--PAGE_BREAK--Для оценки значимости факторов необходима матрица значений распределения Стьюдента. Расчетные значения здесь также сравниваются с табличными. После этого начинается шаговый регрессивный анализ. Его результатом становится уравнение регрессии
где а0 – свободный член уравнения; х1,х2,…,хn – факторы, определяющие результатный показатель в его единицах измерения.
Далее следует группа оценочных показателей уравнения регрессии в целом:
F – отношение Фишера для оценки множественного коэффициента корреляции и уравнения регрессии в целом; dэ –отношение Дарбина – Уотсона для определения наличия автокорреляции в рядах динамики; э – коэффициент эластичности – отношение изменения ( в процентах) одного признака при изменении на 1% другого. Для f(x) коэффициент эластичности обращается в э =, где – производная. Показатели эластичности вычисляются в статике и динамике; бета-коеффициенты и другие статистические характеристики, которые не интерпретируются с экономической точки зрения.
Интерпретацию выходной информации можно последить на примере корреляционного анализа фондоотдачи. Для построения на первом этапе отобраны следующие факторы:
Х1 – удельный вес машин и оборудования в общей стоимости основных производственных фондов, %;
Х2 – электрооворуженность рабочих, тыс. кВт∙ч;
Х3 – уровень использования производственной мощности, %.
Числовые характеристики анализируемых показателей представлены в таблице 1.3.
Число колебаний
Y
X1
X2
X3
1
2
3
4
5
1.47
1.25
1.82
1.45
1.75
32.00
30.58
34.12
32.17
33.78
34.08
35.89
36.93
32.31
34.91
88.98
87.27
95.00
88.17
90.89
40
1.79
33.96
40.25
92.40
Для оценки колеблемости показателей необходимы их статистические характеристики (Табл. 1.4.).
Данные таблицы показывают, что незначительным колебаниям подвержены факторы Х3 и Х1; средняя колеблемость присуща функции Y, значительная – фактору Х2. Однако коэффициенты вариации показателей не превышают 33%, что свидетельствует об однородности исходной информации.
Шифр показа-теля
Среднее
Арифмети-ческое
Дисперсия
Стандартное отклонение
Асимме-трия
Эксцесс
Вариа-
ции
У1
Х1
Х2
Х3
1,641
33,178
36,164
92,061
0,06456
3,614
2,626
17,095
0,25409
1,9187
9,0899
4,1347
-0,43878
0,48522
-0,96513
0,53833
-0,72032
0,63515
0,96761
-1,2665
15,484
5,7831
25,135
4,4912
Коэффициенты асимметрии говорят о правосторонней асимметрии распределения рядов Х1 и Х3 и о левостороннем распределении рядов Х2 и У.
Величина эксцесса для всех показателей не превышает 3, что подтверждает низковершинное распределение вариационных рядов. Указанные коэффициенты интерпретируются геометрически.
Далее анализируется матрица коэффициентов парной корреляции (табл. 1.5.).
Шифр показателя
У
Х1
Х2
Х3
У
Х1
Х2
Х3
1,0000
0,93778
0,0933618
0,92272
1,0000
0,093838
0,92602
1,0000
0,0786
1,0000
В данном примере наиболее тесная связь наблюдается между показателями фондоотдачи (У), идеального веса активной части фондов (Х1) и уровня загрузки производственной мощности (Х3). Парные коэффициенты корреляции соответственно составили 0,937778 и 0,92272.
Расчет парных коэффициентов корреляции выявил слабую связь фондоотдачи с электровооруженностью труда Х2 – 0,09361.
Гипотеза о наличии мультиколлинеарности отвергается, т. е. все показатели относительно независимы.
Для рассматриваемого примера вектор коэффициентов множественной детерминации равен: У = 0,9002; Х1 = 0,9043; Х2 = 0,0100; Х3 = 0,8820. Вектор интерпретируется следующим образом: изменение (вариация) функции (У) на 90,02% зависит от изменения избранных факторов-аргументов; фактора Х1 – на 90,43% от изменения функции (У) и остальных факторов и т. д.
В таблице 1.6. приведены частные коэффициенты корреляции. Они показывают связь каждой пары факторов в чистом виде при неизменном значении остальных параметров.
