Конспект лекций по предмету "Физика"


Поток тепла; точечный источник вблизи бесконечной плоской границы

Ранее мы уже обсуждали (гл. 3, § 4) поток тепла. Вообразите кусок какого-то материала, необязательно однородного (в раз­ных местах может быть разное вещество), в котором темпера­тура меняется от точки к точке. Как следствие этих температур­ных изменений возникает поток тепла, который можно обозна­чить вектором h. Он представляет собой количество тепловой энергии, которое проходит в единицу времени через единичную площадку, перпендикулярную потоку. Дивергенция h есть скорость ухода тепла из данного места в расчете на единицу объема:
Ñ•h = Скорость ухода тепла на единицу объема.
(Мы могли, конечно, записать уравнение в интегральном виде, как мы поступали в электродинамике с законом Гаусса, тогда оно выражало бы тот факт, что поток через поверхность равен скорости изменения тепловой энергии внутри материала. Мы не будем больше переводить уравнения из дифференциальной формы в интегральную и обратно, это делается точно так же, как в электростатике.)
Скорость, с которой тепло поглощается или рождается в разных местах, конечно, зависит от условий задачи. Предпо­ложим, например, что источник тепла находится внутри мате­риала (возможно, радиоактивный источник или сопротивление, через которое пропускают ток). Обозначим через s тепловую энергию, производимую этим источником в единице объема за 1 сек. Кроме того, могут возникнуть потери (или, наоборот, дополнительное рождение) тепловой энергии за счет перехода в другие виды внутренней энергии в данном объеме. Если и — внутренняя энергия в единице объема, то —du/dt будет тоже играть роль «источника» тепловой энергии. Итак, имеем

(12.5)
Мы не собираемся здесь обсуждать полное уравнение, ве­личины в котором изменяются со временем, потому что мы про­водим аналогию с электростатикой, где ничто не зависит от вре­мени. Мы рассмотрим только задачи с постоянным потоком тепла, в которых постоянные источники создают состояние равновесия. В таких случаях

(12.6)
Нужно иметь, конечно, еще одно уравнение, которое описы­вает, как поток течет в разных местах. Во многих веществах поток тепла примерно пропорционален скорости изменения температуры с положением: чем больше разность температур, тем больше поток тепла. Мы знаем, что вектор потока тепла пропорционален градиенту температуры. Константа пропор­циональности К, зависящая от свойств материала, называется коэффициентом теплопроводности

(12.7)
Если свойства материала меняются от точки к точке, то К=К (х, у, z) и есть функция положения. [Уравнение (12.7) не столь фундаментально, как (12.5), выражающее сохранение тепловой энергии, потому что оно зависит от характерных свойств вещества.] Подставляя теперь уравнение (12.7) в (12.6), получаем


(12.8)
что в точности совпадает по форме с (12.4). Задачи с постоянным потоком тепла и задачи электростатики одинаковы. Вектор потока тепла h соответствует Е, а тем­пература Т соответствует j.



Фиг. 12.1. Поток тепла в случае цилиндрической симметрии (а) и соответствующая задача из элек­тричества (б).

Мы уже отмечали, что точечный тепловой источник создает поле температур, меняющееся, как 1/r, и поток тепла, меняющийся, как 1/r2. Это есть не более чем простой перенос утвержде­ний электростатики, что точечный заряд дает потенциал, меняющийся, как 1/r, и электрическое поле, меня­ющееся, как 1/r2. Вообще мы можем решать статистические тепловые за­дачи с той же степенью легкости, как и задачи электростатики.
Рассмотрим простой пример. Пусть имеется цилиндр с ра­диусом а при температуре T1? поддерживающейся за счет гене­рации тепла в цилиндре. (Это может быть, скажем, проволока, по которой течет ток, или трубка с конденсацией пара внутри цилиндра.) Цилиндр покрыт концентрической обшивкой из изолирующего материала с теплопроводностью К. Пусть внеш­ний радиус изоляции равен b, а в наружном пространстве под­держивается температура T2 (фиг. 12. 1, а). Нам нужно опреде­лить скорость потери тепла проволокой или паропроводом (все равно чем), проходящим по центру цилиндра. Пусть полное количество тепла, теряемого на длине трубы L, равно G, его-то мы и хотим найти.
Как надо решать такую задачу? У нас есть дифференциаль­ные уравнения, но поскольку они такие же, как в электроста­тике, то математическое решение их нам уже известно. Анало­гичная задача электростатики относится к проводнику радиу­сом а при потенциале j1, отделенном от другого проводника радиусом b при потенциале j2, с концентрическим слоем ди­электрика между ними (фиг. 12.1, б). Далее, поскольку поток тепла h соответствует электрическому полю Е, то наша искомая величина G соответствует потоку электрического поля от единичной длины (другими словами, электрическому заряду на единице длины, деленному на e0). Мы решали электростати­ческую задачу с помощью закона Гаусса. Нашу задачу о потоке тепла будем решать таким же способом.
Из симметрии задачи мы видим, что h зависит только от расстояния до центра. Поэтому мы окружим трубку гауссовой поверхностью — цилиндром длиной L и радиусом r. С помощью закона Гаусса мы выводим, что поток тепла h, умноженный на площадь поверхности 2prL, должен быть равен полному количеству тепла, рождаемому внутри, т. е. тому, что мы назвали G:



