Основой для вывода общих закономерностей движения рабочего тела в соплах и диффузорах явл. уравнение неразрывности потока
m = F c / v = const , (15.8)
Логарифмируя его, получим ln F + ln c – ln v =const,
а после дифференцирования , (15.9)
Полученное уравнение явл. уравнением неразрывности потока в дифференциальной форме.
Так логарифмируя уравнения адиабаты pv =const, получаем ln p + k ln v = const , а после
дифференцирования +k = 0, откуда: = - , (15.10)
C другой стороны, разделив на с² уравнение для адиабатного течения газов в каналах cdc = - vdp , имеем: = - , (15.11)
Подставляя, полученные выражения (15.10), (15.11) в уравнение неразрывности потока (15.8) , находим = - = - +
или = , (15.12)
. Тогда
= , (15.13)
Весьма наглядной характеристикой состояния потока в любом сечении канала явл. отношение его скорости в данном сечении к местной скорости звука a. Это отношение наз. числом Маха и обозначается М.Значение М< 1 соответствуют движению потока с дозвуковыми скоростями, а значения М> 1 – со сверхзвуковыми скоростями.
Вводя число Маха в уравнение (15.13), получаем окончательно:
, (15.14)
Данное выражение устанавливает зависимость изменения давления от геометрической формы канала и показывает, что при дозвуковых скоростях (М< 1) для понижения давления (dp < 0) канал должен суживаться, а для повышения его – расширяться. При движении потока со сверхзвуковыми скоростями (М> 1) картина получается обратной: чтобы давление понижалось, канал должен расширяться, для повышения давления – наоборот, суживаться.
Рассмотренное показывает, что изменение давления и скорости потока создаётся противоположным воздействием геометрической формы канала на поток в зависимость от того, происходит ли движение его в дозвуковой или сверхзвуковой области. Это положение носит название закона геометрического обращения.