Конспект лекций по предмету "Физические явления"


Использование хаоса для генерации информации

| следующая статья ==>




Поведение хаотических систем не может быть предсказано на большие интервалы времени. По мере удаления от начальных условий положение траектории становится все более и более неопределенным. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности. Отсюда, согласно теории хаотической синхронизации, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе. Это правило, видимо, справедливо для любых систем, производящих информацию.
Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям. И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - тогда его очень легко подчинить.
Таким образом, любая сложная динамическая система характеризуется наличием положительных или отрицательных связей между отдельными элементами ее структуры, что обеспечивает усиление или ослабление реакции системы на изменение ее параметров.
В сложных динамических системах детерминировано или хаотически могут происходить изменения режимов работы, а также изменение их структуры. Это, с одной стороны, существенно усложняет анализ протекающих в них процессов, с другой – значительно расширяет их функциональные возможности. Расширяется, соответственно, и область применения технических устройств на их основе. С их помощью можно производить получение, передачу, обработку и хранение информации. Например, в зависимости от уровня взаимодействия между отдельными осцилляторами они могут быть ведущими или ведомыми, что соответствует наличию положительной или отрицательной обратной связи в системе, так как это определяет направление потока энергии взаимообмена между отдельными подсистемами.
При этом используемое понятие «нелинейность системы» является одним из узловых концептуально значимых понятий и предполагает значимость принципа «разрастания малого» или «усиления флуктуаций». Количественное варьирование в определенных пределах констант системы не приводит к качественному изменению характера процесса в целом. При преодолении же уровня некоего жесткого «порога воздействия» система входит в сферу влияния иного «аттрактора» – малое изменение реализуется в макроскопических (как правило, невоспроизводимых и поэтому непрогнозируемых) следствиях. При этом осуществимы отнюдь не любые сценарии развития системы (как результат малых резонансных воздействий), а лишь сценарии, ограниченные определенным их диапазоном (спектром). В связи с этим, можно говорить о целесообразности разработки нового поколения средств получения информации, основанных на использовании сложных динамических систем для целей получения измерительной информации, ее преобразования, передачи, хранения и обработки. В основу создания соответствующих устройств могут быть положены достаточно широкие функциональные возможности сложных динамических систем, связанные с наличием определенных особенностей их построения и динамики.
При этом ИИС на базе сложных динамических систем могут представлять собой устройства, выполняющие все операции по получению, передаче и преобразованию информации. Наличие взаимных связей между ее отдельными элементами, группами элементов позволит реализовать все многообразие положительных и отрицательных обратных связей в системе. При этом режимы взаимодействия между отдельными элементами системы или их группами могут трансформироваться под действием внешних и внутренних причин. В таких системах могут устанавливаться режимы апериодических, резонансных и вынужденных колебаний, автоколебаний, хаотических и детерминированных колебательных процессов, режимы синхронизации и бифуркации и т.п. Реализация различных режимов взаимодействий в таких системах позволит осуществлять усиление или ослабление измеряемых сигналов, при этом не требуется использования специальных усилителей и мультипликаторов. При этом все процессы формирования измерительной информации осуществляются непосредственно на физическом уровне, в условиях максимального приближения к объекту измерения. Изменение выполняемых такими устройствами функций может осуществляться за счет перестройки внутренней структуры системы, а также за счет реализации сложных динамических процессов в таких системах, являющихся сугубо нелинейными, характеризующихся наличием гистерезисных явлений и т.п.
| следующая статья ==>


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.