Шифр показателя
У
Х1
Х2
Х3
У
Х1
Х2
Х3
1,0000
0,5713
0,02791
0,4148
1,0000
0,02994
0,4541
1,0000
0,03164
1,0000
Частные коэффициенты корреляции ниже парных. Это говорит о том, что чистое влияние факторов слабее, чем влияние оказываемое отдельными факторами во взаимодействии с остальными.
Статистическая значимость, надежность связи, выраженная частными коэффициентами корреляции, проверяется по t-критерию Стьюдента путем сравнения расчетного значения с табличными при заданной степени точности (Табл. 1.7.).
Шифр показателя
У
Х1
Х2
Х3
А
1
2
3
4
У
Х1
Х2
Х3
1,0000
4,1769
0,1675
2,7359
1,0000
0,1797
3,0583
1,0000
0,1899
1,0000
Обычно в практике экономических расчетов степень точности берется равной 5%, что соответствует вероятности р = 0,05. В таблице приведены критические значения t-критерия Стьюдента для вероятности р = 0,05 и 0,01 при различном числе степеней свободы, которые определяются как (n–1), где n–число наблюдений.
В нашем примере при числе степеней свободы 40 – 1 = 39 табличное значение tтабл. = 2,021. Расчетные значения t-критерия (первая графа таблицы) для факторов Х1 и Х3 оказались выше табличных, что свидетельствует о значимости этих факторов для анализируемой функции. Фактор Х2 как незначимый для функции должен быть исключен из дальнейших расчетов.
Далее на ЭВМ проводится шаговый анализ с постепенным включением в модель избранных факторов по критерию значимости. На каждом шаге рассматриваются уравнения регрессии, коэффициенты корреляции и детерминации, F-критерий, стандартная ошибка оценки и другие показатели. После каждого шага перечисленные оценочные показатели сравниваются с рассчитанными на предыдущем шаге. Уравнение регрессии будет тем точнее, чем ниже величина стандартной ошибки (табл. 1.8.).
№ шага
Ввод переменной
Уравнение регрессии
Множественные
коэффициенты
Отношение
Стандартная
ошибка оценки
Корреляции
Детерми-
нации
I
X1
У = -2,481 +0,1242 Х1
0.9378
0.8797
277.2
0.0893
II
X3
У = -3,085+0,077 Х1 +
+ 0,0234 Х3+0,0002 Х2
0.9488
0.9001
166.7
0.0824
III
X2
У = -3,091+0,0773 Х1+
+ 0,0234 Х3+0,0002 Х2
0.9488
0.9002
108.3
0.0835
Если добавление последующих факторов не улучшает оценочные показатели, а иногда и ухудшает их, необходимо остановиться на том шаге, где показатели наиболее оптимальны.
Результаты шагового анализа представлены в Табл. 1.8. свидетельствуют о том, что сложившиеся взаимосвязи наиболее полно описывает двухфакторная модель, полученная на втором шаге: у = У = -3,085 = 0,0774 Х1 + 0,0234 Х3.
Статистический анализ данного уравнения регрессии подтверждает, что оно значимо: фактическое значение F-критерия Фишера равно 166,7, что значительно превышает Fтабл. = 3,25. Табличное значение F-критерия находится по заданной вероятности (р = 0,95) и числе степеней свободы для столбца таблицы (m– 1), где m – число параметров уравнения регрессии, включая свободный член, и для строки таблицы (n – m), где n – число наблюдений. Например F-табличное находится на пересечении столбца 2 (3 – 1) и строки 37 (40 – 3) и равно 3,25 (Табл. 1.9.).
Коэффициент множественной корреляции, равный 0,9488, свидетельствует о тесной взаимосвязи между фондоотдачей и удельным весом активной части основных фондов, а также уровнем использования производственной мощности. Величина коэффициента множественной детерминации 0,9001 свидетельствует о том, что изменение детерминации на 90,01% зависит от изменения учтенных факторов.
Параметры уравнения регрессии интерпретируется следующим образом: коэффициент регрессии при Х1 (0,0774) показывает, что увеличение удельного веса машин и оборудования в общей стоимости основных производственных фондов на 1% ведет к росту фондоотдачи на 7,74 копейки. Повышение уровня загрузки мощностей на 1% поднимает фондоотдачу на 2,34 копейки.
