Реферат по предмету "Геология"


Установки погружных центробежных насосов УЭЦН

Гипероглавление:
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
                          1.2.3. Погружные электродвигатели
1.2.4. Гидрозащита электродвигателя.
1.3. Краткий обзор зарубежных схем и установок.
Максимальная мощность на валу насоса, КВт
Номинальная подача,
Допустимое давление на пяту,
1.4.Аанализ работы ЭЦН..
1.4.1.Анализ фонда ЭЦН по АО “Сургутнефтегаз”
1.4.4.По напору.
1.5. Краткая характеристика скважин
1.6.Анализ неисправностей ЭЦН.
1.7.Анализ аварийного фонда по
НГДУ «Лянторнефть»
2. ПАТЕНТНАЯ ПРОРАБОТКА
2.1. Патентная проработка
2.2.Обоснование выбранного прототипа.
2.3.Суть модернизации.
3. РАСЧЕТНАЯ ЧАСТЬ
3.1.Расчет ступени ЭЦН
3.1.1.Расчет рабочего колеса.
3.1.2. Расчет направляющего аппарата.
3.2.Проверочный расчет
шпоночного соединения
3.3.Проверочный расчет шлицевого
3.4.Расчет вала ЭЦН
Расчет вала на прочность.
3.5.Прочностной расчет
3.5.1.Прочностной расчет корпуса насоса
3.5.2.Прочностной расчет винтов страховочной муфты.
3.5.3.Прочностной расчет корпуса полумуфты
4. ЭКОНОМИЧЕСКИЙ  ЭФФЕКТ
Расчет экономического эффекта
4. ЭКОНОМИЧЕСКИЙ  ЭФФЕКТ ОТ УСОВЕРШЕНСТВОВАНИЯ КОНСТРУКЦИИ ЭЦН
Расчет экономического эффекта
5. БЕЗОПАСНОСТЬ и ЭКОЛОГИЧНОСТЬ ПРОЕКТА
5.1. Анализ и оценка опасностей при выполнении работ,
 связанных с обслуживанием скважин, оборудованных УЭЦН.
5.2. Расчет заземления электрооборудования.
5.3. Основные мероприятия  по обеспечению безопасности
условий труда операторов.
5.4. Общие требования к безопасности к рабочим цеха в подготовке
и перекачке нефти (ППН)
Литература
ANNOTATION
АННОТАЦИЯ
Основные технические параметры кабельных линий
Расшифровка материалов к
Текущий ремонт гидрозащиты 1Г-51
РАСШИФРОВКА СТАТЬИ  «Сырье и материалы»
РАСШИФРОВКА СТАТЬИ «Запчасти»
РАСШИФРОВКА СТАТЬИ «Трудовые затраты»
СМЕТНАЯ КАЛЬКУЛЯЦИЯ № 3
РАСШИФРОВКА СТАТЬИ  «Запчасти»
РАСШИФРОВКА СТАТЬИ «Трудовые затраты»
РАСШИФРОВКА СТАТЬИ «Сырье и материалы»
СМЕТНАЯ КАЛЬКУЛЯЦИЯ № 4
Типооборудование
Типооборудование
Типооборудование
--PAGE_BREAK--    продолжение
--PAGE_BREAK--                          1.2.3. Погружные электродвигатели
Погружные электродвигатели состоят из электродвигателя и гидрозащиты.

Двигатели трехфазные, ассинхронные, короткозамкнутые, двухполюсные, погружные, унифицированной серии. ПЭД в нормальном и коррозионном исполнениях, климатического исполнения В, категории размещения 5, работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 С содержащей:

-         мехпримесей не более 0.5 г/л;

-         свободного газа не более 50%;

-         сероводорода для нормальных, не более 0.01 г/л, коррозионностойких до 1,25 г/л;

Гидрозащитное давление в зоне работы двигателя не более 20 МПа. Электродвигатели заполняются маслом с пробивным напряжением не менее 30 КВ. Предельная  длительно допускаемая температура обмотки статора электродвигателя (для двигателя с диаметром корпуса 103 мм) равна 170 С, остальных электродвигателей 160 С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего, мощностью от 63 до 630 КВт) и протектора. Электродвигатель состоит из статора, ротора, головки с токовводом, корпуса.
1.2.4. Гидрозащита электродвигателя.
Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса. Существует несколько вариантов гидрозащиты: П, ПД, Г.

Гидрозащиту выпускают обычного и коррозионностойкого исполнений. Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 21 г/см, обладающий физико-химическими свойствами с пластовой жидкостью и маслом.

Гидрозащита состоит из двух камер сообщенных трубкой. Изменение объемов жидкого диэлектрика в двигателе компенсируется перетоком барьерной жидкости из одной камеры в другую. В гидрозащите закрытого

типа применяются резиновые диафрагмы. Их эластичность компенсирует изменение объема масла.
1.3. Краткий обзор зарубежных схем и установок.
Наиболее крупными фирмами, выпускающими погружные центробежные насосные установки являются «Реда ламп», «Оил дайнемикс».

Погружные центробежные насосы применяются для добычи нефтепродуктов в ряден стран.

Насосы имеют по 2 верхние и 2 нижние секции.

Рассчитаны на работу в скважинах:

-              с температурой до 95С;

-              содержание мехпримесей не более 0,5г\л;

-              сероводорода до 1,25 г\л;

-              свободного газа на приеме насоса до 35%.

После определения производительности скважины выбирается насос соответствующего размера. Характеристиками рабочего колеса центробежного насоса являются большое давление сверху вниз при низком уровне дебита. Чтобы продлить срок службы насоса, фирма ОДИ рекомендует использовать специальное оборудование, если предполагается значительное содержание песка – гофрированный резиновый подшипник – используется для осевой поддержки насоса. Резина обеспечивает прочную упругую поверхность осевого подшипника. Такая поверхность позволяет частица песка перекатывается по поверхности подшипника, не царапая ее. Канавки обеспечивают отвод для частиц песка, которые затем вымываются из подшипника. Если насос теряет осевую стабильность, вал начинает вращаться эксцентрично, что приводит к увеличению боковой нагрузки и эксцентричному вращению опорных шайб и сокращает срок службы насоса до нескольких часов.

Опорные модули с заполненными опорными колесами и подшипниками обеспечивают осевую и радиальную поддержку насоса благодаря износостойким материалам, намного тверже песка, устойчивым к воздействию агрессивных газовых и химических сред.

Насосы фирмы ОДИ отличаются от других зарубежных образцов:

-              две опорные ступени насоса;

-              валы секций не имеют своей пяты и, упираясь, друг в друга образуют вал, который передает осевую нагрузку на пяту расположенную в протекторе;

-              валы соединяются между собой с помощью зацепления;

-              вал, общей длиной более 24 метров имеет только одну осевую опору в нижней части и подвергается продольному изгибу;

-              в каждой двенадцатой ступени размещены бронированные втулки.

  Фирма выпускает насос двух габаритов: 139.7 мм и 177.8 мм (диаметры обсадных колонн) следующих типов ( таблица 1.1)

                                                                                                                                                                                 

                                                                                                              Таблица 1.1.

Тип

насоса

Наружный

Диаметр,

 (мм)

Максимальная мощность на валу насоса, КВт

Номинальная подача,

м/сут

Допустимое давление на пяту,

м.в.ст.

R 3





30-50

3862

RC 5





50-73



RA 7





90-125



R 9





109-133



RC 12

101,6

200

133-186



R 14





150-212



RA 16





186-239



RA 22





239-311



R 32





311-437

2652

R 38





437-570

1676



Двигатель фирмы отличается конструкцией – число пазов ротора и статора 18 и 23 соответственно, у других соответственно 18 и 16. Двигатели очень чувствительны к температуре, имеют малый температурный запас. Очень важна скорость обливающей их жидкости, фирма специально оговаривает диаметры скважин, в которые ставят ее двигатели. Фирма ODI предусматривает регуляторы частоты вращения двигателя и считается, что плавный пуск защитит двигатель, хотя есть вероятность того, что высокий ток на отдельных фазах может выбить пробки. В общем. Технические характеристики у двигателей фирмы ODI ниже, чем у отечественных двигателей.

Фирма ODI скопировала советские протекторы ГД и 1Г51. Она использует к гидрозащите вихревые газосепараторы KGV и RGV, если объем свободного газа на приеме достигает 10%. Используются для определения влияния повышенного содержания газа на работу насоса (рабочие характеристики вихревых газосепараторов).

Фирма ODI не является лучшей фирмой, представляющей на мировом рынке погружные центробежные насосы, но и не является плохой фирмой.

Более конкретно о технических данных насосов фирмы ODI представлено в приложении.

При разработке конструкции ступеней насосов фирма  уделяет особое внимание проблеме защиты от абразии.

1.В ODI используется особая конструкция диффузора во всех ступенях насосов 55 и 70 серий для того, чтобы исключить попадание песка в область опорной втулки.

Конструкция ступени фирмы ODI представлена на рис.1.4.
1 – балансная гидравлическая конструкция устраняет необходимость балансных отверстий;

2 — пьедестальная конструкция позволяет плавный проток жидкости в рабочее колесо;

3 – поскольку в нормальном режиме рабочее колесо давит на опору сверху, такая конструкция препятствует попаданию песка в область между втулкой рабочего о поры диффузора;

4 – две опоры с феноловыми шайбами уменьшают радиальную нагрузку и увеличивают продолжительность службы шайб.
1.4.Аанализ работы ЭЦН..
1.4.1.Анализ фонда ЭЦН по АО “Сургутнефтегаз”
Таблица 1.1.

состояние

всего

Т И П     О Б О Р У Д О В А Н И Я

ЭЦН5-20

ЭЦН5-30

ЭЦН5-80

ЭЦН5-125

ЭЦН5М-50

ЭЦН5-250

ЭЦН5А-250

ЭЦН5А-400

ЭЦН5А-500

ЭЦН5А-16

ЭЦН5А-25

Центрилифт

ODI


ВНН

ЦУНАР

прочие

Спущено в скважину

7769

302

27

1535

843

3891

360

148

73

33

17



6

105

387

42





В работе

6857

221

25

1372

768

3372

333

139

65

31

8

2

105

375

41





В простое

912

81

2

163

75

519

27

9

8

2

9

4



12

1







1.4.2 Анализ фонда скважин.

1.4.3. По подаче.
За последние годы было выпущено около 1042 насосов типа ЭЦН, из них :

2,5% — ЭЦН 20

38,9% — ЭЦН 50

15,0% — ЭЦН 80

12,1% — ЭЦН 125
1,7% — ЭЦН 160

7,6% — ЭЦН 200

7,3% — ЭЦН 250

2,5% — ЭЦН 360

11,3% — ЭЦН 500
                                                                                                        Таблица 1.2.



Типоразмер

Фонд

на 1.01.97

Типоразмер



Фонд

на 1.01.97

ЭЦН 30

25

ЭЦН 200

76

ЭЦН 50

389

ЭЦН 250

73

ЭЦН 80

150

ЭЦН 360

25

ЭЦН 125

121

ЭЦН 500

113

ЭЦН 160

17

Всего

989



Импортного производства:
                                                                                                      Таблица  1.3.



Типоразмер



Фонд

на 1.01.97

Типоразмер

Фонд

на 1.01.97



R – 3

6

RA – 16

1

RC – 5

9

RA – 22

1

RA – 7

5

R – 32

2

R – 9

6

R – 32

10

RC – 12

7

Всего ODI

53

R — 14

6




    продолжение
--PAGE_BREAK--


1.4.4.По напору.
По напору насосы распределились следующим образом:

35,7% — напор 1300 метров

17,8 – напор 1200 метров

           напор 1400 метров

           напор 1700 метров

           напор 900 метров

           напор 750 метров

           напор 100 метров

В настоящее время растет необходимость в напоре 1300, 1700, 1800 метров с подачей 30.50 кубических метров.
1.5. Краткая характеристика скважин
Скважины бурились на месторождениях кустовым способом, все наклонно-направленные. Средняя глубина до 3000 метров. Угол наклона скважины до 45. Глубина спуска насоса колеблется в пределах от 1200 до 1700 метров.

Динамический уровень:

-самый малый – устье;

-самый большой – > 1000 метров.

Динамический уровень в основном колеблется в пределах от 0 до 800 метров. В настоящее время наблюдается все большее снижение уровня нефти в скважинах месторождений, увеличение числа скважин с динамическим уровнем больше одного километра.

Распределение фонда УЭЦН по динамическим уровням за 1996 год представлено в таблице 1.4.

                                                                                                        Таблица 1.4.

0-200

201-400

401-800

801-1000

>1000

всего

действ.

фонд.

193

152

389

166

115

1015

1115

17,3%

13,6%

34,9%

14,9%

10,3%

91,0%

100%



1.6.Анализ неисправностей ЭЦН.
На предприятиях используются как модульные, так и немодульные насосные установки.

К неисправностям насосных установок можно отнести следующие неисправности:

— реже всего выходит из строя гидрозащита, основной поломкой является прорыв резиновой диафрагмы;

— двигатели выходят из строя из-за пробоя статора нижнего или верхнего оснований, а также коррозии корпуса;

— насос выходит из строя чаще всего из-за засорения мехпримесями, быстро изнашивается вал насоса.

Распределение отказов УЭЦН по укрупненным причинам за 1997 год представлен в таблице 1.5.

                                                                                                           Таблица 1.5.

причины

НГДП

Нет подачи

200

R— 0

1020

Клин

15

Негерметичность НКТ

32

прочие

48

ВСЕГО

1315


Причины отказа погружных насосов выглядят следующим образом:
                                                                                                        Таблица 1.6.



Причины отказа

1996 г.

1995 г

1

Мехповреждение кабеля

71

69

2

Засорение мехпримесями

162

118

3

Агрессивная среда

1

7

4

Негерметичность НКТ

14

7

5

Несоответствие кривизны

6

27

6

Некачественное глушение

2

2

7

Электроснабжение

3

6

8

Нарушение э/колонны

1

2

9

Некачественный монтаж

29

65

10

Полет ЭЦН

7

1

11

Комплектация несоотв. заявке

26

18

12

Бесконтрольная эксплуатация

39

35

13

ГТМ

17

4

14

Причина не выявлена НГДП

59

53

15

Прочие

91

-

Итого по вине НГДП

528

414

16

Брак ремонта кабеля

7

12

17

Брак ремонта ПЭД

9

8

18

Брак ремонта гидрозащиты

1

4

19

Брак ремонта насоса

1

-

20

Скрытый дефект оборудования

31

13

21

Причина не установлена ЭПУ

3

1

Итого по вине ЭПУ

52

38

НДП + ЭПУ





Спорные





Заводской брак

5

14

Итого отказов

585

466



Из таблицы видно, что самым значительным техническим фактором, влияющим на работу установок ЭЦН. И являющимися причинами выхода из строя можно назвать мехповреждения кабеля, засорение примесями, некачественный монтаж, а также несоответствие кривизны ствола скважины, и бесконтрольное эксплуатация. Отсюда следует, что забивание мехпримесями является важным фактором влияющим на срок службы насоса, а борьба с ними должна привести к увеличению межремонтного периода установки. За 1997 год межремонтный период и наработки на отказ имеют следующие значения:
                                                                                                                                                  

                                                                                                         Таблица 1.7.      

Эксплуат.

фонд

Действ.

