1, 2 Элементы кинематики М Т Ур-е движ. , скорости.
Матерьяльной точкой называют тело, размерами и формам которого в данной задаче можно пренебреч. Любой вектор можно разложить по базису: r=ix+jy+kz модуль вектора /r/=Цx2+y2+z2. Положение мат точки опр. r=r(t) или x(t) y(t) z(t) Траектория-совокупность последовательных положений мат. точки в пространстве при ее движении. Сумма длин всех участков траектории пройденного за промежуток времени– длина пути. Средняя скорость за пром времени Vср=кr/кt Средняя путевая скорость vср=кS/кt. Скоростью ( мгновенной скоростью) v= limкt-0 vср= limкt-0 кr/кt =dr/dt v-производная радиуса- вектора по времени. Определение пройденого пути S= интеграл t до t0 vdt равномерное прямолинейное дв. S=vt си 1 м/с. 1. 3 Ускорение матерьяльной точки Нормальное и тангациональное уск. Радиус кривизны траектории.
Средним ускорением точки в интервале времени t2-t1=кt наз. Вектор аср равный отношению вектора изменения скорости кv=v2-v1 к промежутку вр. кt за кот изменение произошло аср=кv/кt Мгновенным ускорение наз предел среднего уск при кt-0 а= limкt-0 аср= limкt-0 кv/кt=dv/dt= d2r/dt2 a= limкt-0 dv1/dt + limкt-0 dv2/dt= at+an at танганцион. Изменение скорости по величине, напрвлен по касательной тр. ан нормальное изменен. Скорости по направлению. Направлен по радиусу кривизны. at=dv/dt an=v2/R Ci 1 m*c-2 1. 4 Закон динамики Ньютона
Свойство всех тел сохранять неизмениым свое движение при отсутствии внешнего воздействия и стремиться сохранять сост движения наз. Инерцией. ПЕРВЫЙ ЗАКОН любое тело нах в сост покоя или равн. Движения пока внешнее силы не вызовут измене
ние этого состояния. Масса – физ. Характеристика материи, явля ющейся выражением и мерой одновремено гравитационых свойств материи и ее инерционых свойств. F=G*m1 m2/r2(грав. Масса) Инерционая масса F=m a cи=1кг 1. 5 Основной закон динамики материальной точки.
Сила –векторная величина, являющаяся мерой механиче-ского взаимодействия материальных телK=mvИзменение количества дв. Равно импульсу действующей силы и происходит в напривле
нии действия силы. DK=Fdt. F=dK/dt= d(mv)/dt cu- 1kg*m/c2 1. 6 Внешние и внутрение силы . 3 закон Ньютона.
Действию всегда есть равное и против- ное противодействие, иначе взаимодействие двух тел равны между собой и напр. в противоположеные стороны. В лю- бой механической системе сумма всех внутрених тел = 0 Пусть на каждую мат точку действуют внутрение силы взаимодействия и внешние силы. еd(mivi)/dt=еFi вн+еFi вну еd(mivi)/dt=dеmivi/dt= dK/dt изменен. Импульса системы K=еmivi Закон измен импульс сист dK/dt=Fвнеш 1. 7 Поступательное движение твердого тела. Центр масс мех. Системы и закон его движения.