Число степеней свободы (n– 1)
p = 0.05
р = 0.01
Число степеней
cвободы (n – 1)
р = 0,05
р = 0,01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
12,69
4,302
3,183
2,777
2,571
2,447
2,368
2,307
2,263
2,227
2,200
2,179
2,161
2,145
2,131
2,119
2,110
2,100
2,093
2,086
63,655
9,924
5,841
4,604
4,032
3,707
3,500
3,356
3,250
3,169
3,138
3,055
3,012
2,997
2,946
2,921
2,898
2,877
2,860
2,846
21
22
23
24
25
26
27
28
29
30
32
34
36
38
39
40
42
44
46
60
2,078
2,074
2,069
2,064
2,059
2,054
2,052
2,049
2,045
2,042
2,037
2,032
2,027
2,025
2,021
2,020
2,017
2,015
2,012
2,000
2,832
2,818
2,807
2,796
2,787
2,778
2,771
2,464
2,757
2,750
2,739
2,728
2,718
2,711
2,704
2,704
2,696
2,691
2,685
2,661
В случае обратной связи, т.е. при уменьшении изучаемой функции в связи с ростом фактора-аргумента, коэффициент регрессии имеет знак «минус».
Свободный член уравнения ао = -3,085 экономически не интерпретируется. Он определяет положение начальной точки линии регрессии в системе координат. Численное значение коэффициентов эластичности отражает, на сколько процентов изменится функция при изменении данного фактора на 1% (имеется в в иду относительный прирост, а не абсолютный) приведет к росту фондоотдачи на 1,65%; улучшение уровня использования мощности на 1% повысит фондоотдачу на 1,3%.
По абсолютной величине бета-коэффициентов можно судить о том, в какой последовательности находятся факторы по реальной возможности улучшения функции. Для нашего примера последовательность переменных выглядит следующим образом:
Номер переменной
1
2
3
Бета-коэффициенты
0,584
0,382
0,009
Отношение Дарбина (коэффициент Дарбина – Уотсона) равно 1,215. Значит, в рядах динамики имеется автокорреляция.
Заключительную матрицу данных полностью характеризуют соответствующие заготовки (по столбцам):
1. У – фактическое.
2. У – расчетное.
3. Отклонение (Уфакт – Урасч).
4. Доверительные интервалы (границы, выход за пределы которых имеет незначительную вероятность).
Для устранения автокорреляции модель пересчитана по приростным величинам. В результате получено следующее уравнение регрессии: У = -0,0079 + 0,0345; Х3 + 0,0475 Х1. Оно значимо: величина F-критерия равна 178,3. Коэффициент Дарбина составляет 2,48, т.е. близок к 2, что говорит об отсутствии автокорреляции. Коэффициент множественной корреляции (0,9518) выше, чем рассчитанный в первом случае. Величина коэффициента множественной детерминации также выше (0,9060). В окончательном виде уравнение регрессии интерпретируется таким образом: повышение уровня загрузки (производственной мощности) на 1% приведут к росту фондоотдачи на 3,45 копейки, а удельного веса машин и оборудования в общей стоимости основных производственных фондов – на 4,75 копейки.
Справочный материал. Обработка данных при постановлении множественных моделей корреляционно-регрессивной зависимости производится на ЭВМ по типовой программе.
Исходные данные должны быть достоверны, экономически интерпретируемы, количественно соизмеримы. Расчеты оформляются в виде таблице, в которой первая графа отражает число наблюдений n, вторая (у) – результативный показатель, каждая следующая (х) – факторы в любом порядке, так как факторы машина вводит в процессе шагового анализа по значимости критерия.
При заполнении таблицы исходных данных следует указывать одинаковое количество знаков после запятой в пределах одной графы. Для предотвращения ошибок необходимо использовать данные с возможно большим числом значащих цифр (не менее 5). Процентные отношения требуется давать с точностью до 0,001.