фонд

Отказы

Наработка

на отказ

Кол-во

ремонтов

МРП

Средний дебет

Обводненность

1995

1996

1995

1996

1995

1996

1995

1996

1995

1996

1995

1996

1995

1996

1995

1996

1576

1431

1168

1115

1172

1315

264

266

1226

1224

310

310

114.5

122.6

89,0

90,4


1.7.Анализ аварийного фонда по НГДУ «Лянторнефть»
В 1997 году произошло 60 полетов на 60 скважинах оборудованных установками электроцентрированных насосов. За прошедшие 5 лет наметилась тенденция увеличения количества аварий по фонду УЭЦН. В отчетном году аварийность повысилась на 16 скважин, по сравнению с аналогичным периодом 1996 года. Большая часть полетов произошли в результате расчленения фланцевых соединениях УЭЦН – 48%. Здесь следует выделить обрывы по шпилькам между секциями насоса – 25% и метод ПЭД и протектором гидрозащиты – 10%. Следующая группа обрывов – обрывы по НКТ. Основная доля обрывов приходится на нижнюю и верхнюю часть колонны НКТ, соответственно – 44% и 38%. Все остальные аварии относятся к категории частных случаев. Последняя большая группа аварий – это аварии по причине слома по телу узлов УЭЦН. По данной причине 4 полета получено в результате слома по телу корпуса секций насосов, 3 – по корпусу гидрозащиты, 1 – по телу ловильной головки. Сломы по «шейки насосов» возросли с 1 полета в 1996 г до 5 в 1997 году. Проводя анализ эксплуатации аварийного фонда скважин УЭЦН достаточно четко просматривается влияние осложняющих факторов на работу УЭЦН ставших причиной полета на этих скважинах. В первую очередь, львиная доля полетов получена на таких пластах, как А  4-5 и А 2-3, где наблюдается  интенсивный вынос мехпримесей и высока степень коррозии. Высокое содержание мехпримесей в добываемой жидкости наблюдается практически по всем скважинам аварийного фонда, особенно на момент запуска и первых дней эксплуатации.  Более того по ряду скважин в период работы содержание мехпримесей не только остается на одном уровне, но и увеличивается. Снижение выноса мехпримесей говорит о том, что установка начала снижать свою производительность из-за износа рабочих органов насоса.

Основными причинами аварий являются следующие факторы:

1.Повышенное содержание мехпримесей в добываемой жидкости как после ремонта, так и в процессе эксплуатации, что вызывает интенсивный износ оборудования, что в свою очередь повышает вибрационные нагрузки.

2.Некачественные крепежные материалы, применяемые при монтаже УЭЦН, которые не выдерживают вибрационные нагрузки в процессе работы. Монтаж зачастую проводится крепежными материалами не соответствующими ГОСТ.

3.Увеличение полетов 1997 году связано также низким уровнем обеспечения нефтепромысловым оборудованием, в результате чего не обновляется парк подземного оборудования.

4.Недостаточным контролем со стороны технических служб ДАОЗТ за режимом работы скважин.

5.«Спутник».

Предлагаемые меры по сокращению аварийности:

1.Повышать контроль за работой скважин, особенно по пластам А 4-5 и А

2-3. Здесь необходимо 1 раз в месяц отбирать пробу добываемой местности на анализ содержания мехпримесей (по пластам А 4-5  и А 2-3 2 раза в месяц), 2 раза в месяц (в начале и в конце) контролировать УЭЦН по динамическому уровню.

2.Производить спуск УЭЦН на заданную глубину (7-10 метров) только с замером НКТ, что исключит попадание установки в зону повышенной кривизны.

3.Рассмотреть вопрос о приобретении НКТ с антикоррозийным покрытием для спуска в скважину коррозийного фонда.

4.Увеличить процент обновляемости парка подземного ремонта.

5.При ПДС производить зачистку резьбы труб и  муфт перед свинчиванием,  более качественно проводить отбраковку НКТ по износу резьбовых соединений.

6.Возбновить работу ПДК по авариям, более детально подойти к расследованию причин полетов.
Подробное распределение отказов представлено в приложении 5.
2. ПАТЕНТНАЯ ПРОРАБОТКА
2.1. Патентная проработка
1.     М.М. Трусов, В.Я. Райт, и др. Авторское свидетельство № 597785, №  

    21, 1976 г. с.4. «Скважинная насосная установка».
Изобретение относится к гидромашиностроению и может быть использовано в конструкциях скважинных насосных установок, предназначенных для откачивания сред, содержащих механические примеси.

Цель изобретения -  уменьшение габаритов и металлоемкости установки, а также повышение степени очистки перекачиваемой среды.

Поставленная цель достигается тем, что в скважинной насосной установке, содержащей центробежный насос, размещенный под ним электродвигатель, установленный на выходе насоса гидроэлеватор с наружным кожухом и камерой смещения и деформируемый  пакер, последний расположен выше гидроэлеватора, в наружном кожухе гидроэлеватора выполнены отверстия и его камера смешения сообщена с областью всасывания насоса посредством упомянутых отверстий, а электродвигатель снабжен спиральной направляющей на его наружной поверхности.
2.О.М. Юсупов, М.Д. Валеев и др. Авторское свидетельство № 1019111, 

   № 19, 1982 г., с 4. «Способ запуска центробежного насоса».
Изобретение относится к гидромашиностроению и может быть использовано при эксплуатации центробежных насосов для подъема жидкости из скважины.

Цель изобретения -  упрощение технологии запуска.

Указанная цель достигается тем, что согласно способу запуска центробежного насоса, откачивающего газированную жидкость и установленного в скважине на колонне подъемных труб, подключенной в верхней части к выкидной линии и затрубному пространству скважины, включающему создание положительной разности давлений на выходе и выходе насоса, раскрутку ротора последнего в турбинном режиме жидкостью, перетекающей из затрубного пространства в колонну подъемных труб под действием созданной разности давлений, и включение электродвигателя насоса, предварительно отключают колонну труб от выкидной линии и затрубного пространства, а создание положительной разности давлений осуществляют путем выпуска газа на верхней части колонны труб.
3.     Ю.Г.Вагапов, А.А.Ланкин и др. Авторское свидетельство № 808698,  

     № 8, 1981 г., с.4.  «Погружной электроцентробежный агрегат».
Изобретение относится к насосостроению и может найти применение в погружных электроцентробежных насосах, предназначенных, например, для добычи нефти из скважин.

Цель изобретения – обеспечение возможности обратной прокачки жидкости через насос и измерения давления на приеме насоса.

Указанная цель достигается тем, что насос дополнительно содержит муфту, закрепленную над обратным клапаном, в которой размещен специальный груз со штоком в нижней части, проходящим через отверстие седла клапана, причем груз имеет сквозное отверстие.
4.     Л.А.Чернобай, А.М. Романов и др. Авторское свидетельство № 

    1028893, № 26, 1981 г., с 4. «Погружной центробежный насосный агрегат».
Изобретение относится к гидромашиностроению, более конкретно к конструкциям насосных установок для подъема минерализованных жидкостей, например обводненной нефти, из скважины.

Цель изобретения – повышение долговечности при использовании агрегата для перекачивания обводненной нефти.

Поставленная цель достигается тем, что в погружном центробежным агрегате излучатель снабжен расположенным по обе стороны от него кольцевыми камерами, сообщенными с отверстиями.
5. С.А. Войтко, А.А. Гунин и др. Авторское свидетельство № 1083696,  

   1981 г., с.3.  «Скважинная насосная установка».
Изобретение относится к области гидромашиностроения и может быть использовано в конструкциях насосных установок, предназначенных для откачивания жидкости с механическими примесями из скважин.

Цель изобретения – в повышении надежности и уменьшения габаритов установки.

Поставленная цель достигается тем, что в скважинной насосной установке, содержащей установленный на колонне подъемных труб насос, размещенный на выходе последнего пескоотстойник, снабженный в нижней части нормально открытым клапаном, и обводную трубу, нижний конец которой непосредственно сообщен с выходом насоса, а верхний через обратный клапан – с полостью колонны труб, обводная труба расположена внутри пескоотстойника, а нормально открытый клапан выполнен подпружиненным и имеет внутреннюю

полость, уплотненную относительно полости колонны труб и гидравлически связанную с выходом.
2.2.Обоснование выбранного прототипа.
Большое значение имеют погружные центробежные насосы для нефтедобывающей промышленности. Скважины, оборудованные установками погружных центробежных электронасосов, выгодно отличаются от скважин, оборудованных глубинонасосными установками. Применение такого оборудования позволяет вводить скважины в эксплуатацию сразу же после бурения в любой период года, без больших затрат времени и средств на сооружение фундаментов и монтаж тяжелого оборудования. Спуск электронасоса в скважину отличается от обычного для промыслов спуска НКТ лишь наличием кабеля и необходимостью его крепления к трубам, сборка же самого электронасоса на устье скважины очень проста и занимает по нормам не более 2-3 часов.

Характерной особенностью погружных центробежных насоса является простота обслуживания, экономичность, относительно большой межремонтный период их работы.

Насосный агрегат, состоящий из погружного центробежного насоса, двигателя и гидрозащиты спущен на колонне НКТ в скважину. Насосный агрегат откачивает пластовую жидкость из скважины и подает ее на поверхность по колонне НКТ. Кабель в сборе, обеспечивает подвод электроэнергии к электродвигателю, крепится  к гидрозащите, насосу и колоне НКТ хомутами. Насос погружной, центробежный, модульный, многоступенчатый, вертикального исполнения.

Базовой моделью для моего усовершенствования является УЭЦН 5 50-1300, так как на основании проведенного анализа полетов УЭЦНМ в АО «Сургутнефтегаз» видно, что влияние вибрации в модульных насоса ЭЦН приводит к обрыву болтов во фланцевых соединениях, не только самого верхнего, но и ниже. На основании этого предлагается конструкция противополетного устройства, устанавливаемого на каждое фланцевое соединение насосного агрегата, описанное далее.
    продолжение
--PAGE_BREAK--2.3.Суть модернизации.
Страховочные муфты предназначены для предотвращения падения установок в скважину при ее расчленении по фланцевому соединению.

Устанавливаются страховочные муфты между модуль-секциями насоса (кроме соединения входной модуль – модель-секция) и между модуль-головкой и модуль секцией. Если применяется противополетная головка.

Монтаж-демонтаж установок производится согласно «Инструкции по монтажу-демонтажу на устье скважин погружных электроцентробежных насосов для добычи нефти» со следующими дополнениями.

После соединения верхней и нижней секций, приподнять агрегат и установить на фланцевом соединении страховочную муфту в следующей последовательности:

1.Вывинтить стягивающие винты из корпуса муфты для рассоединения двух частей.

2.Установить обе части муфты на фланцевое соединение винтами вниз так, чтобы срезанная плоскими часть муфты находилась под кабелем.

3.Соединить часть муфты винтами при помощи шестигранного ключа, и расклинить винты со стороны разрезанной части, для предотвращения самопроизвольного развинчивания.

Аналогично установить муфту при наличии многосекционного насоса между всеми модулями.

Демонтаж муфты осуществить следующим образом:

1.Сжать плоскогубцами расклиненные концы винтов.

2.Вывинтить винты из корпуса страховочные муфты, разъединить части муфты и снять их.
3. РАСЧЕТНАЯ ЧАСТЬ
3.1.Расчет ступени ЭЦН
3.1.1.Расчет рабочего колеса.
При расчете ступени погружного центробежного насоса всегда известны подача и напор насоса, скорость вращения вала и диаметр обсадной колонны скважины для работы в которой предназначен насос. (1)

Подача, Q – 30 м\сут.

Напор, H – 1300 м.

Частота вращения вала, n – 3000 об\мин.

Внутренний диаметр корпуса насоса, d – 82 мм.

Внутренний диаметр корпуса ступени, d – 76,5 мм.

После того, как установлен внутренний диаметр ступени, можно приступать непосредственно к расчету проточной части рабочего колеса и других размеров.

Для этого необходимо выполнить следующее:

а) Определить наибольший внешний диаметр рабочего колеса D max

                                         D2max=Dвн.–25,                                                      (3.1.)

где, S – радиальный зазор между внутренней стеной корпуса ступени

        Dвн. и наибольшим диаметром рабочего колеса D max.

Этот зазор выбираем в пределах S=2-3 мм

б) Определим приведенную подачу рассчитываемой ступени:

                                   Qприв.=2800( 90 )3  Q,                                                  (3.2)

                                                  n    D2max

где, 2800 – приведенная скорость вращения единичного насоса в об\мин.

       90 – наибольший внешний диаметр рабочего колеса единичного    

               насоса в мм.

        n – число оборотов вала, об\мин.

        Q – рассчитываемая подача, л\с.

в) Определяем диаметр втулки при входе в рабочее колесо:

                                       Dвт.=Кdвт*D2max,                                                     (3.3)

где, K dвт – коэффициент, соответствующий полученному значению

       Qприв, 0,31.

После определения диаметра втулки необходимо проверить возможность размещения вала насоса.
При этом должно быть соблюдено условие:

D = d + 2 δ вт.,

где, Dвт – диаметр втулки, мм;

       Dв – диаметр вала насоса, мм;

     δвт. – толщина ступени втулки (для погружных центробежных насосов с диаметром корпуса 92-150, можно принять Sвт=2-4 мм);

г) Определяем наибольший диаметр входных кромок лопастей D1 maxпо уравнению:

D1max=D
2max

                                                                                       KD1max                                               (3.4)              

где, КD1 max– коэффициент, определенный для Qприв, 2,3;

в) Определяем диаметр входа D в рабочее колесо:

                                               D=КD*D1max,                                                 (3.5)

К – коэффициент диаметра входа в рабочее колесо для данного

      Qприв, 0,96;

е) Определяем наименьший диаметр входных кромок лопастей рабочего колеса D2 min:

               D2min=√D2вн.ст.–1*(D
2max)2*Fприв

                                                                0,78590                                                                (3.6)

где, Fприв – приведенная площадь без лопаточного кольца между стенкой     

        корпуса ступени Dвн.ст. и ободом верхнего диска рабочего колеса

        D2min. Находят для Q Fприв = 1600 мм.

ж) Определяем наименьший диаметр входных кромок лопастей D1min:

D1min=  D
2max

                                                                 KD1min                                                  (3.7.)

         где, KDmin– коэффициент определяемый для Qприв.

з) Определяем высоту канала b на выходе из рабочего колеса.

                                              в=Кb2*D2max,                                                       (3.8)           

  где, Кb2 – коэффициент, определяемый для Q, 0,016;

и) Определяем высоту каналаb1 на входе в рабочее колесо.

                                                b1=Kb1*D2max,                                                   (3.9)

Кb1 – коэффициент, определяемый для Q, 0,036;

к) Напор ступени определяют по коэффициенту окружной скорости

Кv2окр., пользуясь уравнением:

                                             Kv2окр.=V
2
окр.
max                                                (3.10)  

60√2gH

где, V2окр. – окружная скорость на диаметре D2max рабочего колеса;

Кv2окр.= π
D
2ср.*
n

                                                                60√2gH                                          (3.11) 

где, K v2окр. – коэффициент окружной скорости, Кv2окр. = 1,33;

        D2ср. – внешний диаметр рабочего колеса, мм;

        п – число оборотов вала, об/мин;

        g – ускорение свободного падения, м/с;

л) Определяем коэффициент быстроходности ступени;

м) Определяем конструктивные углы β1 и β2 от быстроходности ступени.
Расчет колеса:

а) D2max=Dвн.ст. – 2S

    В2max=76,5-2*2

    D=72,5 мм;

б)Qприв = 2800  (90      )3 *Q;

                   n      D2max
   Qприв=  2800    ( 90  )3 * 0,347;

                3000      72,5

    Qприв=0,6196 л\с;

в) d вт.=Кdвт*D2max

    dвт=0,31*72,5

    dвт=22,475 мм;

    dвт=dв+ 2δвт.

   dвт=17+2*2/5

   dвт= 22 мм;

г)D1max= D2max

                KD1max

   D1max=72,5

               2,3

   D=31,52 мм;

д) D=К*D1max;

    D=0,96*31,52;

    D=30,26 мм;

е) D2min=√D2вн.ст. —  1     (D
2max
)2 *Fприв. 