Абсолютно твердое тело- деформацией которого в условиях данной задачи можно пренебречь. Растояние точек при движении не изменяется и скорость их одинак. Центром инерции (масс) системы мат точек, радиус векторRc=еmiri/m Cкорость центра инерции vc=drc/dt=1/mdеmiri/dt=1/mеd(mir)i/dt=1/mеmivi=K/m Закон движения центра инерции мех сист. dK/dt=Fвнеш
dvc/dt=ac Точка приложеная силы тяжести тела (равнодейс силы тяжести всех частиц тела – центр тяжести телаr ц т=1/mgеmgri= =1/mgеmigiri=gi/mgеmiri=1/mеmiri=r c(g вектор везде) плотность тела p=dm/dV Тело наз. Однородным если плотность во всех точках одинакова . масса такого тела m=pV неоднорд m=(интег по V )pdV средней плотностью неоднор тел=аp=m/V 1. 8 Закон сохранения импульса и его связь с однор прос
Для замкнутой системы главный вектор Fвнеш=0 и K=еmi vi= const При любых процессах происходящих в замкну-той системе, скорость ее центра инерции не измен. Vc=cons 1. 9a Движение тела переменой массы ( ур Мещерского) Нач момент t. Ракета имела массу M скоростьv нач импул. K=Mv. За пром времени dt отделилась масса dM со скор С Отн ракеты в результ. M-dM c+dv и импульс ракеты стал K2=(M-dM)(v+dv)=Mv+Mdv-vdM-Mdv=Mv+Mdv-vdM Импульс отработаных газов K3=dM(v+c) сумма K4=K2+K3 Изменение импульса dK=K4-K1=Mdv+cdM=Fdt
M(dv/dt)=F-mc – ур описывающее движение тела переменой массы – ур Мещерского. mc – реактивная сила знак “-“ озн. направлен Противоп. Вектору скорости. 1. 9 b Абсолютно неупругий удар шаров.
Столкновение тел при котором за весьма малый промежут. Времени происходит значит измен скоростей тел наз- удар
Удар наз абсол неупругим если после удара теле движутся как одно целое. При ударе двух шаров массы m1 m2 ск. v1v2 Зак сохр импульса m1 v1+m2 v2=(m1+m2)u u= m1 v1+m2 v2/
/m1+m2если скор. После удара u=0 то мех движ перешло в тепловое хаотическое дв молекул ( шары нагрелись ) 1, 10 Энергия как универ мера различ форм дв материи Энергия –универс мера движен материи во всех ее формах Энерг делится : механическую, внутр (тепловую) электро
мгнитную, ядерную. Любое тело обл запасом энергиим, она обл свойством адитивности, энегрия системы есть функция состояния. Величины характ количествено мате-рию– масса и движение – энергия , взаимо связ законом E=mc2 c скорость света в вакуме. 1, 11 Работа силы.
Процесс изм энергии под действием сил наз процессом совершения работы. Работа, совершоная системой в любом процессе–мера изм энергии в этом процессе. Совершонн. Работа есть форма передачи энергии. dА=Fdr=Fv dt в скаля форме dA=FdScos a = Fz dS dS-длина пути а-угол между F и dr Fz=Fcos a – проекц силы на направление перемещен. Если F, dA >0 сила движущая ,
круг интеграл Ft dS=0 Поле сил наз стационарны. Если ¶F/¶t=0 Диссипативные силы-суммарная работа при любых перемещениях всегда отрицательна (трение, скольжение, сопрот. ) Гироскопические, силы зависящие от скорости мат точки, на которую они действ. И направ перепндикулярно этой скорости ( сила Лоренца) Их работа всегда = 0 . Работа постояной силы на пути S. A=FScos a, при а =0 A=FS. CИ-1Дж. Характеристика работы: мгновеная мощность– скаляр-ная физич велич N=dA/dt=Fdr/dt=Fv= Ftv N=A/t 1Дж/1с=1Вт 1. 12 Кинетиче энергия и ее связь с работ внеш внут сил
Кинетическая энергия тела- наз энерги механич движения под дейст силы F – dEk=dA=vdK=vdK=vd(mv) В Нютон мех m=const Ek=mv2/2=Ek(v) Работа переменой силы А= интегр от mv2 по mv1 vd(mv)= mv22/2- mv21/2=
=Ek2-Ek1=кEk Кинетич энерг тела Ek=1/2интегр по m v2dm= Ѕ интегр по V pv2dV Т-ма КенигаК Э мех системы = сумме К Э, которую бы имела мат точка облад массой всей системы , и движуйся со скоростью ее цетра инерции и К Э той же системы в ее движении относ поступательног движения системы отсчета с началом в центре инерции . Ek=mvc2/2+E1k. E1k-КЭ сист в сис отсчета S1 движуйщейся относит S и v=vc 1. 13 Поле как форма материи, осущ силов вз меж част веществ Физ поле – сист обладающие бсконечно больш. числом степеней свободы. - число независимых кординат которые надо задать для опредиления системы в пространстве. 1. 14 Потенциальная эн-я мат точки и ее связь с силой.