В таблице 1.10. приведены значения F-критерия для р = 0,95 в зависимости от числа степеней свободы: (m–1) – для столбца и (n–m) – для строки, где m – число параметров уравнения регрессии, включая свободный член; n – число наблюдений.
m-1
n-m
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
11
10
15
16
17
18
19
20
21
22
32
33
34
35
36
38
4,96
4,54
4,49
4,45
4,41
4,38
4,35
4,32
4,30
4,15
4,14
4,13
4,12
4,11
4,10
4,10
3,68
3,36
3,59
3,55
3,52
3,49
3,47
3,44
3,30
3,29
3,28
3,26
3,26
3,25
3,71
3,29
3,24
3,20
3,16
3,13
3,10
3,07
3,05
2,90
2,89
3,28
2,87
2,86
2,85
3,48
3,06
3,01
2,96
2,93
2,90
2,87
2,84
2,82
2,67
2,66
2,88
2,64
2,63
2,62
3,33
2,90
2,85
2,81
2,77
2,74
2,71
2,68
2,66
2,51
2,50
2,65
2,48
2,48
2,46
3,22
2,79
2,74
2,70
2,66
2,63
2,60
2,57
2,55
2,40
2,39
2,49
2,37
2,36
2,35
3,14
2,70
2,66
2,62
2,58
2,55
2,52
2,49
2,47
2,32
2,31
2,38
–
2,28
2,26
3,07
2,64
2,59
2,55
2,51
2,48
2,45
2,42
2,40
2,25
2,24
2,23
2,22
2,21
2,14
3,02
2,59
2,54
2,50
2,46
2,43
2,40
2,37
2,35
2,19
2,18
2,17
2,16
2,15
2,14
2,97
2,55
2,49
2,45
2,41
2,38
2,35
2,32
2,30
2,14
2,13
2,12
2,11
2,10
2,09
МЕТОД ДИСКОНТИРОВАНИЯ.
Дисконтирование – это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта).
Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, т. е. сумма денег, имеющаяся в наличии в настоящее время, обладает большой ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка (р), характеризующая относительные изменения за определенный период (обычно равный году).
продолжение
--PAGE_BREAK--Предположим, что Ф(t) – номинальная цена будущего потока реальных денег в году t и Ф(0) – цена этого ожидаемого притока или оттока в настоящее время (текущая цена). Тогда (предполагая, что р – постоянная величина)
.
Смысл проведения расчетов методом дисконтирования состоит в том, чтобы определить сумму, которую следует заплатить сегодня с тем, чтобы получить планируемую отдачу от инвестиций в будущем.
Для применения метода дисконтирования об объекте инвестирования необходимо знать следующие исходные данные: величиной инвестиции, планируемые величины денежных потоков или чистого дохода, норма дисконтирования, срок проекта.
При расчете денежных притоков и оттоков (кеш-фло) учитывается не только поступления денежных средств от операционной и инвестиционной деятельности, но и потоки от финансовых результатов.
Чистый поток наличности (ЧПН) определяется как разность между притоками и оттоками наличности от операционной (производственной) и инвестиционной деятельности минус издержки по финансированию проекта.
Чистый дисконтированный доход (ЧДД) определяется как сумма ЧПН за расчетный период.
Пример расчета куммулятивного ЧДД приведен в приложении 1. Здесь куммулятивный чистый поток реальных денег (строка 9) рассчитывается сложением куммулятивного чистого потока реальных денег за предыдущий период и чистого потока реальных денег за отчетный год. Например, куммулятивный чистый поток реальных денег в 2002 (5-м) году равен – 8300 млн. руб. (-10000 + 1700). ЧДД (строка 10)рассчитывается по формуле ЧД = строка 8 /, где n – год с момента инвестирования, за который рассчитывается ЧДД. Куммулятивный ЧДД (строка 11) рассчитывается так же, как и куммулятивный чистый поток реальных денег.
Коэффициент дисконтирования для приведения чистых денежных потоков к начальному периоду определяется по формуле
где Д – ставка дисконтирования (норма дисконта);t – год, за который дисконтируется чистый доход, начиная с момента инвестирования.
Значение коэффициентов дисконтирования можно также получить из специальных таблиц дисконтированных величин.