                              0,785     90        





    D2min=√76,52 – 1       (72,5)2 *1600

                           0,785    90

    D2min=67,3 мм;

ж) D1min= D2max

                 KD1min

     D1min= 72,5

                 2,2 

     D1min=32,95 мм;

з) b2=Кb2* D2max;

    b2=0,016*72,5

    b2=1,16 мм;

и) b1=Кb1*D2max

    b1=0,036*7,25=2,61 мм;

к) Н=(π
D
ср.* Н)2* 1 

            60*КН2     2g
   Н=(3,14*0,0725*3000) *    1

           60*1,33                2*9,81

   Н=3,73 м;

л) Hs=60;

м) β1=27;

     β2=53;
3.1.2. Расчет направляющего аппарата.
Осевой направляющий аппарат ступени погружного центробежного насоса рассчитывают следующим образом:

а) Определяем приведенную подачу и по ней определим приведенную, а затем действительную высоту рассчитываемой ступени:

lприв=22;

                                               l=l
прив.*
D
2max                                                   (3.12)

90

б) Определяем высоту междулопаточных каналов:

                                                   b3пр.=90*b3                                                   (3.13)   

                                                             D2max

где, b3пр.- приведенная высота от приведенной подачи, 3.3;

        b3пр.= b3
прив.*
D
2max   

                        90                   

в) Находим диаметр диафрагмы D направляющего аппарата:

                            F”прив.=0,7859(D2вн.ст.-D2)*(90)2                                       (3.14)

                                             D2max

где, F”прив-приведенная площадь кольца внутренней стенкой корпуса  

        ступени и диаметром ступени, 800;

D3=√D2вн.ст. – F’’
прив.*(
D
2max
)2

                                                             0,785          90

Расчет направляющего аппарата:

а) l=l прив. *
D
2max

            90

    l=22*72,5

          90

    l=17,7 мм;

б) b3=b3прив.*
D
2max

              90

    b3=3,3 * 72,5

              90

    b3=2,66 мм;

в) D3=√D2вн.ст. –
F’’(
D
2max)2

                         0,785    90 
    D3=√76,52 –800    (72,5)2

                   0,785    90

    D3=72,04 мм;
    КПД ступени 0,38
3.2.Проверочный расчет шпоночного соединения.
Шпоночное соединение проверяется по боковым граням шпонки под действием окружного усилия, передаваемого рабочему колесу:

                                             σ=2
M
р.к.D(h-t)*l                                                  (3.15)

где, Мр.к. – момент передаваемый рабочему колесу.

        D – диаметр вала;

         t — глубина паза по валу;

         l — длина посадочной части рабочего колеса;

         h – высота шпонки.
Момент, передаваемый рабочему колесу определяется из мощности передаваемой двигателем насосу. Мощность двигателя выбирают по основным параметрам насоса. К основным параметрам относятся подача, напор, КПД. Для определения напора необходимо определить количество ступеней находящихся в насосе. Количество ступеней можно определить следующим образом. Существует 5 видов секций отличающихся длиной, в зависимости от длины в каждой секции располагаются различное число ступеней. Для расчета возьмем следующий насоса: ЭЦН М-5-50-1300 состоящий из 2-х секций № 2 и № 5, в некоторых расположено 264 ступени, в секции № 2 расположено 73 ступени, а в секции № 5 расположено 192 ступени. Длина одной ступени ЭЦН 50 — 24 мм. Ступени насоса в секциях располагаются в пределах:

                                                 L=n*l                                                              (3.16)

где, n – число ступеней;

        l — длина одной ступени;

        L = (72*24) + (192*24)

        L = 1728 + 4608

        L = 6336 мм

Длина одной ступени ЭЦН – 30 равна 17,5 мм, в секциях расположится:

                                                             nр=L                                                    (3.17)

                                                                  lp

где, np – число ступеней, рассчитываемого насоса в двух секциях;

        lp – длина одной ступени ЭЦН – 30.

 

      np=6336

            17,5

      np=362 ступени

Значит в секции № 2 расположится 99 ступеней, а в секции № 5 расположится 263 ступени. Напор одной ступени равен 3,73 м. Общий напор равен произведению количества ступеней на напор одной ступени:

                                                          H=N*h                                                   (3.18)

где, h-напор одной ступени

       H=362*3,73

       H=1350,26 м

       H=1350 м.

Гидравлическая мощность насоса равна:

                                                 Nг=Q*
H*j                                                      (3.19)

                                                       102 *η

где, Q – подача насосной установки;

        H – напор насоса

         j-относительный удельный вес жидкости

        η-КПД насоса;

Q = 30 м3 /сут =3,5*10-4 м3 /с

Н = 1350 м

j=1900 кг/м3

η=0,43

Nг=3,5*10-4 *1350*1300

          102*0,43

Nг =15 КВт

Мощность двигателя должна быть:

Nд ≥ 1,05 Nг,                                                                                                  (3.20)

где Nд – мощность двигателя;

Nг – гидравлическая мощность насоса;

Nд = 1,05*15

Nд=15,8 КВт

По (1) подбираем двигатель, соответствующий условию отраженному в формуле (3.20):

Двигатель ЭД 20-103

Мощность двигателя Nд=20 КВт.

Момент, передаваемый на рабочее колесо:

                                         Мр.к.=Nдв.                                                            (3.21)

                                                     Nz*n

где, Nдв. – мощность подобранного двигателя;

       Nz – число рабочих колес, установленных в насосе;

       n – число оборотов вала насоса;

      Nz =362 ступени

      n=2840 об/мин=47,33 об/сек

Мр.к. = 20*103

    продолжение
--PAGE_BREAK--          362*47,33

Мр.к.=1,17 Вт.

Расчет шпонки на смятие производится по формуле (3.15):

σсм.= 2Мр.к.

        D (h-t)*l

Мр.к.=1,17 Вт.

D=17мм=0,017 м

l=10мм=0,01 м

h=1,6мм=0,0016 м

t=0,8мм=0,0008 м

σсм=          2*1,17

     0,017(0,0016-0,0008)*0,01

σсм.=17205881 Н/м2

σсм.=17,2 Мпа

Шпонка представляет собой кружок твердый, вытянутый, изготовленный из латуни марки П63. Сопротивление латуни этой марки разрыву:

σв=75-95 кгс/мм2

σв=750-950 МПа

Сопротивление смятию находится в пределах ½ σв, запас прочности на смятие нас удовлетворяет.
3.3.Проверочный расчет шлицевого соединения.
Шлицевое соединение проверяется на смятие по формуле:

                                             σсм.=Т                                                                (3.22)

                                                       0,75z  Асм*Rср.

где, Т – передаваемый вращаемый момент;

        z — число шлицев;

        Ам – расчетная поверхность смятия;

        Rср. – средний радиус шлицевого соединения.

Средний радиус шлицевого соединения определяется как:

                                            Rср.=0,25 (D+d)                                                   (3.23)

где, d-диаметр впадин шлицев, ;

        D-максимальный диаметр шлицев;

D=0,017 м

d=0,0137 м

Rср.=0,25 (0,017+0,137)

Rср.=0,007675 м

Расчетная поверхность смятия равна:
                                            Асм.=(D-d-2ƒ)*l                                                (3.24)

                                                        2
где, ƒ-фаска на шлицах;

       l-длина контактирующей поверхности шлицевого соединения;

ƒ=0,003 м

l=0,04 м

Асм.= (0,017-0,0137 – 2*0,0003)*0,04

                          2

Асм.=0,000042 м2

                                                  Т=N
дв
                                                              (3.25)

                                                       n

где, Nдв.- мощность двигателя;

       n — число оборотов вала;

Nдв.=20 КВт=20000Вт

n=2840 об/мин=47,33 об/сек

Т=20000

     47,33

Т=422,6 Н*м
σсм.=   422,6

        0,75*6*0,000042**0,007675
σсм=291308000 Н/м

σсм=291,308 Мпа.

Вал насоса изготовлен из высоколегированной стали.

[σсм]вала=500-1100 МПа.

Следовательно, шлицевое соединение, рассчитанное нами и проверенное на смятие удовлетворяет нашему насосу.
3.4.Расчет вала ЭЦН
Различают валы прямые, коленчатые и гибкие. Наибольшее распространение имеют прямые валы. Коленчатые валы применяют в поршневых машинах. Гибкие валы допускают передачу вращения при больших перегибах. По конструкции различают валы и оси гладкие, фанонные или ступенчатые, а так же сплошные и полые. Образование ступеней на валу связано с закреплением деталей или самого вала в осевом направлении, а также с возможностью монтажа детали при подсадках с натягом. Полые валы изготавливают для уменьшения массы или в тех случаях, когда через вал пропускают другую деталь, подводят масло и пр. Прямые валы изготавливают преимущественно из углеродных и легированных сталей.

Валы рассчитывают на прочность.
Расчет вала на прочность.
Во время работы вал насоса подвергается воздействию крутящего момента, осевой сжимающей нагрузки на верхний торец вала и радиальной нагрузки. Радиальная нагрузка на вал вызывается насосным расположением валов секций насоса и протектора и возможность неточного изготовления шлицевого соединения.

Предварительно оценивают средний диаметр вала по внутреннему диаметру шлицев d концентрационных напряжений и изгиба вала:

                                    τкр=M
кр.
max=M
кр.
max                                                      (3.26)

         

            Wр=,2*d3вн.

где, dвн.=М
кр.
max                                                                                              (3.27) 

               0,2*τкр

Максимальный крутящий момент:

                                         Мкрmax=N
max                                                          (3.28)

                                                        w

где,  Nmax– приводная мощность двигателя, 13 т;

         w=  π*
n      — угловая скорость, сек;

                30

         п-частота вращения электродвигателя, об/мин.

Напряжение на кручение определяем по пределу текучести материала σт.

Допустимое касательное напряжение при кручении принимаем с коэффициентом запаса прочности η=1,5;

τ=[τ]= τ
т  = σ
т   (3.18)

            η     2η

Для вала насоса ЭЦН берем сталь 40ХН с пределом текучести τ=750 Мпа.

Насосное соединение валов и некомпенсированные зазоры создают радиальную нагрузку в 60-130 кг.с, действующую на шлицевой конец вала насоса.

Радиальная нагрузка Р, находится по формуле:

                                       Р1=K[3E*J*∆у]                                                       (3.29)

                                                    C3

где, К – коэффициент, учитывающий компенсирующее влияние зазоров

        и равный 0,45-0,85;

        Е – модуль упругости материала вала, Па.

        J – момент инерции вала, принимаемый с учетом тела втулки. М;

       ∆у – стрела прогиба шлицевого конца вала, вызванная неспособнос-      

      тью в сочленении насоса и протектора, принимается равным 25*10 м;

       С – расстояние от центра подшипника до середины муфты, м;

Момент инерции вала:
                              J=π*
d4
вн.
*а*
(D-d
вн.)*(
D+d
вн.)*
z                                       (3.30)

                                                       64
где, а – ширина шлицы, м;

       D – наружный диаметр шлицев, м;

       z – число шлицев.

Радиальная нагрузка на вал Р2, зависящая от неравномерной передачи крутящего момента шлицами малы и ею можно пренебречь.

Пять работающих шлицев дают нагрузку, равную 0,2*Р, где

                                         Рокр.=2*М
кр.
max                                                        (3.31)

                                                      dср.

где, D – средний диаметр шлицев.

                                            Р2=0,2*Рокр.                                                         (3.32)

Изгибающий момент на шлицевом конце вала:

                                             Мизгб.max=(Р1+Р2)*b                                            (3.33)

где, b-расстояние от середины муфты или от точки приложения силы Р      

       до проточки под стопорное кольцо, м.

Мизг.max.=(Р1-Р2)*b.

Зная момент изгиба и момент кручения, можно определить напряжение изгиба и кручения в опасном сечении вала (под проточку на стопорное кольцо).

                                            σизг.max=М
изг.
max                                                   (3.34) 

                                                              Wx

                                                Wх=π*
d4
кр.                                                       (3.35)

                                                        32*D

где, Wх — момент сопротивления в месте проточки под стопорное кольцо,

         м;

        dкр.-диаметр вала в месте проточки под стопорное кольцо, м;

                                σизгб.min=М
изг.
min                                                              (3.36)

                                                 Wx

Напряжение кручения

                                        τкр.=М
кр.
max                                                             (3.37)

                                                 Wp

Wр=2*Wx – полярный момент сопротивления вала в месте проточки под стопорное кольцо;

Эквивалентное напряжение находим по четвертной прочности:

                                       σэкв.=√σ2изг.max+3τ2                                                  (3.38)

По этой величине и пределу текучести материала вала устанавливается запас прочности с учетом статистических нагрузок:

                                                   п=σ
т≥1,3                                                      (3.39)

                                                       σэкв
Исходные данные:

Приводная мощность двигателя N = 2000Вт. Частота оборотов двигателя п=2840 об/мин. Предел текучести материала вала σ=750 МПа. Модуль упругости материала вала У=20*10 МПа. По данной методике произведем расчет с цифровыми значениями:
Момент инерции вала:

J=π*
d4
вн.
+ а (D-d
вн) * (
D +d
вн)
2*
z

                  64

J= 3,
14*0,0124 + 0,0035 (0,017 – 0,012)*(0,017+0,012)2*6

                                                64

J=2,3*10-10  м;
Нагрузка создаваемая работающими шлицами:

Р2=0,2*Рокр.

Р2=0,2*
M
кр.
max

            dср

Р2=0,2 * 2*67,28

                0,0155

Р2= 1736,2584.
Максимальный изгибающий момент в месте проточки под стопорное кольцо:

Мизг.max= (Р1+Р2)*b

Мизг.max=(258,957+1736,258)*0,035

Мизг.max=69,83 Н*м.
Минимальный изгибающий момент в этом сечении:

Мизг.min=(Р1-Р2)*b

Мизг.min=(258,957-1736,258)*0,035

Мизг.min=51,74 Н*м;
Напряжение изгиба в опасном сечении:

σизг.max=М
изг.
max

               Wx

где, W=π*
d4
кр

              32*D

W=3,14*0,
01574

         32*0,017

W=3,51*10-7  м3;
Это мы нашли осевой момент сопротивления вала:
σизг.max.=    69,83

                3,51*10-7

σизг.max =198,945Мпа
Минимальное напряжение изгиба

σизг.min.= 51,
71

              3,51*10-7

σизг.min.=147,321 МПа
Напряжение кручения:

τкр=М
кр
.max

             Wp

где, Wр=2*Wх

Wр=2*3,51*10-7

Wр=7,02*10-7 м
Это мы нашли полярный момент сопротивления вала
τкр.= 67,28

       7,02*10-7

τкр.=96,114 Мпа;

Эквивалентное напряжение:

σэкв=√σ2изг.max+ τкр2

σэкв=√198,9452+3*96,1142

σэкв.=259,409 Мпа;

Запас прочности по пределу текучести:

п=  σ
т  ≥  1,3

     σэкв

п=    750

    259,409

п=2,8;

Из результатов расчетов видно, что вал из стали 40 ХН диаметром 17 мм со шлицем и с проточкой под стопорное кольцо выдерживает заданные нагрузки с коэффициентом запаса прочности п=2,8, который удовлетворяет условию 2,8>[1,4].
3.5.Прочностной расчет

3.5.1.Прочностной расчет корпуса насоса
 Корпусы погружных центробежных насосов изготавливают из трубных заготовок точением или из холодных комбинированных труб повышенной точности длиной 2100, 3600 и 5000 мм.

Корпус насоса будет рассчитываться в следующей последовательности.

1.Выбираем наружный диаметр и внутренний корпуса насоса.