Потенциальная Эн – взаимодействия различных частей одной сист Работа = уменьшению энергии в этом процессе А=-ОEp=Ep1-Ep2 Работа потен сил при бескончно малом измен конфи сист dА=-dEp Работа внеш сил идет на увеличение потен эн системы dАвнеш=dEp Градиент – обьемная производная скалярного поля ( поверхн уров-ня) скорость изм функции u в направ к нормали n к поверх уровня в этой точке grad u = ¶u/¶n, grad u=lim V-0 f инт undS/V интегр по замкн S охват обьем V. В задачах используется Ep=mgh 1. 15 Потенц эн сист, мат точки в поле централных сил напряж. На мат точку действуют разн силы F проход через центр. И завис только от растояния F=Fr(r)r/r Если мат точка m притягив к центру сил М, то Fr(r)0. При перемещении мат точки m из 1 в бесконечность ( поле отсут) Внеш силы выпол работу кот идет на увел потен. Эн. Сист dEp=dAвнеш=Fdr=Frdr=dEp Ю интег от Ґ по V Fr(r)dr=Ep-Ep(Ґ) полагают Ep(Ґ)=0 тогда Ep=- интег от Ґ по V Fr(r)dr. Потенц силы соверш работу dA=-dEp=Fdr
1, 16 Закон сохран мех эн. И его связь с однородностью времени Мех. Эн - энерг мех движения и взаимодействия. E=EK+EpМех эн. Замкнутой сист не измен с течением времени, если все внут. силы действ этой системы потенциальны (тяжест, упруг) Измен энерг сист при взаимодействии с внеш телами = энерг получен от внешн тел. Состояние из кот сист вывод в резул внеш воздейст– сост мех равновесия системы. 1. 17 Удар абсолютно неупругих и упругих тел.
Удар –столкн тел при кот за мал промеж времени происх. Значит измен скоростей тел. Если скор тел напр паралейно– удар прямой. Закон сохр импульса u=m1v1+m2v2/m1+m2. Не упруг удар, до удара E1=m1v12/2+ m2v22/2+Ep1 после удара E2=(m1v1+m2v2)2/2(m1+m2)+Ep2 Изм энерг - ОE=E2-E1
b) 2 тело до удара покой. -ОE/E1=m2/m1+m2 2) Абсолютно уп удар. - если мех энер системы не изменяется v = 2m1v1+(m2-m1)v2/m1+m2 для второго тела также. 1. 18 Вращательное движение Угловые скор. и ускор. Связь с линейной скоростью и ускорением точек вращающегося тела.
Движение твердого тела при 2 неподвыжных точках наз вращател. 2 точки – ось вращения. Угл скор. - w=dj/dt вектор w=dj/dt при равномерн. w=j/t СИ – 1с-1 растояние dS=v dt скорость v=wR век v=w*R Число оборот за ед времени – частота вращения n=1/Т=1гц При равн-ном вращении w=2p/Т=2pn Неравномерное вращение – угловое ускорение e=dw/dt = d2j /dt2 Если движ ускор то вектора - w e если замедл w e Ї Если равнопеременое вращение e=const w=w0+et , j=w0t+et2/2 , /e/=1рад/с2=с-2 , at=dv/dt=dw/dt*R=eR an=v2/R=w2R2/R=w2R , a=Цe2R2+w4R2=RЦe2+w4 1. 19 Момент силы и момент импульс мех сист Ур дин вращ дв
Для характ. Внеш мех воздействия на тело, привод к измен вращат движения – момент силы. – F отност неподв точки 0 (полюса) – вект величина М = векторному произв радиуса вектора r проведе-ного из точки 0 в точку прилож силы В на вектор силы F , M=r*F Модуль момента сил М=r F sin a = F r sin a =F l, l –длина перепе- ндикуляра опущеного из 0 на линию силы F Си М=1Н*м Главн момент силМ=еri*Fi . Момент импульса мат точки отн непод Т. 0
Li=ri*Ki=ri*mivi=Ri*mivi+ ri*mivi В СИ L=1кг*м2/с Для мат точки Li= еri*mivi Главн момент внеш сил М=еМi=dL/dt Момент инерции тела – мера инертности тела во вращат движ во круг неподвижной оси. J=mR2 1. 20 Вычис моментов инерции для однород тел простой геом ф
