Реферат по предмету "БЖД"


Влияние состояния здравоохранения и транспортной обеспеченности на

--PAGE_BREAK--
x1           0,5944   -0,6929                 0,2860   0,4052
                (8)           (8)           (8)           (8)
                0,1202  0,0568   0,4923  0,3194
x2           0,5944  -0,5431                 0,1426   0,3028
                (8)                                          (8)           (8)           (8)
                0,1202  0,1642   0,7361   0,4660
x3           -0,6929                 -0,5431 0,0938   -0,1927
                (8)           (8)                                          (8)           (8)
                0,0568   0,1642                   0,8252  0,6476
x4           0,2860   0,1426   0,0938  0,8549
                (8)           (8)           (8)                                          (8)
                0,4923   0,7361   0,8252  0,0068
x5           0,4052   0,3028   -0,1927 0,8549
                (8)           (8)           (8)           (8)
                0,3194   0,4660   0,6476   0,0068
x6           -0,8729                 -0,4911 0,8652   -0,0751 -0,2454
(8)           (8)           (8)           (8)           (8)                          0,0047  0,2166   0,0055   0,8597   0,5579
y1           0,0601  0,1048   -0,5819 -0,0801 -0,1166
(8)           (8)           (8)           (8)           (8) 0,8876             0,8049   0,1302  0,8504  0,7833
y2           -0,5710 -0,2952 -0,0093 -0,4000                 -0,5392
(8)           (8)           (8)           (8)           (8) 0,1394  0,4778              0,9826   0,3262  0,1679
y3           -0,8194 -0,7742 0,9163   -0,1237                 -0,3761
(8)           (8)           (8)           (8)           (8)  0,0128  0,0241             0,0014   0,7704  0,3585
y4           0,8330   0,8176   -0,7529                 0,2912   0,3313
                (8)           (8)           (8)           (8)           (8)
                0,0102   0,0132  0,0311  0,4841   0,4228
y5           -0,8389                 -0,7983 0,8941   -0,1658 -0,3722
                (8)           (8)           (8)           (8)           (8)
                0,0092   0,0175   0,0027  0,6947   0,3638
y6           -0,6528                 -0,8007                 0,8932   -0,0846                 -0,3879
                (8)           (8)           (8)           (8)           (8)
                0,0793  0,0170   0,0028  0,8421   0,3423
y7           -0,6466                 -0,8495                 0,8605   -0,0463 -0,2873
                (8)           (8)           (8)           (8)           (8)
                0,0832   0,0076  0,0061   0,9133   0,4903
y8           -0,7917                 -0,7842 0,4839  -0,3468 -0,3445
(8)           (8)           (8)           (8)           (8)  0,0192            0,0212  0,2244   0,4000  0,4033
                x6           y1           y2           y3           y4
x1           -0,8729 0,0601   -0,5710                 -0,8194 0,8330
                (8)           (8)           (8)           (8)           (8)
                0,0047  0,8876   0,1394  0,0128   0,0102
x2           -0,4911 0,1048   -0,2952                 -0,7742 0,8176
                (8)           (8)           (8)           (8)           (8)
                0,2166   0,8049   0,4778   0,0241   0,0132
x3           0,8652   -0,5819 -0,0093 0,9163  -0,7529
                (8)           (8)           (8)           (8)           (8)
                0,0055   0,1302  0,9826   0,0014   0,0311
x4           -0,0751 -0,0801                 -0,4000 -0,1237                 0,2912
                (8)           (8)           (8)           (8)           (8)
                0,8597   0,8504   0,3262   0,7704  0,4841
x5           -0,2454 -0,1166 -0,5392 -0,3761 0,3313
(8)           (8)           (8)           (8)           (8)  0,5579            0,7833  0,1679  0,3585  0,4228
x6           -0,3739 0,3292  0,9000   -0,8067
(8)           (8)           (8)           (8)  0,3615            0,4258   0,0023   0,0155
y1           -0,3739                 0,6826  -0,3945                 0,4001
                (8)                                          (8)           (8)           (8) 
                0,3615   0,0621   0,3334   0,3260
y2           0,3292  0,6826  0,2725   -0,2196
                (8)           (8)                                          (8)           (8) 
 0,4258 0,0621  0,5139  0,6013
y3           0,9000   -0,3945 0,2725   -0,9022
(8)           (8)           (8)           (8)  0,0023            0,3334   0,5139  0,0022
y4           -0,8067 0,4001  -0,2196 -0,9022
                (8)           (8)           (8)           (8) 
                0,0155   0,3260   0,6013  0,0022
y5           0,8943   -0,4019 0,2658   0,9947   -0,9419