Dвн.=0,092 м, Dвн=0,08 м

2.Определяем предварительную затяжку пакета ступеней с учетом коэффициента  запаса плотности верхнего стыка по формуле:

T=πКρgНrвн.[1-Eк-Fк/2 (ЕкFк+ЕнаFна)]                                                         (3.40)

где К – коэффициент запаса плотности стыка;

       К=1,4

       ρ — плотность воды;

       ρ=1000м/кг

      g – ускорение свободного падения;

      g = 9,8 м/с

      H — максимальный напор насоса;

      Н =1300 м

      r — внутренний радиус расточки корпуса насоса;

      r=0,04 м

      Ек- модуль упругости материала корпуса насоса;

      Ек=0,1х10 6Мпа

      Fк – площадь поперечного сечения корпуса насоса;

      Fк=1,62х10 -3 м 2

      Ена— модуль упругости материала направляющего аппарата;

      Ена=1,45х10 5МПа

      Fна– площадь поперечного сечения направляяющего аппарата;

      Fна=6,08х10-4 м2

Т=3,14х1,4х1000х9,81х1160х0,042[1-2,1х106 х1,62[10-3 /2(2,1х106 х1,62х10-3 +1,45х105 х6,08х10-4 ) ]=48256Н

3.Находим общее усилие, действующее вдоль оси корпуса по выражению:

Q=Т+ρgНrвн2 EкFк/2(ЕкFк+ЕнаFна)+G + πКρgНrвн                                                 (3.41)

где Т – предварительная затяжка пакета ступеней, определенная по формуле                

       (3.40)

      Т=48256Н

      G – масса погружного агрегата;

      G =20505 Н;

      Hmax -  максимальныйнапор насоса;

      Нmax =3500 м

      Q = 268519Н

4.Вычисляем осевое напряжение в  опасных сечениях корпуса по формуле

                               

                                      σ=Q/Fк                                                                     (3.42)                             

где Q – общее усилие, действующее вдоль корпуса насоса, определенное по               

              выражению (3.41)

      Q=268591 Н

       Fк – площадь ослабленного сечения корпуса по наружному диаметру            

       трубы;

       Fк =1,24х10-3 м2

      σz=268519/1,24х10-3=220МПа

  5.Определяем тангенциальное напряжение в опасных сечения, по выражению:

                         σ=pgHmaxrвн/S-MT/F’                                                         (3.43)

где S – толщина корпуса в опасном сечении;

      S=0,009 м

      M – коэффициент Пуассона;

      M=0,28

      σт=142 МПа




3.5.2.Прочностной расчет винтов страховочной муфты.
Расчет винтов на срез произведем по формуле:

                           τ≤[τ]                                                                                     (3.44)

где τ – напряжение среза действующее на винты страховочной муфты;

       [τ] – допускаемое напряжение среза.

Допускаемое напряжение среза определяется по формуле:     

[τ]=0,4σт

где σт – предел текучести материала винта, для стали 35 из которой  

       изготовлены винты

       σт=360МПА.

[τ]=0,4х360=144МПа

Напряжение среза действующее на винты определяем по формуле

                                                    τ=4S/пdхz                                                    (3.45)

где S – сила среза действующая на винты;

      d – внутренний диаметр резьбы;

      d=0,0085 м;

z –количество винтов, z=2;

Находим силу среза по выражению

                                                                  S=mхg                                            (3.46)

где m – масса насосного агрегата

       m=709 кг

       g – ускорение свободного падения;

       g =9,8 м/с 
S=709х9,81=6955,29 кгм/с2 =6955,29 Н

Определяем напряжение среза, действующее на винты страховочной муфты по формуле (3.45)

τ=6955,29х4/3,14х0,00855 х2=61285468 Па=61,29 МПа.

Прочностной рачсет винтов на срез является допустимой, так как 61,29

Коэффициент запаса прочности винтов определяем из выражения

                                                         n=[τ]/ τ                                                   (3.47)

где [τ] – допускаемое напряжение среза, [τ]=144 МПА

       τ– напряжение среза действующее на винты страховочной муфьы,

       τ=61,29 МПа

П=144/61,29=2,35

Полученный коэффициент заппса прочности является достаточным.
    продолжение
--PAGE_BREAK--3.5.3.Прочностной расчет корпуса полумуфты
Расчет корпуса полумуфты будет рассчитываться на растяжение в опасном сечении. Расчет полумуфты в опасном сечении произведем по формуле:

                                                 σ≤[σ]                                                               (3.48)

где σ – сопротивление при растяжении действующее в опасном сечении

            полумуфты;

       [σ] – допустимое сопротивление при растяжении.

Допустимое сопротивление при растяжении определяется из выражения

                                                 σ=0,3σт                                                                                  (3.49)

где σт – предел текучести материала для материала сталь 30 Л, из которого отлита полумуфта σт=240 МПа

[σ]=0.3х240=72 МПа

Определяем напряжение, получамемое давлением максимальной нагрузки на площадь по формуле:

                                                 σ=S/F                                                              (3.50)

где S – максимальная нагрузка действующая на полумуфту, определенная

            по формуле (3.46)

       S=6955,29Н

       F – площадь полумуфты в опасном сечении;

       F=5,68х10-4 м 2

σ=6955,29/5,68х10-4=12245228Па=12,25МПА

Прочность полумуфты в опасном сечении является допустимой, так как 12,25 МПа

Коэффициент запаса прочности определяем из выражения

                                             
                                              П= [σ] /σ                                                      (3.51)

где [σ] – допускаемое сопротивление при растяжении;

      [σ]=72 МПА
   σ- сопротивление при растяжении действующее в опасном сечении

       муфты;

  σ=12,25 МПА

П=72/12,25=5,87

Полученный коэффициент запаса прочности является допустимым.

 
4. ЭКОНОМИЧЕСКИЙ  ЭФФЕКТ
На месторождениях, разрабатываемых и эксплуатируемых НГДУ “Сургутнефтегаз” дебет скважин по сравнению с прошлыми годами падает, что дает основанием использовать на скважинах электроцентробежные насосы с меньшей подачей.

При эксплуатации скважин УЭЦН М-30-1300 повышается межремонтный период и наработка на отказ.

Совершенствование электроцентробежного насоса с подачей 50 м/сут состоит в том, что в корпус электроцентробежного насоса с подачей на 50 м/сут мы ставим рабочие колеса и направляющие аппараты, рассчитанные на подачу 30 м/сут. Этим мы получаем насос с подачей 30 м/сутки для использования на малодебетных скважинах. За счет этого мы получаем экономию денежных средств, так, как не приходится запускать с заводов электроцентробежные насосы для малодебетных скважин.

Экономический эффект ожидается за счет:

-увеличение наработки на отказ;

-уменьшение числа текущих ремонтов;

-предотвращение затрат, связанных с закупкой УЭЦН-30 на заводах.
Методика расчета экономического эффекта
Экономический эффект определяется по формуле

                                                    Эт=Р
г-З
г                                                       (4.1.)

                                                          Кр+Ен

где, Рг – стоимостная оценка годовых результатов

       Зг – неизменные по годам годовые затраты;

       Кр – норма амортизации с учетом фактора времени

       Ен – норматив для приведения к расчетному году 
Стоимостная оценка годовых результатов:

от количества ремонтов

                                  Рг1=(365 –   365  )  *Срем.                                            (4.2.)

                                         МРПб  МРПсов.

где, МРПб – базовый межремонтный период;

      
МРПсов.–межремонтный период усовершенствованного 

       оборудования

       Срем. – стоимость текущего ремонта    
Неизменные по годам годовые затраты:

                                   

                          

                      Зг=Иг+(Кр+Ен)*К                                                                (4.3)

где, Иг – годовые текущие затраты

       К – капитальные затраты
Годовые текущие затраты:

                         К1=1,2 ( Зср
.*L + 0,395 * З
ср. *L)                                      (4.4)

                         166                       166 

где, К1 – капитальные затраты, связанные с изготовлением рабочей

       ступени;

       Зср – средняя затрата

       L – длительность изготовления
Капитальные затраты на материалы, примененные при изготовлении рабочей ступени:

                                            К2=m*c*Kи                                                            (4.5)

где, m – масса материалов;

        c – стоимость материалов;

        Ки — коэффициент, учитывающий, что часть материалов расходуется

        при изготовлении.

                                            К=К1+К2                                                             (4.6)

                                            К=n*(К1+К2)                                                     (4.7)

где, -n — количество рабочих ступеней. 
Годовая прибыль, остающаяся в распоряжении предприятия:

                                         Пt=Bt – Ct – Ht                                                      (4.8)

где, Bt – выручка от реализации продукции, полученной с применением

       мероприятий НТП, без акцизов и налогов на добавочную стоимость;

       Ct – себестоимость продукции;

       Ht – налоги, общая сумма.
Срок возврата затрат:

                                               Т=  К                                                                (4.9)

                                                   П+А

где,  П – прибыль чистая, получаемая за счет реализации мероприятия за

        год;

        А – сумма амортизации за год.
Исходные данные:

Стоимость ЭЦН – 50-1300 – 1320400 руб

Стоимость ЭЦН — 30-1300 – 18900000 руб
m1 – массарабочего колеса, изготовляемого из полиамида.

m1=0,158 г

С – стоимость полиамида

С=1500000 руб за тонну

m2 – масса направляющего аппарата, изготовляемого из полиамида.

m2=320 г.
Средняя заработная плата:

Зср.=1800 руб
Длительность изготовления рабочей ступени

L=1 час
Межремонтный период базовый:

МРПб=316 суток
Межремонтный период совершенствованного оборудования:

МРПсов.=358 суток
Стоимость текущего ремонта (одного):

Т = 72 часа
Среднесуточный дебит :

Q=35 м/сут
Стоимость нефти на внутреннем рынке:

С = 500000 резв./тонну
Себестоимость нефти:

Ct=287274 руб/т
Расчет экономического эффекта
Стоимостная оценка годовых результатов:

от количества ремонтов:

Рг1= ( 365      –    365  )    *Срем.                                                                      

         МРПб      МРПсов.

МРПб=316 суток

МРПсов.=358 суток

Ср=1150000 резб.

Рг1= (365 – 365) *1150000

316          358

Рг1=156400 руб
Рг2берем из 40% от стоимости ЭЦН – 50-1300 и стоимости ЭЦн – 30-1300.
Рг2=0,4*13204000+18900000=2418600 руб

Рг=Рг1+Рг2

Рг=156400+24181600=24338000 руб
Расчет затрат:

Зг=Иг+ (Кр+Ен)*К

Иг=ΔР*Т*Q*Сп

Сп3=55% от себестоимости 287274 руб/т

Иг=0,136*3,0830,0*0,55*287274

Иг=1933928,5 руб
Затраты на изготовление рабочей ступени

К1=1,2 *(1,395 * Зср. *
L)

                               166

Зср.=1800000 руб

L=1 час

К1=1,2 * 1,395 * 1800000*1

                                  166

К1=18151,719 руб
Затраты на материалы, примененные при изготовлении рабочей ступени:

К2=m*С*Ки

m=m1+m2

m=0,320+0,158

m=0,478

К2=0,478*10-3 *1500000*1,5=1075,5 руб

К=112*19227,219

К=2153449 руб
Зг=Иг + (Кр+Ен)*К

Зг=1933928,5 + (1+0,1)*2153449

Зг=4292722,4 руб.
Эффект рассчитывается для срока в 5 лет, срока амортизации оборудования типа УЭЦН

Кр=0,1638

Ен=0,1

Эт=24338000 — 4292722,4

              0,1638 + 0,1

Эт=7598647 руб
Прибыль, остающаяся в распоряжении предприятия:

Пt=Bt – Ct – Ht

Формула (4.8) общая для расчета, ее можно разложить:

                                                    Пт=Рг2Иг                                                 (4.10)

где, Пт – прибыль без налогов

Текущая чистая прибыль:

Пч=0,65 * Пт

Рг2=24181600 руб

Иг=1933928,5 руб

Пt=24181600 – 1933928,5

Пt=22247671 руб

Пч=0,65* Пт

Пч=0,65 * 22247671

Пч=14460986 руб.
Срок возврата затрат

Т =    К

       П+А

К=2153449 руб

Пч=14460986 руб

А=20% от К

А=430689,8 руб
Т=        2153449

      14460986+430689,8
Т = 2153449

      14891675
Т=0,15 года

Т=1,8 месяца
Сводная таблица экономических показателей

                                                                                                            Таблица 4.1.

Показатели

Значение

Капитальные затраты, руб

2153449

Текущие годовые затраты, руб

1933928,5

Межремонтный период до совершенствования, сутки

316

Межремонтный период после усовершенствования, сутки

358

Экономический эффект, руб

75986647

Чистая прибыль, руб

14460986

Срок окупаемости, год

0,15



4. ЭКОНОМИЧЕСКИЙ  ЭФФЕКТ ОТ УСОВЕРШЕНСТВОВАНИЯ КОНСТРУКЦИИ ЭЦН
На месторождениях, разрабатываемых и эксплуатируемых НГДУ «Лянторнефть» дебет скважин по сравнению с прошлыми годами падает, что дает основанием использовать на скважинах электроцентробежные насосы с меньшей подачей.

При эксплуатации скважин УЭЦН М-30-1300 повышается межремонтный период и наработка на отказ.

Переводим подачу на 30 м/сут. Этим мы получаем насос с подачей 30 м/сутки для использования на малодебетных скважинах. За счет этого мы получаем экономию денежных средств, так, как не приходится запускать с заводов электроцентробежные насосы для малодебетных скважин.

Экономический эффект ожидается за счет:

-увеличение наработки на отказ;

-уменьшение числа текущих ремонтов;

-предотвращение затрат, связанных с закупкой УЭЦН-30 на заводах.
Методика расчета экономического эффекта
Экономический эффект определяется по формуле

                                                    Эт=Р
г-З
г                                                       (4.1.)

                                                          Кр+Ен

где, Рг – стоимостная оценка годовых результатов

       Зг – неизменные по годам годовые затраты;

       Кр – норма амортизации с учетом фактора времени

       Ен – норматив для приведения к расчетному году 
Стоимостная оценка годовых результатов:

от количества ремонтов

                                  Рг1=(365 –   365  )  *Срем.                                            (4.2.)

                                         МРПб  МРПсов.

где, МРПб – базовый межремонтный период;

       МРПсов.–межремонтный период усовершенствованного 

       оборудования

       Срем. – стоимость текущего ремонта    
Неизменные по годам годовые затраты:

                                   

                          

                      Зг=Иг+(Кр+Ен)*К                                                                (4.3)

где, Иг – годовые текущие затраты

       К – капитальные затраты
Годовые текущие затраты:

                         К1=1,2 ( Зср
.*L + 0,395 * З
ср. *L)                                      (4.4)

                         166                       166 

где, К1 – капитальные затраты, связанные с изготовлением рабочей

       ступени;

       Зср – средняя затрата

       L – длительность изготовления
Капитальные затраты на материалы, примененные при изготовлении рабочей ступени:

                                            К2=m*c*Kи                                                            (4.5)

где, m – масса материалов;

        c – стоимость материалов;

        Ки — коэффициент, учитывающий, что часть материалов расходуется

        при изготовлении.

