, Д.А. Улахович, С.М. Арбузов и др. – СПб.: БХВ-Петербург, 2003. – 608 с.
Голышев Н.В., Щетинин Ю.И. Теория и обработка сигналов. Учеб. пособие. – Новосибирск, Изд-во НГТУ, 1998. – Ч.1. – 103 с.
Голышев Н.В., Щетинин Ю.И. Теория и обработка сигналов. Учеб. пособие. – Новосибирск, Изд-во НГТУ, 1998. – Ч.2. – 115 с.
Сиберт У.М. Цепи, сигналы, системы. – М.: Мир, 1988. – Ч.1. – 336с.
Сиберт У.М. Цепи, сигналы, системы. – М.: Мир, 1988. – Ч.2. – 360с.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Социально-психологические основы общения
Реферат Социально–педагогическое консультирование детей, воспитывающихся в условиях сиротских учреждений
Реферат Контрольная работа "Архитектура Армении"
Реферат Философия Вильгельма фон Гумбольдта
Реферат Тенденции развития программного обеспечения
Реферат Восточнославянские племена в VIII-IX веках
Реферат Регистры бухгалтерского учета
Реферат Григорий Бакланов "Навеки-девятнадцатилетние"
Реферат Выявление уровня агрессии у различных субкультур
Реферат Йозеф Геббельс папа массовых коммуникаций
Реферат Foreign Exchange Dollar Falls Vs Yen Essay
Реферат Действия персонала аэропорта при угрозе террористического акта
Реферат Adopted Children Should Know Their Biological Parents
Реферат Диагностика межличностных отношений в малой социальной группе
Реферат Лоббизм как правотворческий процесс