Норма дисконта отражать прибыль инвестора, которую он мог бы получить при инвестициях в другой проект. Она является минимальной нормой прибыли, ниже которой инвестор счел бы свои вложения не выгодными.
ЧДД характеризует интегральный эффект от реализации проекта и определяется как величина, полученная дисконтированием разницы между всеми готовыми оттоками и притоками реальных денег, накапливаемых в течении горизонта расчета проекта Т (при постоянной ставке процента отдельно для каждого года):
,
где – чистые потоки наличности в годы t = 1,2,3,…,T.
Формулу для расчета ЧДД можно представить в следующем виде:
ЧДД = П(0) + П(1) ∙ К1 + П(2) ∙ К2 + … + П(Т) ∙ Кt.
Чистый дисконтированный доход как критерий для оценки эффективности инвестиций достаточно корректен и экономически обоснован. Во-первых, ЧДД учитывает изменение стоимости денег во времени. Во-вторых, ЧДД зависит только от прогнозируемого чистого денежного потока и альтернативной стоимости капитала. В-третьих, ЧДД имеет свойство аддитивности, т. е. ЧДД нескольких инвестиционных проектов можно складывать, так как все они выражены в сегодняшних деньгах.
ОПТИМИЗАЦИОННЫЕ МЕТОДЫ АНАЛИЗА И ПРИНЯТИЯ РЕШЕНИЯ В ЭКОНОМИКЕ.
Многие задачи, с которыми приходится сталкивается экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.
В современных условиях даже не значительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяют в одну группу под общим названием «оптимизационные методы анализа и принятия решения в экономике».
Чтобы решить экономическую задачу математическими методами, прежде всего необходимо построить адекватную ей математическую модель, т.е. формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.
В общем случае математическая модель оптимизационной задачи имеет вид:
max(min): Z= Z(x) (1.1.)
при ограничениях
, (1.2)
где R– отношения равенства, меньше или больше.
Если целевая функция (1.1) и функции, входящие в систему ограничений (1.2.), линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция (1.1.) или система ограничений (1.2.) не линейна, такая задача называется задачей линейного программирования.
В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач линейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых в настоящее время имеется хорошее математическое и программное обеспечение.
Модели и методы решения задачи линейного программирования. Среди оптимизационных моделей и методов, используемых в теории экономического анализа, наиболее широкое распространение получили модели линейного программирования, которые решаются с помощью универсального приема –симплексного метода. Для современных ПЭВМ имеется ряд пакетов прикладных программ, которые позволяют решать любые задачи линейного программирования достаточно большой размерности. Одновременно с решением исходной задачи указанные пакеты прикладных программ могут решать двойственную задачу, решение которой позволяет проводить полный экономический анализ результатов решения исходной задачи.
Решение задачи линейного программирования на ПЭВМ рассмотрим на примере задачи об оптимальном раскрое материалов. По результатам решения проведем полный экономико-математический анализ с использованием теории двойственности.
Пусть имеется 200 кг полотна шириной 86 см и 300 кг — шириной 89 см. Из него необходимо раскроить и сшить мужские куртки 44, 46, 52 и 54 размеров. Они должны быть изготовлены
в следующем соотношении к размерам: 44 — 25,38%; 46 27,88%; 52 — 24,54%; 54 — 25,54%. Итого — 100%.
Общий расход полотна, а также отходы, получаемые при рас
крое полотна, приведены в табл. 1.12 и 1.13.
Количество курток, которые выпускало предприятие в течение месяца, показано в табл. 1.14.
Необходимо определить насколько рациональным оказался раскрой, а также какие размеры изделий целесообразнее раскраивать из полотна указанной ширины, чтобы сократить отходы.
Ширина полотна, см.
Размер курток
44
46
52
54
86
89
520,27
576,42
553,5
593,49
597,4
627,2
605,6
647,77
Ширина полотна, см.
Размер курток
44
46
52
54
86
89
66,27
94,45
75,5
97,49
78,4
105,7
85,6
109,7
Размер курток
Ширина полотна, см.
86
89
44
46
52
80
110
96
134
125
108
Размер курток
Ширина полотна, см.