                                            К=К1+К2                                                             (4.6)

                                            К=n*(К1+К2)                                                     (4.7)

где, -n — количество рабочих ступеней. 
Годовая прибыль, остающаяся в распоряжении предприятия:

                                         Пt=Bt – Ct – Ht                                                      (4.8)

где, Bt – выручка от реализации продукции, полученной с применением

       мероприятий НТП, без акцизов и налогов на добавочную стоимость;

       Ct – себестоимость продукции;

       Ht – налоги, общая сумма.
Срок возврата затрат:

                                               Т=  К                                                                (4.9)

                                                   П+А

где,  П – прибыль чистая, получаемая за счет реализации мероприятия за

        год;

        А – сумма амортизации за год.
Исходные данные:

Стоимость ЭЦН – 50-1300 – 1320400 руб

Стоимость ЭЦН — 30-1300 – 18900000 руб
m1– массарабочего колеса, изготовляемого из полиамида.

m1=0,158 г

С – стоимость полиамида

С=1500000 руб за тонну
m2 – масса направляющего аппарата, изготовляемого из полиамида.

m2=320 г.
Средняя заработная плата:

Зср.=1800 руб
Длительность изготовления рабочей ступени

L=1 час
Межремонтный период базовый:

МРПб=316 суток
Межремонтный период совершенствованного оборудования:

МРПсов.=358 суток
Стоимость текущего ремонта (одного):

Т = 72 часа
Среднесуточный дебит :

Q=35 м/сут
Стоимость нефти на внутреннем рынке:

С = 500000 резв./тонну
Себестоимость нефти:

Ct=287274 руб/т
Расчет экономического эффекта
Стоимостная оценка годовых результатов:

от количества ремонтов:

Рг1= ( 365      –    365  )    *Срем.                                                                      

         МРПб      МРПсов.

МРПб=316 суток

МРПсов.=358 суток

Ср=1150000 резб.

Рг1= (365 – 365) *1150000

317          358

Рг1=156400 руб
Рг2берем из 40% от стоимости ЭЦН – 50-1300 и стоимости ЭЦн – 30-1300.
Рг2=0,4*13204000+18900000=2418600 руб

Рг=Рг1+Рг2

Рг=156400+24181600=24338000 руб
Расчет затрат:

Зг=Иг+ (Кр+Ен)*К

Иг=ΔР*Т*Q*Сп

Сп3=55% от себестоимости 287274 руб/т

Иг=0,136*3,0830,0*0,55*287274

Иг=1933928,5 руб
Затраты на изготовление рабочей ступени

К1=1,2 *(1,395 * Зср. *
L)

                               166

Зср.=1800000 руб

L=1 час

К1=1,2 * 1,395 * 1800000*1

                                  166

К1=18151,719 руб
Затраты на материалы, примененные при изготовлении рабочей ступени:

К2=m*С*Ки

m=m1+m2

m=0,320+0,158

m=0,478

К2=0,478*10-3 *1500000*1,5=1075,5 руб

К=112*19227,219

К=2153449 руб
Зг=Иг + (Кр+Ен)*К

Зг=1933928,5 + (1+0,1)*2153449

Зг=4292722,4 руб.
Эффект рассчитывается для срока в 5 лет, срока амортизации оборудования типа УЭЦН

Кр=0,1638

Ен=0,1

Эт=24338000 — 4292722,4

              0,1638 + 0,1

Эт=7598647 руб
Прибыль, остающаяся в распоряжении предприятия:

Пt=Bt – Ct – Ht

Формула (4.8) общая для расчета, ее можно разложить:

                                                    Пт=Рг2Иг                                                 (4.10)

где, Пт – прибыль без налогов

Текущая чистая прибыль:

Пч=0,65 * Пт

Рг2=24181600 руб

Иг=1933928,5 руб

Пt=24181600 – 1933928,5

Пt=22247671 руб

Пч=0,65* Пт

Пч=0,65 * 22247671

Пч=14460986 руб.
Срок возврата затрат

Т =    К

       П+А

К=2153449 руб

Пч=14460986 руб

А=20% от К

А=430689,8 руб
Т=        2153449

      14460986+430689,8
Т = 2153449

      14891675
Т=0,15 года

Т=1,8 месяца
Сводная таблица экономических показателей

                                                                                                            Таблица 4.1.

Показатели

Значение

Капитальные затраты, руб

2153449

Текущие годовые затраты, руб

1933928,5

Межремонтный период до совершенствования, сутки

316

Межремонтный период после усовершенствования, сутки

358

Экономический эффект, руб

75986647

Чистая прибыль, руб

14460986

Срок окупаемости, год

0,15


    продолжение
--PAGE_BREAK--5. БЕЗОПАСНОСТЬ и ЭКОЛОГИЧНОСТЬ ПРОЕКТА
Введение.
Основными законодательными актами по охране труда в нашей стране являются Конституция России, Основы законодательства и др. в этих документах отражены правовые вопросы охраны труда и здоровья трудящихся. На основании вышеперечисленных источников, а также исходя из соответствующих правил безопасности и норм производственной санитарии в данном проекте нами разрабатываются основные мероприятия по созданию безопасных условий работы операторов при обслуживании скважин, оборудованных УЭЦН.

Всякая деятельность протекает из определенных мотивов и направлена на достижение конкретных целей. Жизнедеятельность – активное отношение человека к окружающему миру для целесообразного его преобразования. Абсолютно безопасной деятельности не существует. По данным Госкомстата, по различным причинам в Российской Федерации на производстве ежегодно травмируется 650-700 тысяч человек, 15-16 тысяч человек с летальным исходом, 6 млн. человек работают во вредных условиях, более 700 тысяч единиц оборудования и 61 тысяча зданий и сооружений не отвечает требованиям безопасности. В среднем, ежегодно происходит около 500 тысяч пожаров, основными причинами этих негативных явлений являются:

-         недостаточный уровень обучения и квалификации персонала;

-         несоответствие технологических процессов современным требованиям безопасности;

-         недостаточное оснащение производства системами очистки выбросов;

-         устаревшее оборудование;

В данном случае, описывается несколько мероприятий по улучшению охраны и условий труда, охраны окружающей среды, предложены возможные чрезвычайные ситуации и их предотвращение.
5.1. Анализ и оценка опасностей при выполнении работ,

 связанных с обслуживанием скважин, оборудованных УЭЦН.
Одна из главных особенностей условий труда операторов по добыче нефти – это работа, в основном, на открытом воздухе (на кустах скважин), а также работа связанная с перемещениями на территории объекта и между объектами (кустами), частыми подъемами на специальные площадки, находящиеся на высоте. Поэтому в условиях сурового климата Западной Сибири и Крайнего Севера с низкими температурами (зимой до –500С) и высокой влажностью (летом до 100%) играет метеорологические факторы. При низкой (сверхдопустимых норм) температуре окружающей среды тепловой баланс нарушается, что вызывает переохлаждение организма, ведущее к заболеванию. В случае низкой температуры воздушной среды уменьшается подвижность конечностей в следствии интенсивной теплоотдачи организм, что сковывает движения. Это может послужить причиной несчастных случаев и аварий.

При длительном пребывании работающего в условиях низкой температуры и, следовательно, переохлаждении организма возможно возникновение различных острых и хронических заболеваний: воспаление верхних дыхательных путей, ревматизм и другие. Результатами многократного воздействия низких температур являются пояснично-крестцовый радикулит и хроническое повреждение холодом (ознобление).

При высокой температуре снижаются внимание и скорость реакции работающего, что может послужить причиной несчастного случая и аварии. При работе в летнее время при высокой температуре (до +50 С) возможны перегревания организма, солнечные и тепловые удары.

Кусты, как правило, засыпаются песком, поэтому при сильных ветрах случается поднятие частиц песка и пыли, которые могут попасть в глаза и верхние дыхательные пути. Нормирование метеорологических параметров устанавливает ГОСТ 12.1.005-76.

В ходе производственных операций рабочие могут подвергаться вредных газов и паров нефти, источником которых являются нарушения герметичности фланцевых соединений, механической прочности фонтанной арматуры (свище, щели по шву) вследствие внутренней коррозии или износа, превышения максимально допустимого давления, отказы или выходы из строя регулирующих и предохранительных клапанов. Пары нефти и газа при определенном содержании их в воздухе могут вызвать отравления и заболевания. При постоянном вдыхании нефтяного газа и паров нефти поражается центральная нервная система, снижается артериальное давление, становится реже пульс и дыхание, понижается температура тела. Особенно опасен сероводород – сильный яд, действующий на нервную систему. Он нарушает доставку тканям кислорода, раздражающе действует на слизистую оболочку глаз и дыхательных путей,
вызывает острые и хронические заболевания, ПДК Н2S – 0,1 мг/м3 (ГОСТ 12.1.005-76.)
Специфическая особенность условий эксплуатации нефтяных скважин – высокое давление на устье, которое доходит до 30 МПа. В связи с этим любое ошибочное действие оператора при выполнении работ на устье скважины может привести к опасной аварии.

Высокое давление и загазованность указывают на повышенную пожаро-и взрывоопасность объекта.

Эксплуатация скважин с УЭЦН характеризуется с наличием высокого напряжения в силовом кабеле. Причем станция управления и скважина оборудования ЭЦН обычно не находятся в непосредственной близости друг от друга и часть кабеля проходит по поверхности, что увеличивает зону поражения электротоком, а следовательно и вероятность несчастного случая.

Причиной несчастного случая может быть также неудовлетворительное состояние объекта с позиции санитарии, его чрезмерная захламленность и замазученность, плохая подготовка скважин к замерам пластового давления.

Таким образом, мы выяснили основные факторы производственной среды, влияющие на здоровье и работоспособность операторов в процессе труда:

1.     метеорологический фактор.

2.     Вредное влияние паров нефти и газа.

3.     Высокое давление.

4.     Повышенная пожаро-и взрывоопасность.

5.     Наличие высокого напряжения.

6.     Причины организационного характера.
5.2. Расчет заземления электрооборудования.
Для предохранения рабочих от поражения электрическим током электрооборудование УЭЦН должно быть надежно заземлено. В соответствии с ГОСТом 12.1.006-84  выполнен расчет заземляющего устройства станции управления ЭЦН.

Заземление КТПН осуществляется электродами из круглой стали d=12 мм, l=5 м, забиваемых в землю на глубину 5,7 м и соединенных стальной полосой 40х4 мм. Сопротивление заземляющего устройства должно быть не более 4 Ом в любое время года. все соединения выполняются сваркой согласно ПЭУ. После устройства контура заземления необходимо замерить сопротивление и, если оно окажется больше допустимого, забить дополнительные электроды.

Расчет производится в соответствии «Типовых расчетов по электрооборудованию».

Сопротивление растеканию тока одиночных стержневых заземлителей определяется по формуле:
                                Rо.с.=ρ*Кс (ln 2
l   + 1 ln4
t+l                                   (5.1.)

                                         2πl              d          2      4t-l 

                                         

где  ρ – удельное сопротивление грунта, 1*10-4ом*см;

        Кс-коэффициент сезонности, для I климатической зоны Кс =1,65;

        l – длина стержня, 500 см;

       d —  диаметр стержня, 1,2 см;

        t – глубина залегания, 570 см;
Rс=1*104*1,65 (ln2*500 +1/2 ln  4*570 +500) = 37,5 Ом

      2*3,148500        1,2                  4*570-500
Необходимое количество стержней:

                                                               Rо.с.

                                                             ηсR3                                                                                   (5.2.)
где, η – коэффициент использования стержневых заземлителей, 0,61;

       R3 — сопротивление, оказываемое заземляющим устройством расте-

       канию тока, 4 Ом;     

              37,5

          0,61*4

Сопротивление всех стержней:

Rс=Rо.с./n* ηc=37,5/16*0,61=3,8 Ом
Сопротивление растекания горизонтального (протяжного) заземлителя определяется по формуле:
                                        Rn= 0,366 * ρрасч./ln* lg lg2/dt1                                (5.3.)
где, ln – общая длина горизонтального заземлителя (полосы 40х4 мм),            

       100000 см;

       ρрасч = ρ* Кс=104*5 ом*см, Кс=5  — для I климатической зоны;

       t1 – глубина залегания протяжного заземлителя;, 70 см;

       Rn= 0,366* 5*10-4/100000  *  1000002/1,2*70=14.3 Ом.
Действительное сопротивление растеканию протяжного заземлителя с учетом коэффициента использования ηn=0,32
                             Rnд=Rn/ ηn=14,3/0,32=44,7 Ом                                           (5.4.)
Общее сопротивление заземляющего устройства:
         R32=Rc*Rпд/Rc+Rпд= 3.8* 44,7/3,8+44,7=3,5 Ом                                (5.5.)
Из расчета следует, что полученное значение сопротивления не превышает допустимого, а следовательно будет обеспечено полноценное заземление объекта, соответствующее ГОСТу 12.1.006-84.
5.3. Основные мероприятия  по обеспечению безопасности

условий труда операторов.
Основное условие безопасности при обслуживании нефтяных скважин – соблюдение трудовой и производственной дисциплины всеми работающими на них.

Все работы связанные с эксплуатацией УЭЦН (обслуживание, перевозка, монтаж, демонтаж) должны выполняться в соответствии с правилами безопасности и инструкциям по охране труда для рабочих цехов добычи нефти и ППД, а также следующими документами:

1.     Правило безопасности в нефтяной и газовой промышленности, утверждение Госгортехнадзором.

2.     Правила технической эксплуатации электроустановок, утвержденные Госэнергонадзором.

3.     Правила техники безопасности при эксплуатации электроустановок, утвержденные Госэнергодзором.

4.     Правила устройства электроустановок, утвержденные Госэнергонадзором.

5.     Руководство по эксплуатации УЭЦН РЭ, утвержденное ОКБ БН.

На работу следует принимать лиц не моложе 18 лет, годных по состоянию здоровья, соответственным образом обученных и прошедших инструктаж по технике безопасности.

Перевозка рабочих на место и обратно должна осуществляться на бортовых автобусах или специально оборудованных грузовых бортовых автомобилях, а в труднодоступных местностях – на вездеходах. Продолжительность рабочего времени установлена трудовым законодательством  и не должна превышать 41 час в неделю.

Рабочие должны обеспечиваться необходимой спецодеждой, соответствующей времени года (лето – роба х/б, сапоги, головной убор, рукавицы, а также средства защиты от кровососущих насекомых; зимой – шапка-ушанка, валенки, ватные штаны, шуба, ватные рукавицы).

На каждом кусте должна быть оборудована пульт-будка с имеющимися в наличии аптечкой, бачком с питьевой водой, носилками, а также мебелью для отдыха.

При работе в темное время суток объект должен быть освещен, во избежании травматизма. В качестве осветительных приборов применяются фонари и прожектора. Норма освещенности не ниже 10 лк (СНиП I – 4-79).

Особое внимание следует обратить на санитарное состояние территории куста, не допускать его захламления и замазученности, зимой необходимо регулярно расчищать снежные заносы на подходах к скважины.

Содержание нефтяных паров и газов в воздухе рабочей зоны не должно превышать ПДК (углеводороды предельно С-С10 в пересчете на С – 300 мг/м3, ГОСТ 12.1.005-76). Во время ремонта скважин при наличии в воздухе рабочей зоны нефтяных паров и газов, превышающих ПДК, необходимо заглушить скважину жидкостью соответствующих параметров и качества. Работы в загазованной зоны должны проводиться в соответствующих противогазах.

К монтажу (демонтажу) погружного агрегата УЭЦН и его обслуживанию допускается электротехнический персонал, знающий схемы применяемые станций управления, трансформаторов, подстанций погружных насосов (КТПН), конструкции по их эксплуатации, прошедший производственное обучение и стажировку на рабочем место, а также проверку знаний с присвоением квалификационной группы по электробезопасности.

Для измерения буферного давления и давления в затрубном пространстве на скважинах оборудованных УЭЦН должны быть установлены стационарные манометры с трехходовыми кранами.

Конструкция устьевого оборудования должна обеспечить возможность снижения давления в затрубном пространстве, а так же закачку жидкости для глушения скважины.

Наземное оборудование УЭЦН должно быть установлено в специальной будке или на открытой местности на расстоянии не менее 20 м от устья скважины.

При установке наземного оборудования в будке станция управления должна быть расположена так, чтобы при открытых дверцах обеспечивался свободный выход из будки.

При установке электрооборудования на открытой местности оно должно иметь ограждение и предупреждающий знак «Осторожно! Электрическое напряжение!».