(12.9)
Поток тепла пропорционален градиенту температуры



или в данном случае величина h равна


Вместе с (12.9) это дает

(12.10)
Интегрируя от r=а до r=b, получаем

(12.11)
Разрешая отнсительно G, находим


(12.12)
Этот результат в точности соответствует формуле для заряда цилиндрического конденсатора:





Задачи одинаковые и имеют одинаковые решения. Зная электро­статику, мы тем самым знаем, сколько тепла теряет изолирован­ная труба.
Рассмотрим еще один пример. Пусть мы хотим узнать поток тепла в окрестности точечного источника, расположенного неглубоко под поверхностью земли или же вблизи поверхности большого металлического предмета. В качестве локализованно­го источника тепла может быть и атомная бомба, которая взор­валась под землей и представляет собой мощный источник тепла, или же небольшой источник радиоактивности внутри железного блока — возможностей очень много.
Рассмотрим идеализированную задачу о точечном источнике тепла, мощность которого G, на расстоянии а под поверхностью бесконечной однородной среды с коэффициентом теплопровод­ности К. Теплопроводностью воздуха над поверхностью среды мы пренебрежем. Мы хотим определить распределение темпе­ратуры на поверхности среды. Насколько горячо будет прямо над источником и в разных местах на поверхности?
Как же решить эту задачу? Она похожа на задачу по электро­статике, в которой имеются два материала с разной диэлектри­ческой проницаемостью x по обе стороны от разделяющей их границы. Здесь что-то есть! Возможно, это похоже на точечный заряд вблизи границы между диэлектриком и проводником или что-нибудь вроде этого. Посмотрим, что происходит вблизи границы. Физическое условие состоит в том, что нормальная составляющая h на поверхности равна нулю, поскольку мы предположили, что потока из блока нет. Мы должны задать вопрос: в какой электростатической задаче возникает условие, что нормальная компонента электрического поля Е (представ­ляющая собой аналог h) равна нулю у поверхности? Нет такой!
Это один из тех случаев, к которым следует относиться с осторожностью. По физическим причинам могут быть опре­деленные ограничения тех математических условий, которые возникают в каком-либо случае. Поэтому если мы проанализи­ровали дифференциальное уравнение только для некоторых ограниченных примеров, то вполне можем упустить ряд реше­ний, возникающих в других физических условиях. Например, нет материала, обладающего диэлектрической проницаемостью, равной нулю, а теплопроводность вакуума равна нулю. Поэтому нет электростатического аналога идеального теплоизолятора. Мы можем, однако, попытаться использовать те же методы. Попробуем вообразить, что произошло бы, если бы диэлектри­ческая проницаемость была равна нулю. (Разумеется, в реаль­ных условиях диэлектрическая проницаемость никогда не обра­щается в нуль. Но может представиться случай, когда вещество имеет очень большую диэлектрическую проницаемость, так что диэлектрической проницаемостью воздуха вне среды можно пренебречь.)
Как же найти электрическое поле, у которого нет составляю­щей, перпендикулярной к поверхности? Иначе говоря, такое поле, которое всюду касательно к поверхности? Вы заметите, что эта задача обратна задаче о точечном заряде вблизи прово­дящей плоскости. Там нам нужно было поле, перпендикулярное


к поверхности, потому что проводник всюду находился при одном и том же значении потенциала.
В задаче об электрическом поле мы придумали решение, вообразив за проводящей плоскостью точечный заряд. Можно воспользоваться снова этой же идеей. Попытаемся выбрать такое «изображение» источника, которое автоматически обраща­ло бы в нуль нормальную компоненту поля вблизи поверхности. Решение показано на фиг. 12.2. Электрическое изображение источника с тем же знаком и той же величины, находящееся на расстоянии а над поверхностью, дает поле, горизонтальное повсюду у поверхности. Нормальные компоненты от обоих ис­точников взаимно уничтожаются.
Итак, наша задача о потоке тепла решена. Температура во всем пространстве одинакова по непосредственной аналогии с потенциалом от двух одинаковых точечных зарядов. Темпера­тура Т на расстоянии r от одного точечного источника G в бес­конечной среде равна


(12.13)
(Это, конечно, полностью аналогично j= q/4pe0r.) Температура точечного источника и, кроме того, его изображения равна


(12.14)
Эта формула дает нам температуру всюду внутри блока. Несколько изотермических поверхностей приведено на фиг. 12.2.
Показаны также линии h, ко­торые можно получить из вы­ражения h =-КÑТ.
В самом начале мы инте­ресовались распределением температуры на поверхности. Для точки на поверхности находящейся на расстоянии р от оси, r1=r2=Ö (р2 + а2),

Фиг. 12.2. Поток тепла и изотерма у точечного источника тепла, расположенного на расстоя­нии а под поверхностью тела с хорошей теплопроводностью. Вне тела показано мнимое изображение источника.


сле­довательно,

(12.15)
Эта функция также изображена на фиг. 12.2. Естественно, что температура прямо над источником выше, чем вдали от него. Такого рода задачи часто приходится решать геофизикам. Теперь мы видим, что это те же самые задачи, которые мы ре­шали в электричестве.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.