86
89
44
46
52
80
110
96
134
125
108
Решим данную задачу на ПЭВМ с использованием, например, инструментальных средств МВ Excel и сделаем экономический анализ полученного решения. Как правило, решение конкретной задачи на ПЭВМ включает в себя следующие этапы:
· составление математической модели;
· присвоение элементам модели определенных «имен»;
· составление матричной модели с поименованными элементами;
· ввод и корректировка исходных данных;
· решение задачи на ПЭВМ;
· экономический анализ полученного решения.
Применительно к нашему примеру на первом этапе вводим условные обозначения, необходимые для решения задачи (Табл. 1.15.).
Здесь х1, х2, х3, х4, х5, х6, х7, х8, обозначают соответственно количество изделий (штук) определенного размера, раскроенных из полотна шириной 86 и 89 см. Умножив количество изделий на нормы отхода, получим общую величину отходов производства. Они должны быть минимальны. Тогда целевая функция имеет вид:
min: F(x) = 66,27 х1+ 75.5х2+ 78.4х3 + 95.6х4+
+ 94.2х5 + 97.49х6+ 105.7х7+ 108.77х8.
Задача состоит в нахождении таких хj(j= ), при которых целевая функция (1.1) достигнет минимума и выполняются следующие условия:
520,27х1 + 553,5х2 + 597,4х3 + 605,4х4 = 200000;
526,42х5 + 553,49х6 + 627,7х7 + 647,77х8 = 300000;
х1 + х2 + х3 + х4 + х5 + х6 + х7 + х8 - х9 = 0;
х1 + х5 – 0,2538х9 = 0;
х2 +х6 – 0,2788х9 = 0;
х3 + х7 – 0,2420х9 = 0
х4 + х8 – 0,2254х9 = 0;
.
Здесь х9 – суммарный выпуск курток. Тогда условия (1.4) и (1.5) означают, что полотна шириной 86 см должно быть израсходовано 200 кг, а полотна шириной 89 см — 300 кг; (1.6) – условие суммарного выпуска изделий; условия (1.7) – (1.10) означают сбалансированность раскроя изделий по соответствующим размерам; (1.11) – условие неотрицательности объемов производства.
На втором этапе каждой переменной, ограничениям, целевой функции и вектору ограничений (коэффициенты свободных членов) присваиваются «имена», которые должны включать не более восьми символов. Удобно, чтобы имена были информативными, так как при этом облегчается использование выходных отчетов.
Элементы модели и присваиваемые им имена:
Переменная
х1
х2
х3
х4
х5
х6
х7
х8
х9
Целевая функция (1.3)
Ограничения по ресурсам:
полотна шириной 86 см. (1.4)
полотна шириной 89 см. (1.5)
Общий объем производства (1.6)
Ограничения по выпуску:
курток размера 44 (1.7)
курток размера 46 (4.8)
курток размера 52(1.9)
курток размера 54 (4.10)
Вектор ограничений
(200000, 300000, 0, 0, 0, 0, 0)
«Имя»
ПР1
ПР2
ПР3
ПР4
ПР5
ПР6
ПР7
ПР8
ПР9
Отходы
Полотно 1
Полотно 2
Выпуск
Размер 44
Размер 46
Размер 52
Размер 54
Ресурсы
На третьем этапе составляем матричную модель с именованными элементами модели (Приложение 2). .
На четвертом этапе введем исходные данные в ПЭВМ. При этом ввод осуществляется в соответствии с инструкцией к имеющемуся пакету прикладных программ.
При завершении ввода исходной информации возможна ее распечатка для визуального контроля. По результатам контроля производится корректировка исходной информации и переход на режим расчета.
Пятый этап. Решение задачи Возможно в двух режимах: решение прямой задачи; решение прямой и двойственной задач. При этом решение можно производить поэтапно, с выдачей промежуточных результатов алгоритма симплекс-метода, по которым можно судить о качественном процессе поиска оптимального решения. По завершении результатов расчета устанавливается режим распечатки (как прямой задачи, так и двойственной).
Так, в режиме расчета прямой задачи получим следующее решение, предварительно округлив результаты до целых:
ПР 1 = 150; ПР 2 = о; ПР 3 = 204; ПР 4 = о; ПР 5 = 64; ПР 6 = 235; ПР 7 = о; ПР 8 = 190; ПР 9 = 843.