Намотка и размотка кабеля на барабан кабеленаматывателя должна быть механизирована. Производить намотку (размотку) кабеля вручную, а также тормозить барабан руками, доской или трубой запрещается.

Все открытые движущиеся части механизмов кабеленаматывателя могущие служить причиной травмирования должны иметь ограждения.

Прокладка, перекладка кабелей УЭЦН по эстакаде рядом с действующими кабелями, находящимися под напряжением, а также перекладка кабелей допускается в случае необходимости при выполнении следующих условий:

-         Работу должны выполнять рабочие, имеющие опыт прокладки кабелей, по наряду-допуску (распоряжению электротехнического персонала ЦБПО НПО под руководством лица с группой по электробезопасности не ниже V при напряжении выше 1000 В.

-         Работать следует в диэликтрических перчатках, поверх которых для защиты от механияческих поверждений одеваются брезентовые рукавицы. Санитраные нормы действия тока на организм, устанавливает ГОСТ 12.1.000-76.

Таким образом в данном разделе разработаны основные мероприятия, которые обеспечат безопасные условия работы операторов при обслуживании скважин, оборудованных УЭЦН.
5.4. Общие требования к безопасности к рабочим цеха в подготовке

и перекачке нефти (ППН)
1.     К самостоятельной работе в цехе ППН допускаются лица:

–       достигшие 18-летнего возраста.

–       Прошедшие медицинское освидетельствование согласно приказа Минздрава ССР № 700 от 19.06.84;

–       прошедшие производственное обучение, обучение безопасным методам в проведении работ, стажировку (при необходимости) на рабочем месте и проверку знаний по технике безопасности;

–       имеющие удостоверение о проверке знаний по технике безопасности.

2.     Через каждые 3 месяца рабочие должны проходить инструктаж по безопасному ведению работ и не реже 1 раза в год – проверку знаний.

3.     При внедрении новых видов оборудования и механизмов, новых технологических процессов, а также при введении в действие новых правил и инструкций по охране труда рабочие должны пройти дополнительное обучение и инструктаж.

4.     Внеочередную проверку знаний по технике безопасности рабочие должны пройти:

-         после обучения, вызванного изменением технологического процесса, внедрением новых видов оборудования и механизмов, введением в действие новых правил и инструкций;

-         по требованию или распоряжению руководителей предприятий и представителей службы надзора.

5.     Приступая к работе, рабочие должны иметь при себе удостоверение о проверке знаний по технике безопасности.

6.     При приеме смены рабочие обязаны ознакомится с заданиями и распоряжениями руководителей работ, с записями в вахтовом журнале и уяснить себе обстановку на объекте и на рабочем месте.

При обнаружении какой-либо неисправности, не записанной в журнале, принимающий смену должен указать на нее сменяющемуся и вместе с ним сделать соответствующую запись в вахтовом журнале.

7.     Не разрешается:

-         принимать или сдавать смену во время аварии и при ее ликвидации;

-         передавать смену рабочему, явившемуся в нетрезвом состоянии или больному.

8.     Находясь на территории цеха ППН работающие должны соблюдать общие для всех правила поведения:

-         места открытого выделения газа надо обходить с наветренной стороны;

-         переходить через траншею, трубопроводы надо только в специально указанных местах, оборудованных переходами.

9.     Рабочие цеха ППН перед началом работы обязаны: проверить состояние и исправность работающего и резервного оборудования (насосов, запорной арматуры, КИПиА и т.п.), чистоту рабочего места, производственных помещений и территории наличие инструмента и вспомогательного инвентаря, исправность действия вентиляционных установок, наличие и состояние средств индивидуальной защиты; привести в порядок спецодежду и др.средства индивидуальной защиты; проверить наличие и исправность пожаротушения и инструментов, их соответствие характеру работы, наличие и укомплектованность аптечки.

10. Рабочие обязаны следить за чистотой рабочих мест и всего оборудования. Рабочие площадки, лестницы и переходы необходимо очищать от грязи, снега и льда.

-         загромождение лестниц и площадок, проходов между трубопроводами и др. оборудованием, мешающие нормальному обслуживанию и ремонту не допускается.

11.Освещение объектов ППН должно быть выполнено во взрывобезопасном исполнении. Осветительная проводка должна прокладываться в герметичных газовых трубах, выключатели должны быть во взрывоопасном исполнении и установлены вне помещения.

   В качестве аварийного освещения могут применятся только  

   аккумуляторные фонари во взрывобезопасном исполнении напряжением

  12 Вт.

12.Рабочие должны иметь полагающиеся по нормам спецодежду, спецобувь, рукавицы и другие средства индивидуальной защиты, обеспечивающие безопасность. Спецодежду следует носить в застегнутом виде, она не должна меть свисающих концов.

13.При опасности попадания инородных тел, вредных жидкостей, паров, газа, раздражения глаз сильным световым излучением необходимо пользоваться соответствующими защитными очками.

14.При работе в колодцах, аппаратах, емкостях и других плохо проветриваемых местах необходимо применять шланговые противогазы.

15.Лица, допущенные к работам на объектах с возможным выделением сероводорода, должны иметь при себе исправные средства индивидуальной защиты (противогазы марки КД). Промышленные фильтрующие противогазы применяют в том случае, если в воздухе содержится не менее 18%
    объемных кислорода, а концентрация вредных газов не    превышает 0,5% 

    объемных.

16.Рабочие должны следить за состоянием предохранительной арматуры, наличием и исправностью манометром, обращать внимание на наличие и целостность пломб.

17.Не допускается эксплуатация аппаратов, емкостей и оборудования при неисправных предохранительных клапанах, отключающих и предохранительных устройствах, при отсутствии или неисправности контрольно-измерительных приборов и средств автоматики, а также работа с неисправным инструментом.

18.Все движущиеся части механизмов должны быть ограждены. Выступающие и вращающиеся детали должны быть закрыты по всей окружности вращения сплошными кожухами.

19.Запрещается эксплуатация неисправного оборудования отключающих и предохранительных устройств, неисправных контрольно-измерительных приборов и средств автоматики, а также работа  неисправным инструментом.

20.Корпуса электрооборудования и пусковой аппаратуры должны быть заземлены.

21.Перед пуском механизмов в работу необходимо проверить их исправность. Пускать в работу механизмы следует, только убедившись, что у движущихся частей нет людей. И только после подачи предупредительного знака (сигнала).

22.Во время работы механизма запрещается:

-         производить ремонт их или крепление каких-либо частей;

-         чистить и смазывать движущиеся части вручную;

-         снимать ограждения или отдельные  их части и проникать за ограждения;

-         тормозить движущиеся части механизмов подкладыванием труб, ваг и других предметов;

-         переходить через приводные ремни, цепей или под ними;

-         направлять, надевать, сбрасывать, натягивать или ослаблять ременные передачи;

-         находится в опасной зоне.

23.Ремонтные работы должны проводится в дневное время. При необходимости ремонтов в ночное время место работы должно быть освещено.

24.Работы по ремонту оборудования, связанные с применением открытого огня и возможностью образования открытого искрения, должны осуществляться по наряду-допуску на производство газоопасных работ или письменному разрешению главного инженера, согласованного с главным энергетиком предприятия и местной пожарной охраной.

25. Ремонтные работы в котловане, а также в нефтяных и газовых колодцах разрешается выполнять при соблюдении следующих условий:

-         бригада рабочих должна состоять не менее чем из двух человек (работающий и наблюдающий), обеспеченных соответствующими средствами индивидуальной защиты;

-         перед началом работ ответственный за их проведение должен спросить исполнителя о его самочувствии;

-         перед работой котлован или колодец проветрить, а перед сварочной работой – провести анализ воздушной среды;

-         проверить исправность шлангового противогаза, спасательного пояса и сигнально-спасательной веревки;

-         сроки единовременного пребывания работающего в шланговом противогазе должен превышать 20 минут.

26.В случае гидратообразования или замораживания участка трубопровода, обвязки насосов, запорной арматуры отогревать их следует водой или паром. Перед отогревом участок должен быть отключен от работающей системы.

27.При пропарке емкостей, аппаратов запрещается поднимать давление в них: пар должен иметь свободный выход. При пропарке труб запрещается стоять с противоположного конца, тем более, устранять закупорку пропариваемых труб разрыхлением различными предметами.

28.Пропуск газа и нефтепродуктов через фланцевые соединения, сальники, задвижки и другие неплотности необходимо своевременно устранять.

29.При необходимости проведения ремонтных работ на трубопроводах находящихся под давлением, подлежащий ремонту участок необходимо отключить задвижками с установкой маркированных заглушек после снижения в нем давления до атмосферного.

30.Закрывать (открывать) запорную арматуру следует плавно, без рывков, пользуясь при необходимости специальным (штурвальным) ключом.

31.В случае возникновения аварийной ситуации, связанной с повышением содержания сероводорода в воздухе, необходимо:

-         немедленно одеть противогаз;

-         прекратить все работы в опасной зоне;

-         сообщать об этом ответственному руководителю работ;

-         обозначить опасную зону предупреждающими знаками;

-         дальнейшие работы производить по плану ликвидации возможных аварий.

32.При аварии рабочие обязаны действовать в соответствии с планом ликвидации аварий; сообщить о происшедшей аварии диспетчеру, вывести людей из помещения или опасной зоны и при необходимости, в целях предупреждения осложнений, отключить технологическое оборудование.

33.При возникновении пожара необходимо немедленно вызвать пожарную охрану и приступить к тушению огня имеющимися на объекте противопожарными средствами.

34.При несчастном случае необходимо оказать пострадавшему доврачебную помощь, вызвать, если необходимо скорую медицинскую помощь, сообщать о происшедшем руководителю работ или начальнику цеха и по возможности сохранить обстановку на рабочем месте такой, какой она была в момент несчастного случая.

35.В случае возникновения аварийной ситуации смена, в которой возникла авария, не сдает смену до ликвидации аварии. Принимающая смена включается в работу по ликвидации аварии.
5.5.Характеристика условий труда.
Характеристика выбросов вредных веществ в атмосферу
                                                                                                             Таблица 5.1.

Вредные вещества

Кол-во вредных

веществ отходящих от всех источников

В том числе: выделяются без очистки

Всего выброшено в атмосферу

Лимит выброса

Наименование

Окислы азота

9,355

9,355

9,355

9,355

Сернистый ангидрид

73,985

73,985

73,985

73,985

Окись углерода

53,62

53,62

53,62

53,62

Пятиокись ванадия

0,296

0,296

0,296

0,296

Окись железа

0,616

0,616

0,616

0,616

Стирол

0,222

0,222

0,222

0,222



По формуле можно рассчитать степень риска производства, определяемого за год:

 R=Сn/Np= 1/104500=9,57х10-6

где  Cn  – число смертельных случаев за год;

где   Np — число работающих.
5.6.Пожарная профилактика
Пожарная профилактика достигается правильным проектированием, эксплуатацией и обеспечением средствами пожаротушения.

В зависимости от пожаро- и взрывоопасных свойств применяемых, производимых или хранимых веществ, все производство по степени пожарной опасности подразделяется на пять категорий: А, Б, В, Г, Д.

Категория А. Производство, связанное с получением, применением или хранением: жидкостей, имеющих температуру вспышки паров (280С) и ниже; паров или газов с нижним пределом взрываемости 10% и менее в количествах, которые могут образовать с воздухом взрывоопасные смеси; горючих жидкостей при температуре нагрева их до 2500С.

Категория Б. Производства, связанные с применением, получением, хранением или переработкой: жидкостей с температурой паров от 290до 1200С; горючих газов, нижний предел взрываемости которых более 10% к объему воздуха, при применении этих газов в количествах, которые могут образовать с воздухом взрывоопасные смеси; производства, в которых выделяются горючие волокна или пыль в таком количестве, что они могут образовать с воздухом взрывоопасные смеси.

Категория В. Производства, связанные с обработкой или применением твердых сгораемых веществ и материалов, а также жидкостей с температурой вспышки паров выше 1200С.

Категория Г. Производства, связанные с применением или обработкой несгораемых веществ и материалов в горячем, раскаленном или расплавленном состоянии и сопровождающиеся выделением лучистой теплоты, искр и пламени, а также производства, связанные с ожиганием твердого, жидкого и газообразного топлива.

Категория Д. Производства, связанные с обработкой несгораемых веществ и материалов в холодном состоянии.
Для тушения пожара используют следующие средства  пожаротушения: ручные пенные огнетушители типа ОП, углекислотные огнетушители ОУ-2, пенопроизводящие установки – пеномесителя, воздушнопенные стволы, генераторы  высококоратной пены, гидранты и другие средства.

Первичные средства пожаротушения размещают в легко доступных местах. Огнетушители защищают от солнечных лучей, осадков.

Для улучшения условий труда необходимо намечать как можно большее количество позитивных мероприятий и соответствовать ГОСТам.
5.7.Прогнозирование чрезвычайных ситуаций и

их предотвращение.
Одной из наиболее частых аварий является взрыв.

При выборе электрооборудования для объектов добычи нефти и газа необходимо учитывать специфические условия работы электрических установок, связанных с наличием взрывоопасных газов и паров.

К взрывоопасным относятся смеси с воздухом горючих газов и паров горючих жидкостей с температурой вспышки 450С и ниже, а также горючей пыли или волокон с нижним пределом взрываемости не выше 65 г/см3.

В зависимости от температуры самовоспламенения устанавливаются 5 групп взрывоопасных смесей:

    
            Таблица 5.2.

Группа взрывоопасной смеси

Температура самовоспламенения С

Т1

Свыше 450

Т2

300 до 450

Т3

200 до 300

Т4

135 до 200

Т5

100 до 135



Распределение некоторых смесей по категориям и группам приведено в таблице 5.3. 

Таблица 5.3.

Категория взрывоопасных смесей

Группа взрывоопасных смесей

Т 1

Т 2

Т 3

Т 4

Т 5

1

Аммиак, метан, дихлорэтан, изобутилен, метилстирол, метил хлористый, метил хлористый, метилацетат.



Амилацетат, бутилацетат, винилацетат, изопропен, метилметакрилат, спирты: бутиловый, изоамиловый, изопропиловый и др.

Скипидар, уайтспирит, циклогексан, спирт амиловый, полиэфир ТГМ-3 и др.

-

-

2

Ацетон, бензин-100, бензол, толуол, стирол, пропан, этан, этилбензол, окись углерода и др.

Бензин Б-95/130, бутан, дивинил, диоксан, метиламин, метилфуран, пентан, пропилен и др.

Бензин: А-66, А-72, А-76, Б-70, гексан, топливо Т-1, ТС-1 и др.

Ацетальдегид, этиленглиголь, диэтиловый эфир, дибутиловый эфир.

-

3

Коксовый газ (метана 40%, водорода 60%), светильный газ, этилен.

Окись этилена, окись пропилена, этилтрихлорсилан.

Винилтрихлормилан, этилдиххлорсилан.

Диэтиловый (серный) эфир.

-

4


Водород, водяной газ.

        -
Ацетилен, метиодихлорсилан.

Сероводород

Трихлорсилан

-
-

Сероуглерод

-


При взрыве газовоздушной смеси весом в 10 т находится на расстоянии менее 65 м от эпицентра взрыва опасно для жизни.

Для насосов и другого оборудования:

Слабые разрушения при  Δpф =0,25-0,4 атм.

Средние разрушения при Δpф =0,4-0,6 атм.

Сильные разрушения при Δpф =0,6-0,7 атм.
На рис. 5.1. изображена примерная схема распространения ударной волны по зонам.
               

Рис.5.1.