Момент инер мат точки бескон мал массы отн оси вращ dJ=dm*R2 Момент инер тела Jz=интегр по m R2dm= интегр по v pR2dV
Т-ма Штейнера : Момент инерции относ любой оси = моменту инеции этого тела относит оси проход через центр масс тела паралейно расматриваемой оси + произв массы тела на квадрат растояния между ними J=J0+mb2Момент инерции целиндра : радиус R масса m высота h , выделим кольцо dr площадь кольца dS=2prdr , обьем трубы dv=2p r h dr , масса dm=p2 p r h dr . Мом инерции – J=2pph интегр от R по 0 r3 = Ѕ pphR4=1/2 m R2 1. 21 Кинет энерг вращаю тела . Закон сохр момента импульса и его связь с изотропностью пространства. Теорема НЕТЕР
Кинет энерг тела движ произвольным оьразом = сумме всех мат точек , на кот тело можно разбить. EK=Ѕ еmivi Тело вращ вокруг не подв оси EK=Jzw2/2 Работа точки dAi=Jizwdw тела dA=Jzwdw Полная работа A=интегр от w2 по w1 Jzwdw Поступ движ твердого тела со скоростью его центра инерции vc. – d(mvc)/dt=Fвнеш Вращат твердого тела вокруг центра инерц dLc/dt=Mс внеш – глав момент внеш сил относ точки С, Lc- момент ипульса тела отн точк Кинет энер свобод твер тела т-ма Кенига Ек=mvc2/2+Jcw2/2 Момент импульса замкн сист тел отн любой неподвиж точки постоянен во времени. Для замкн системы (Мz=0) закон сохр момента импульса отн оси вращ еLiz=еJizwI=const Т-ма Э. НетерДля физич сис-мы, ур-е движения которой имеют форму системы дифференцирова- ных ур-й и могут быть получены из вариционого принцыпа меха-ники, каждому непрер зависящему от одного параметра преобра-зованию ост-щим инвариантным действие S, соотв закон сохран. 1, 2 Элементы кинематики М Т Ур-е движ. , скорости.
1. 3 Ускорение матерьяльной точки Нормальное и тангациональное ускорение. Радиус кривизны траектории. 1. 4 Закон динамики Ньютона
1. 5 Основной закон динамики материальной точки. II зак Ньютона 1. 6 Внешние и внутрение силы . 3 закон Ньютона.
1. 7 Поступательное движение твердого тела. Центр масс механи- ческой. Системы и закон его движения.
1. 8 Закон сохранения импульса и его связь с однородностью пространства 1. 9a Движение тела переменой массы ( ур Мещерского) 1. 9 b Абсолютно неупругий удар шаров. 1, 10 Энергия как универ мера различных форм движен материи 1, 11 Работа силы. (вторая сторона)************** 1. 12 Кинетиче энергия и ее связь с работ внеш внут сил
1. 13 Поле как форма материи, осущ силовое взаимодействие между частицами вещества
1. 14 Потенциальная эн-я мат точки во внешнем силовом поле и ее связь с силой. Действущей на матерьяльную точку
1. 15 Потенц энерг системы, мат точки в поле централных сил потенциал и напряжонность поля
1, 16 Закон сохран мех эн. И его связь с однородностью времени закон сохранения и превращени энергии как проявление неуничтожимости материи и ее материи 1. 17 Удар абсолютно неупругих и упругих тел.
1. 18 Вращательное движение Угловые скор. и ускор. Связь с линейной скоростью и ускорением точек вращающегося тела. **********ВтораЯ шпора ************
1. 19 Момент силы и момент импульс мех сист Момент импульса тела относит неподв оси вращения. Момент инерции относительно оси . Уравн ддинамики вращательного движения
1. 20 Вычис моментов инерции для однород тел простой геом форм 1. 21 Кинет энерг вращаю тела . Закон сохр момента импульса и его связь с изотропностью пространства. Теорема НЕТЕР