Отходы = 75 743; Полотно 1 = 200 000; Полотно 2 300 = 000.
Следовательно, необходимо раскроить из полотна шириной 86 см 150 курток 44 размера и 204 куртки 52 размера, а из полотна шириной 89 см — 64 куртки 44 размера, 235 курток 46 размера и 190 курток 54 размера. Общий объем производства составит 843 куртки. Суммарные отходы при таком варианте раскроя составят 75743 г, а ресурсы будут использованы полностью.
В режиме решения двойственной задачи получим значения двойственных оценок ресурсов:
Полотно 1 = 0,12996 Полотно 2 = 0,16616
Как видим, двойственные оценки объемов ресурсов отличны от нуля, следовательно, они «дефицитны». Их абсолютная величина говорит о том, что увеличение объема ресурса на единицу приводит к качественному изменению целевой функции (1.1) на величину этой оценки. Следовательно, оценки можно считать количественной мерой дефицита ресурсов: чем больше оценка, тем к большему эффекту приводит увеличение объема использования данного ресурса.
Одновременно с этим получим двойственные оценки производимой продукции:
ПР 1 = о; ПР 2 = 4,70818; ПР 3 = о; ПР 4 = 4; ПР 5 = о; ПР 6 = о; ПР 7 = 0,73815; ПР 8 = о.
Здесь двойственные оценки ПР 2, ПР 4, ПР 7 принимают нулевые значения. Абсолютные значения этих оценок говорят о том, что если мы все же будем раскраивать соответствующие изделия, потери от отходов будут только увеличиваться на величину оценки от раскроя одной единицы изделия. Следовательно, раскраивать куртки 46 и 54 размеров из полотна 86 см нецелесообразно, точно так же как и куртки 52 размера — из полотна шириной 89 см.
Теперь сопоставим нормативные отходы при традиционном варианте раскроя с отходами при оптимальном варианте (табл. 1.16).
Размеры
Отходы на ед.
по норме, г.
Фактический
выход изделий,
шт.
Отходы при
фактич. выпуске,
(гр.2*гр.3), г.
Оптимальный
выход изделий,
шт.
Отходы при
оптим. выпуске
(гр.2*гр.3), г.
Отклонения
количество,
шт.
отходы, г.
1
2
3
4
5
6
7
8
Ширина полотна 86 см
44
46
52
54
44
66,27
75,5
78,4
85,6
94,45
80
110
96
66
134
5301,6
8305,0
7526,4
5649,6
12649,6
150
0
204
0
64
9940,5
0
15993,6
0
604288
+70
+110
+108
-66
-70
+4638,9
8305,0
+8467,2
5649,6
-66,0672
Ширина полотна 89 см
46
52
54
97,49
105,7
109,77
134
108
124
12186,25
11415,6
13611,48
235
0
190
22910,15
0
20856,42
+110
-108
+66
+10723,9
-11415,6
+7244,82
Всего
843
76645,53
843
75743,42
–
-902,1
Из таблицы видно, что наиболее рационален раскрой из полотна шириной 86 см изделий 44 и 52 размеров, а из полотна шириной 89 см — 44, 46 и 54 размеров. Такой способ раскроя уменьшает отходы, увеличивает выпуск изделий, прибыль предприятия и его рентабельность.
Отметим, что в современных пакетах прикладных программ для решения задач линейного программирования симплекс-методом предусмотрены режимы расчета так называемых интервалов устойчивости, как для ограниченных ресурсов, так и для
переменных величин, принимающих ненулевые значения. Экономический смысл этих интервалов состоит в том, что изменение объемов ресурсов и значений переменных в пределах этих интервалов не изменяет структуру оптимального плана. Это позволяет предприятию проводить рациональную политику приобретения дополнительных ресурсов.
БАЛАНСОВЫЕ МЕТОДЫ И МОДЕЛИ В АНАЛИЗЕ СВЯЗЕЙ ВНУТРИЗАВОДСКИХ ПОДРАЗДЕЛЕНИЙ И В РАСЧЕТАХ ЗАТРАТ И ЦЕН.
продолжение
--PAGE_BREAK--