Условные обозначения на схеме:

1 – зона детонации

2 – зона действия продуктов взрыва

3 – зона ударной волны

R1 -  радиус первой зоны

R2 — радиус второй зоны

r2   — расстояние от центра взрыва до элемента предприятия (во 2 зоне)

r3   -расстояние от центра взрыва до элемента предприятия (в 3 зоне)




R1=17,5 3√Q=17,5√10=37,7 м
где Q -количество газа, т.
R2=1,7R1=1,7*37,7=64,1 м

Разность давлений в 1 зоне Δpф =1700 кПа
Разность давлений во 2 зоне:

Δpф=1300 (R1 / r2)3+50= 1300 (37,7/50)3+50=607 КПа
Ψ=r3/R1=85/37,7=2,3
При Ψ> 2 разность давлений в  третьей зоне:

Δpф=22/ Ψ√lg Ψ+0,155 =13,3 Кпа
Радиус Зоны, опасной для жизни человека:




Rсм=30 3√Q=64,4 м
5.8.Основные мероприятия по предотвращению опасностей,

связанных с особенностями оборудования.
Технологические процессы, идущие под высоким давлением, оборудование, находящиеся под большими нагрузками, в определенных условиях представляют опасность для работающих.

Основные мероприятия по предотвращению опасностей, обусловленные повышением давления и нагрузкам, сводится к следующим:

-         осмотр и испытание установки, оборудования, механизмов;

-         использование ослабленных элементов и устройств для механизации опасности;

-         применение средств блокировки, исключающих аварии при неправильных действиях работающих.

-         автоматизация производственных процессов, позволяющая вывести из опасных зон, осуществление контроля за показаниями приборов и дистанционные управления;

-         учитывать розу  ветров. Нельзя допускать возможность попадания опасных по взрыву и пожару смесей в огнедействующие установки;

-         на каждом предприятии с числом работающих более 300 человек организуют фельдшерский здравпункт, а более 800 человек – врачебный здравпункт.
5.9.Выводы.
На основании анализа условий труда обслуживающего персонала, характеристики вредных  веществ, загрязняющих природную среду и прогнозирования возможных чрезвычайных ситуаций на данном объекте можно сделать следующие выводы:

В основном объект отвечает требованиям ГОСТов по условиям труда, намечены мероприятий по условиям труда. Анализируя возможные чрезвычайные ситуации, в данном проекте выявлены вероятные параметры ударной волны при взрыве газовоздушной смеси, и намечены мероприятия по предотвращению возникающих поражающих вредных факторов: взрыва и др. факторов.

    продолжение
--PAGE_BREAK--
Литература


1.     Бухаленко Б.И. Справочник по нефтепромысловому оборудованию М., Недра, 1983 г., 390 с.

2.     Бабаев С.Г. Надежность нефтепромыслового оборудования. М., Недра, 1987 г., 265 с.

3.     Бухаленко Е.И., Абдуллаев Ю.П. Монтаж, обслуживание и ремонт нефтепромыслового оборудования.М., Недра, 1985 г., 390 с.

4.     Богданов А.А. Погружные центробежные электронасосы для добычи нефти. М., Недра, 1986 г., 272 с.

5.     Бочарников В.Ф., Чижиков Ю.Н. Методические указания по дипломному проектированию  для студентов специальности (0508). Машины и оборудование нефтяных и газовых промыслов. Тюмень, 1987 г., 33 с.

6.     Беззубов Д.В и др. Насосы для добычи нефти. М., Недра, 1986 г., 224 с.

7.     Говорова Г.Л. Разработка нефтяных месторождений и добыча нефти с

    США. М., Недра, 1970 г.,  272  с.

8.     Иванов М.Н., Детали машин М., Высшая школа, 1991 г., 350 с.

9.     Казак А.С., И.И. Росин,  Л.Г. Чичеров  Погружные бесштанговые насосы для добычи нефти. М., Недра, 1973 г,  230 с.

10.Лутошкин Г.С.  Сбор и подготовка нефти, газа и воды. М., Недра, 1974

     г,  184 с.

11.Сулейманов М.М.  и др. Охрана труда в нефтяной промышленности. М., Недра, 1980 г,  392 с.

12.Чичеров Л.Г. Расчет и конструирование нефтепромыслового оборудова-

     ния М., Недра, 1987 г., 280 с.

13.Паспорт  погружного центробежного модульного насоса. 211. НМЛ

     03.000 ПС 1. Лебядянский машиностроительный завод. 15 с.

    14.Анализ отказов по ЭЦН. СЦБПО ЭПУ, Сургут, 1998 г.

    15.Руководство по эксплуатации УЭЦНМ. БПТО и КО № 3, Сургут. 118 с.
Приложение 5
Сведения о наработке и количестве отказов установок, оборудованных ЭЦН

НГДУ,

Месторождение

Тип оборудования

Общая наработка

Кол-во отказов

Наработка на отказ

Быстринскнефть

ЭЦН – 20

            50

            80

          130

          200

          250

          400

FS

Итого:

19224

117828

75781

80062

45203

11898

3828

13581

367405

65

349

192

178

122

24

6

24

960

295

337

394

449

370

495

638

565

382

Федоровскнефть

ЭЦН – 20

            50

            80

          130

          200

          250

          400

          500

FS

ODI

Итого:

53552

274536

180361

148510

82399

27369

10262

7396

14403

11464

810252

209

1047

537

422

285

84

50

27

25

36

2722

256

262

335

351

289

325

205

273

576

318

297

Сургутнефть

ЭЦН – 20

            50

            80

          130

          200

          250   

ODI

Итого:

1966

93900

63829

40291

13234

3499

187

216906

8

239

124

76

35

13

2

497

245

392

514

530

378

269

93

436

Лянторнефть

ЭЦН – 20

            50

            80

          130

          200

          250         

FS

ODI

Итого:

7029

577040

167271

56011

9850

2964

12472

3278

835915

53

2160

453

145

34

9

27

15

2896

132

267

369

386

289

329

461

218

288

СНГ

ЭЦН – 20

            50

            80

          130

          200

          250

          400

          500

FS

ODI

Итого:

70548

1193103

484640

288976

119629

37549

12056

7414

26875

15261

22561

314

4386

1359

752

388

112

53

28

52

56

7500

224

272

356

384

308

335

227

264

516

272

300


    продолжение
--PAGE_BREAK--ANNOTATION


In the diplom project there is the main information about the electro-centrifugal pump’s plant. There was analysis home and foreign plans plant, analysis of refusal  by know. Jugested   improvement the of pump. There was necessary hydraulic  and durable calculations and computation waiting economical effect.

АННОТАЦИЯ

В данном дипломном проекте даны основные сведения об установках электроцентробежных насосов. Произведен анализ отечественных и зарубежных схем установок, анализ отказов по узлам. Предложено усовершенствование  насоса.

Произведены необходимые гидравлические и прочностные расчеты и расчет ожидаемого экономического эффекта.
Приложение 1
Техническая характеристика насосов типов ЭЦНМ и ЭЦНМК



Типоразмер

Подача, м3/сут

Напор, м

Мощность, кВт

КПД, %

Частота вращения, об/мин



Количество

Длина, мм

Давление на оптимальном режиме, кг/см2

ступеней

секций

ЭЦНМ5-50-1300

ЭЦНМ5-50-1300

50

1360

1775

17,94

23,42



43




264

344

2

2

8252

10252

133,4

174,1

ЭЦНМ5-50-1200

ЭЦНМК5-80-1200

ЭЦНМ5-80-1550

ЭЦНМК5-80-1550

ЭЦНМ5-80-1800


80

1235

1235

1615

1615

1800

12,77

21,77

28,46

28,46

31,73


51,5



286

286

351

351

392

2

2

2

2

2

8252

8252

10252

10252

11252

121,2

121,2

158,4

158,4

176,6

ЭЦНМ5-125-1200

ЭЦНМК5-125-1200

ЭЦНМ5-125-1300

ЭЦНМК5-125-1300

ЭЦНМ5-125-1800



125

1180

1180

1335

1335

1770

28,61

28,61

32,37

32,37

42,92


58.5



262

262

296

296

393

2

2

2

2

2

9252

9252

10252

10252

13617

115,8

115,8

131

131

173

ЭЦНМ5-200-800

ЭЦНМ5-200-1400

200

830

1395

36,76

64

50



235

393

2

3

10252

17986

81,3

136,8

ЭЦНМ5А-160-1450

ЭЦНМ5А-160-1750

160

1415

1705

42,11

50,75

61



285

345

2

3

10251

12615

138,8

167,3

ЭЦНМ5А-250-100

ЭЦНМ5А-250-1400

ЭЦНМК5А-250-1400

ЭЦНМ5А-250-1700

ЭЦНМК5А-250-1700


250

1000

1400

1400

1695

1695

46,13

64,57

64,57

78,18

78,18


61,5

2910

184

257

257

311

311

2

3

3

4

4

11252

15617

15617

18982

19982

98,1

137,3

137,3

166,3

166,3

ЭЦНМ5А-400-950

ЭЦНМК5А-400-950

ЭЦНМ5А-400-1250

ЭЦНМК5А-400-1250


400

980

980

1255

1255

74,75

74,75

95,74

95,74


59,5



240

240

308

308

4

3

4

4

15617

15617

19982

19982

96,1

96,1

123,1

123,1

ЭЦНМ5А-500-800

ЭЦНМ5А-500-1000



500

825

1010

85,88

105,1

54,5



202

248

3

4

14617

17982

81

99,1

ЭЦНМ6-250-1400

ЭЦНМ6-250-1600

250

1450

1650

65,29

74,29

63



232

263

2

2

9252

10252

142,2

162

ЭЦНМ6-500-1150

500

1160

109,69

60



218

3

14617

113,8

ЭЦНМ6-800-700

ЭЦНМ6-800-1000

800

725

965

109,68

145,99

60



153

204

3

4

13617

17982

71,1

94,7

ЭЦНМ6-1000-900

1000

900

170,21

60



208

4

21982

88,3


                                                    Приложение 4


    продолжение
--PAGE_BREAK--Основные технические параметры кабельных линий


Типоразмер кабельной линии

Кабель в сборе

Типоразмер кабеля в сборе

Кабель основной

Удлинитель с муфтой

Количество Xсечение жил (мм2)

Длина, м

Количество Xсечение жил (мм2)

Длина, м

КПБК

КПБП



К43.000-04

К43.010-04

3Х10

-

900

3Х6

50

К43.000-06

К43.010-06

3Х10

-

1000

3Х6

50

К43.000-08

К43.010-08

3Х10

-

1100

3Х6

50

К43.000-10

К43.010-10

3Х10

-

1200

3Х6

50

К43.000-12

К43.010-12

3Х10

-

1300

3Х6

50

К43.000-14

К43.010-14

3Х10

-

1400

3Х6

50

К43.000-16

К43.010-16

3Х10

-

1500

3Х6

50

К43.000-18

К43.010-18

3Х10

-

1600

3Х6

50

К43.000-20

К43.010-20

3Х10

-

1700

3Х6

50

К43.000-35

К43.010-35

3Х16

-

900

3Х6

50

К43.000-41

К43.010-41

3Х16

-

1100

3Х6

50

К43.000-45

К43.010-45

-

3Х16

1200

3Х6

50

К43.000-47

К43.010-47

3Х16

-

1300

3Х6

50

К43.000-50

К43.010-50

3Х16

-

1400

3Х6

50

К43.000-51

К43.010-51

-

3Х16

1400

3Х6

50

К43.000-53

К43.010-53

3Х16

-

1500

3Х6

50

К43.000-56

К43.010-56

3Х16

-

1600

3Х6

50

К43.000-59

К43.010-59

3Х16

-

1700

3Х6

50

К43.000-61

К43.010-61

3Х16

-

1800

3Х6

50

К43.000-63

К43.010-63

3Х16

-

1900

3Х6

50

К43.000-67

К43.010-67

3Х16

-

2100

3Х6

50

К43.000-91

К43.010-91

3Х25

-

1100

3Х16

50

К43.000-92

К43.010-92

-

3Х25

1100

3Х16

50

К43.000-97

К43.010-97

3Х25

-

1300

3Х16

50

К43.000-110

К43.010-110

3Х25

-

1800

3Х6

50

К43.000-112

К43.010-112

3Х25

-

1900

3Х6

50


СМЕТНАЯ КАЛЬКУЛЯЦИЯ № 1

на ЭЦНМ5 – 50-1300 (две секции)





п/п

СТАТЬЯ  ЗАТРАТ

Сумма (руб)

1

Сырье и материалы



275842

2

Покупные изделия (запчасти)

2890014

3

Транспортные расходы

237268

4

Возвратные отходы (минусы)





ИТОГО:

3203124

5

Заработная плата

104520

6

Дополнительная зарплата

13588

7

Начисления на соцстрах

45472

8

Услуги и работы вспомогательных служб

47034

9

Инструмент и приспособления целевого назначения

6271

10

Электроэнергия

10452

11

Расходы на подготовку и освоение производства

10445

12

Цеховые расходы

58531

13

Расходы по содержанию оборудования

15678

14

Общезаводские расходы

290566

15

Расходы на подготовку и освоение производства.





Итого заводская себестоимость



16

Внепроизводственные расходы



17

Полная себестоимость

3796281х1,23

18

Прибыль

4669426х1,1

19

Отпускная цена

5136369


    продолжение
--PAGE_BREAK--Расшифровка материалов к
сметной калькуляции № 1

на ЭЦНМ5 – 50-1300 (две секции)





Наименование материалов

марка

Единица измерения

Цена

Количество

Сумма

1

Колесо рабочее НМ003.015

Шт.

12940

41,0

530540

2

Аппарат направляющий НМ003.016

Шт

17404

60,0

1044240

3

Шайба верхняя УЭ155.058-01

Шт

3610

41,0

148010

4

Шайба колеса УЭ152.022

Шт

3911

164,0

641404

5

Втулка защитная УЭ155.024

Шт

25156

1

25156

6

Втулка защитная вала УЭ155.031

Шт

3420

110,0

376200

7

Втулка подшипная УЭ102.077

Шт

26508

1,5

39762

8

Вал d-17, l – 4342 НМ003.007-06

Шт

140996

0,05

7050

9

Вал d-20, l-303

НМ003.029

Шт

115425

0,05

5771

10

Шпонка УЭ102.039

М/Шт

12360

2,0 / 1

12360

11

Втулка УЭ186.009-02

М/Шт

17940

0,2

3588

12

Муфта шлицевая

НМ003.120-11

М/Шт

6168

0,05

308

13

Муфта  шлицевая

НМ003.130

М/Шт

6168

0,05

308

14

Подпятник УЭ102.025

М/Шт

50751

0,4

20300

15

Шайба пяты

УЭ102.026

Шт

16893

1,0

16893

16

Шайба УЭ102.027

Шт

9062

2,0

18124

17

Ветошь ГОСТ 5354-79

Кг

815

0,6

489

18

Масло МА ПЭД ГОСТ 20799-75

Кг

6800

1,0

6800

19

Моющее вещество МС-15

Кг

33388

2,0

66776

20

Смазка: УТ ГОСТ 1957-79

Кг

11624

0,06

697

21

Солидол УС ГОСТ 1033-79

Кг

6000

0,18

1080

22

Графит ГС-4 ГОСТ 8295-73

Кг

-

0,36

-



Итого:  2965856


СМЕТНАЯ КАЛЬКУЛЯЦИЯ № 2


    продолжение
--PAGE_BREAK--Текущий ремонт гидрозащиты 1Г-51
(протектора 1Г-51 и компенсатора ГД-51)



№ п/п

Статьи затрат

Сумма

1

Запчасти

524,42

2

Сырье и материалы

73,83

3

Транспортно заготовительные расходы

5,98



ИТОГО:

604,23

4

Заработная плата

70,42

5

Отчисления на соц.страх

27.11

6

Накладные расходы

1079,54



ВСЕГО

1781,30


РАСШИФРОВКА СТАТЬИ  «Сырье и материалы»




Наименование

Обозначение

Ед.

Изм.

Цена

Кол-во

Сумма

1

Масло Iкатегории Омского НПЗ

ГОСТ101210-76

Кг

3,28

10

32,80

2

Нефрас с50/170 (Бр-2)

ГОСТ85505-80

Кг/л

1,80

4,38/6

7,88

3

Пленка ПМФС-352,0,06Х30

ТУ 6-19-226-83

Кг

127,46

0,032

4,08

4

Проволока ДКРНМ2Л63

ГОСТ1066-90

М

3,00

8

24,00

5

Порошок притирочный АСМ 28/20

ГОСТ9206-80

Кг

2,10

0,001

0,002

6

Салфетки х/б

ГОСТ21220-75

Шт.

1,10

1,1

1,21

7

Полотно нетканное



кг

0,01

0,2

0,002

8

Мс-15

ТУ10-980-92

кг

12,62

0,13

1,64

9

Шкурка шлифовальная 1,830х2 СГТ 15А80МА

ГОСТ6456-82

м2

22.50

0,04

0,90

10

Силикагель КСКГ

ГОСТ3956-76Е

кг

12,00

0,11

1,32



ИТОГО:

73,8

    продолжение
--PAGE_BREAK--



РАСШИФРОВКА СТАТЬИ «Запчасти»




Наименование

Обозначение

Ед.

изм.

Цена

Кол-во

Сумма

1

Корпус пяты

8ТЩ001.365

Шт.

14,00

0,05

0,70

2

Втулка подшипника

8ТЩ007.036-01

Шт.

19,90

0,09

17,91

3

Вал

8ТЩ200.351

Шт.

265,40

0,2

53,08

4

Кольцо

8ТЩ217.514

Шт.

2,20

0,1

0,22

5

Кольцо пружинное

8ТЩ218.416

Шт.

1,60

5

8,00

6

Головка верхняя

8ТЩ253.294Э

Шт.

210,80

0,05

10,54

7

Пята

ЕЮТИ052.004

Шт.

46,60

0.3

13,98

8

Кожух

8ТЩ300.018

Шт.

5,20

0,5

2,60

9

Крышка

ЭД139.013

Шт.

51,80

0,2

10,36

10

Крышка

ЭД139.021

Шт.

26,50

0,1

2,65

11

Пробка

ЭД139.154

Шт.

4,70

1,4

6,68

12

Пробка

ЭД139.011

Шт.

8,70

0,3

2,61

13

Кольцо 075-081-36-2-2

ГОСТ18829-73

Шт.

2,40

9

21,60

14

Кольцо 034-040-36-2-2

ГОСТ18829-73

Шт.

1,90

4

7,60

15

Кольцо 052-058-36-2-2

ГОСТ18829-73

Шт.

2,20

7

15,40



16

Шпилька

ЭД139.017

Шт.

3,20

4,2

13,44

17

Шпилька

ЭД139.017-01

Шт.

3,20

1,05

3,36

18

Гайка

8ТЩ948.295

Шт.

3,00

0,4

1,20

19

Шайба

ЭД139.015

Шт.

1,00

8

8,00

20

Шайба

ЭД139.015-02

Шт.

1,20

2

2,40



21

Шпонка

ЭД139.018-01

Шт.

2,00

0,7

1,40

22

Шпонка

8ТЩ979.080-05

Шт.

3,30

0,35

1,16

23

Шпонка

8ТЩ979.128-01

Шт.

0,50

0,35

0,18

24

Кольцо

ЕЮТТИ052.003

Шт.

14.60

0,6

8,76

25

Винт М4.10.58.019

ГОСТ17473-80

Шт.

0,72

2,1

1,51

26

Гайка М10.12.40х019

ГОСТ2524-70

Шт.

3,00

7,2

21,60

27

Шайба пружинная 10.65Г.019

ГОСТ6402-70

Шт.

0,15

4,5

0,68

28

Уплотнение торцовое 2Р25В

ТУ16.305.028-85

Шт.

91,40

0,2

18,28

29

Подпятник

ЕЮТИ052.600

Шт.

75,10

0,6

45,06

30

Клапан

5ТЩ456.055-01

Шт.

24,80

0,3

7,44

31

Каркас

5ТЩ080.035.

СБ

Шт.

17,00

0,05

0,85

32

Корпус

ЕЮТИ347.000

Шт.

25,00

0,05

1,25

33

Сильфон ( к торц. Уплот.)

8ТЩ258.004

Шт.

8,00

0,05

16,00

34

Шайба

8ТЩ950.283

Шт.

7,60

0,9

4,56

35

Втулка защитная

8ТЩ219.232

Шт.

7,00

0,05

0,35

36

Пробка

ЕЮТИ060.000-01

Шт.

3,20

0,7

0,16

37

Головка нижняя

8ТЩ253.205

Шт.

210,80

0,05

10,54

38

Втулка

8ТЩ294.143

Шт.

13,80

0,7

12,42

39

Ниппель нижний

8ТЩ454.081

Шт.

16,00

0,05

0,80

40

Кольцо 009-013-25-2-2

ГОСТ18829-73

Шт.

1,80

1

1,40

41

Ниппель верхний

8ТЩ454.086

Шт.

25,00

0,05

0,80

42

Кольцо 004-007-19-2-2

ГОСТ18829-73

Шт.

75,00

1

1,26

43

Корпус

5ТЩ000.176СБ

Шт.

30,00

0,3

1,25

44

Диафрагма

8ТЩ456.039

Шт.

80,00

1

75,00

45

Каркас диафрагмы

8ТЩ.456.050

Шт.

30,00



1,50

46

Диафрагма

8ТЩ.456.040

Шт.

80,00



80,00

47

Клапан

ЭД139.012

Шт.

20,60



6,18

48

Кольцо 008-012-25-2-2

ГОСТ18829-73

Шт.

1,80



1,80







.





0,00



ИТОГО:









524,42


    продолжение
--PAGE_BREAK--РАСШИФРОВКА СТАТЬИ «Трудовые затраты»




Наименование работ

Разряд

Норма врем.

Расценка

Сумма

1

Разборка протектора Г-51м

4-5

0,88

4,56

4,01

2

Разборка компенсатора ГД-51

3-4

0,44

3,66

1,61

3

Сквозные работы

3-4

2,8

3,66

10,25

4

Сборка протектора 1Г-51

4-5

1,7

4,56

7,75

5

Сборка компенсатора ГД-51

4

0,88

3,87

3.41

6

Обкатка протектора 1Г-51

3

0,68

3,87

2,63

7

Гидравлическое испытание

4

0,68

3,87

2,63



Протектора 1Г-51











ИТОГО:



8,06



32,01



Премия (25%)







0,00



Районный к-т и сев. надб.







38,41



ВСЕГО

70,42


СМЕТНАЯ КАЛЬКУЛЯЦИЯ № 3


Текущий ремонт кабельной линии КППБ, КПБК для УЭЦН



№ п/п

Статьи затрат

Сумма

1

Запчасти

838,13

2

Сырье и материалы

10502,21

3

Транспортно заготовительные расходы

1,01



ИТОГО:

11341,35

4

Заработная плата

110,51

5

Отчисления на соц.страх

42,55

6

Накладные расходы

1694,12



ВСЕГО

13188,53


    продолжение
--PAGE_BREAK--РАСШИФРОВКА СТАТЬИ  «Запчасти»




Наименование

Обозначение

Ед.

изм.

Цена

Кол-во

Сумма

1

Удлинитель с муфтой модульной кабельного ввода.

к№93

Шт.

838,13

   1

838,13



ИТОГО:



838,13

РАСШИФРОВКА СТАТЬИ «Трудовые затраты»




Наименование работ

Разряд

Норма времени

Расценка

Сумма

1

Разборка

3-4

5,45

3,66

19,95

2

Сборка

3-4

3,65

3,66

13,36

3

Сквозные работы

3-4

0,7

3,66

2,56

4

Испытание на стенде

3-4

3,15

4,56

14,36



ИТОГО:



12,95



50,23



Премия (25%)







0,00



Районный к-т и сев.надб.







60,28



ВСЕГО:

110,51

РАСШИФРОВКА СТАТЬИ «Сырье и материалы»




Наименование

Обозначение

Ед.

изм.

Цена

Кол-во

Сумма

1

Пленка фторопластовая Ф-4ЭО

ТУ6-05-2004-86

Кг

365

0,045

16,43

2

Лента полиэтиленовая липкая 0,1х20

ГОСТ5974-81

Кг

19

0,16

3,04

3

Пленка ПМФС-352 0,06х30

ТУ19-226-83

Кг

127,5

0,06

7,65

4

Припой МФСу

92-6-2

ТУ46-21-584-76

Кг

60,1

0,06

3,61

5

Нефрас С50/170 (Бр-2)

ГОСТ85505-80

Кг/л

1,8

0,37/0,5

0,67

6

Шкурка шлифовальная 1,830х2СГТ 15А80МА

ГОСТ6456-82

М2

22,5

0,02

0,45

7

Салфетки х/б

ГОСТ21220-75

Шт

1,1

1

1,10

8

Лента киперная х/б 0,45х20

ГОСТ4514-78

М

0,2

20

4,00

9

Броня «S»-профиль



Кг/м

30,0

2,07/39

63,96

10

Кабель КПБП, КПБК



м

21

495,3

10401,30

11

Полотно нетканное



м

0,010

0,4

0,004



ИТОГО:

10502,21

    продолжение
--PAGE_BREAK--СМЕТНАЯ КАЛЬКУЛЯЦИЯ № 4
на текущий ремонт насоса ЭЦНМ 5-50-1700





Наименование

Обозначение

Ед.

изм.

Цена

Кол-во

Сумма

1

Аппарат

направляющий

НМ003.016

Шт.

23,70

103

2441,10

2

Втулка защитная вала

УЭ155.031

Шт.

3,84

105

403,20

3

Колесо рабочее

НМ003.015

Шт.

19,20

103

1977,60

4

Шайба колеса верхняя

УЭ155.058

Шт.

0,48

152

72,96

5

Шайба колеса нижняя

УЭ152.022

Шт.

1,20

152

182,40

6

Втулка защитная

УЭ155.024

Шт.

39,60

2

79,20

7

Опора верхняя

УЭ196.120

Шт.

69,12

0,6

41,47

8

Опора нижняя

УЭ196.016

Шт.

88,32

0,6

52,99

9

Вал d=17, l=4 м

НМ003.007-06

Шт.

330,00

0,3

99,00

10

Вал d=17,l=5 м

НМ003.007-02

Шт.

559,68

0,3

167,90

11

Шпонка дл. 1 м

УЭ102.039

Шт.

5,76

3

17,28

12

Шайба пяты

УЭ102.026

Шт.

12,00

2

24,00

13

Подпятник

УЭ102.025

Шт.

28,08

1,1

33,70

14

Втулка

подшипника

УЭ102.077

Шт.

38,40

2

76,80

15

Муфта шлицевая

НМ003.120-11

Шт.

97,20

0,3

29,16

16

Муфта шлицевая

НМ003.130



52,20

0,6

31,32

17

Шайба

УЭ102.027

Шт.

4,80

4

19,20

18

Втулка

УЭ155.027-05

Шт.

0,00

1

0,00

19

Основание

УЭ185.003

Шт.

0,00

0,1

0,00

20

Головка

УЭ186.002

Шт.

0,00

0,1

0,00

21

Втулка

дистанционная

УЭ155.022-04

Шт.

0,00

0,6

0,00

22

Кольцо опорное вала

УЭ188.009

Шт.

0,96

6

5,76

23

Корпус насоса

УЭ196.021

Шт.

0,00

0,1

0,00

24

Подшипник

верхний

УЭ186.080

Шт. Шт.

0,00

0,6

0,00

25

Крышка

упаковочная

Э2-81

Шт.

0,00

0,1

0,00

26

Гайка М12

Э2-62

Шт.

1,74

4

6,96

27

Болт М12-6gх60

ГОСТ 7808-70

Шт.

4,44

2,8

12,43

28

Шайба пружинная 12

ГОСТ 6402-70

Шт.

0,26

4

1,04

29

Кольцо 060- 065-30-2-2

ГОСТ 18829-73

Шт.

2,40

3

7,20

30

Кольцо 075-080-30-2-2

ГОСТ 18829-73

Шт.

2,40

6

14,40

31

Подшипник

нижний

УЭ155.110

Шт.

180,00

0,6

108,00

32

Шайба опорная

УЭ102.042

Шт.

26,40

0,6

15,84

33

Отбойник

УЭ196.023

Шт.

0,00

0,6

0,00

34

Сетка

УЭ186.011

Шт.

0,00

0,3

0,00

35

Крышка 

упаковочная

НМ003.001

Шт.

0,00

0,05

0,00

36

Шайба

УЭ102.084

Шт.

16,80

1

16,80

37

Втулка

НМ003.008-01

Шт.

0,00

0,3

0,00

38

Шайба опорная

НМ003.009-01

Шт.

0,00

0,3

0,00

39

Шпонка

НМ003.011

Шт.

0,00

0,3

0,00

40

Втулка

УЭ155.027-04

Шт.

0,00

0,3

0,00

41

Вал

НМ003.012

Шт.

0,00

0,3

0,00

42

Втулка распорная

УЭ155.026

Шт.

0,00

0,6

0,00

43

Шпилька М12 8gх30.88.55

ГОСТ 22038-76

Шт.

4,80

2,1

10,08

44

Клапан обратный КО-73

УЭ196.020СБ



422,40

0,25

105,60



ИТОГО:

6053,39



РАСШИФРОВКА СТАТЬИ «Сырье и материалы»





Наименование

Обозначение

Ед.

изм.

Цена

Кол-во

Сумма

1

Масло индустриальное И-20А

ГОСТ 20799-75

кг

2,78

0,69

1,92

2

МС-15

ТУ10-980-92

кг

5,00

1,239

6,20

3

Шкурка

шлифовальная 1,830х2 СГТ

ГОСТ 6456-82

м2

45,53

0,08

3,64

4

Салфетка х/б

ГОСТ 21220-75

шт.

0,76

0,8

0,61

5

Полотно нетканное



м2

5,54

1

5,540

6

Смазка графитная

УСсА

ГОСТ 3333-80

кг

33,41

0,53

17,71

7

Краска масляная



кг

25,00

0,005

0,13



ИТОГО:

35,75



РАСШИФРОВКА СТАТЬИ «Трудовые затраты»




Наименование работ

Разряд

Норма времени

Расценка

Сумма

1

Разборка

3-4

1,29

3,66

4,72

2

Сборка

3-4

3,4

3,66

12,44

3

Сквозные работы

3

9,95

3,45

34,33

4

Испытание секций и консервация

3-4

3,22

4,56

14,68



ИТОГО:



17,86



66,17



Премия (25%)







0,00



Районный к-т и сев.надб.







79,40



ВСЕГО:

145,57
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Программа демонстрирующая иерархию окон Windows
Реферат Расчет тепловой схемы парогенератора ПГВ-1000 с построением диаграмм t-Q, тепловой и гидродинамический расчеты
Реферат Статистика транспорта 2
Реферат Исследование ПРОБЛЕМ, СВЯЗАННЫХ С РАЗВИТИЕМ ДЕТЕЙ С НАРУШЕННЫМИ ЗРИТЕЛЬНЫМИ
Реферат Совершенствование инструментов финансовой стабилизации предприятия
Реферат Сравнительная характеристика Обломова и Штольца
Реферат Театральный роман
Реферат Отчетность малых предприятий: состав, содержание и порядок составления
Реферат Средства создания комического эффекта в комедии Ревизор Гоголя
Реферат Gender Issues In Antigone Essay Research Paper
Реферат Кастро, Рауль
Реферат Стандартизация и сертификация 2
Реферат Столкновение теории с жизнью По роману Тургенева Отцы и дети
Реферат Стоит ли доверять маркетинговым исследованиям
Реферат Спящая красавица 2