                (8)           (8)           (8)           (8)           (8)
                0,0027   0,3237   0,5246   0,0000   0,0005
y6           0,7762   -0,4508                 0,1520   0,9643  -0,8257
                (8)           (8)           (8)           (8)           (8)
                0,0235   0,2623   0,7193   0,0001   0,0116
y7           0,6912  -0,5093 0,0317  0,9138   -0,8557
                (8)           (8)           (8)           (8)           (8)
                0,0576  0,1973   0,9406   0,0015   0,0067
y8           0,5194   -0,1035 0,3254   0,6585   -0,8384
                (8)           (8)           (8)           (8)           (8)
                0,1871   0,8074   0,4316   0,0758   0,0093
                y5 y6     y7           y8
x1           -0,8389 -0,6528                 -0,6466 -0,7917
                (8)           (8)           (8)           (8)
                0,0092   0,0793   0,0832  0,0192
x2           -0,7983                 -0,8007 -0,8495 -0,7842
                (8)           (8)           (8)           (8)
                0,0175   0,0170   0,0076   0,0212
x3           0,8941   0,8932   0,8605   0,4839
                (8)           (8)           (8)           (8)
                0,0027   0,0028  0,0061   0,2244
x4           -0,1658 -0,0846                 -0,0463 -0,3468
                (8)           (8)           (8)           (8)
                0,6947  0,8421   0,9133   0,4000
x5           -0,3722 -0,3879 -0,2873 -0,3445
                (8)           (8)           (8)           (8)
                0,3638  0,3423  0,4903   0,4033
x6           0,8943   0,7762   0,6912   0,5194
                (8)           (8)           (8)           (8)
                0,0027   0,0235  0,0576   0,1871
y1           -0,4019 -0,4508 -0,5093                 -0,1035
                (8)           (8)           (8)           (8)
                0,3237   0,2623   0,1973   0,8074
y2           0,2658   0,1520   0,0317   0,3254
                (8)           (8)           (8)           (8)
                0,5246   0,7193  0,9406   0,4316
y3           0,9947   0,9643   0,9138   0,6585
                (8)           (8)           (8)           (8)
                0,0000   0,0001   0,0015   0,0758
y4           -0,9419 -0,8257 -0,8557 -0,8384
                (8)           (8)           (8)           (8)
                0,0005   0,0116  0,0067  0,0093
y5           0,9480   0,9164   0,7147
                (8)           (8)           (8)
                0,0003  0,0014   0,0464
y6           0,9480  0,9468   0,5655
(8)                                          (8)           (8)
                0,0003                  0,0004   0,1440
y7           0,9164   0,9468  0,7221
(8)           (8)                                          (8)
                0,0014   0,0004   0,0431
y8           0,7147   0,5655   0,7221
(8)           (8)           (8)
                0,0464  0,1440   0,0431
Эта таблица показывает корреляцию между каждой парой переменных. Коэффициенты корреляции располагаются в интервале от -1 до + 1 и определяют величину линейных отношений между переменными. В круглых скобках показывается число пар данных, по которым вычислялись коэффициенты. Третье число в каждом столбике — р-значение, которое проверяет статистическое значение корреляций. р-значение ниже 0.05 указывает на статистически существенную корреляцию отличную от нуля с 95 % вероятностью. Следующие пары переменных имеют р-значение ниже 0.05:
x1 и x6;  x1 и y3;  x1 и y4;  x1 и y5;  x1 и y8;  x2 и y3;  x2 и y4;  x2 и y5;  x2 и y6;  x2 и y7;  x2 и y8;  x3 и x6;  x3 и y3;  x3 и y4;  x3 и y5;  x3 и y6;  x3 и y7;  x4 и x5;  x6 и y3;  x6 и y4;  x6 и y5;  x6 и y6;  y3 и y4;  y3 и y5;  y3 и y6;  y3 и y7;  y4 и y5;  y4 и y6;  y4 и y7;  y4 и y8;  y5 и y6;  y5 и y7;  y5 и y8;  y6 и y7;  y7 и y8.
2.3 Анализ множественной регрессии Таблицы показывают результаты приспособления многократной линейной регрессионной модели для описания отношения между 1 зависимой и 6 независимыми переменными.
Приводится уравнение приспособленной модели.
Если р-значение больше 0,10, то не имеется статистически существенных отношений между переменными.
R2 (Коэффициент детерминации) показывает, на сколько процентов модель объясняет зависимость между переменными.
Приспособленный R2 является более подходящим для сравнения моделей с различным числом независимых переменных.
у1 – средняя продолжительность жизни женщин                                                                Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
Постоянная         99,1558                                12,2841                                8,07187                                0,0785
x1           -0,0999052          0,0743066            -1,3445                                 0,4071
x2           -0,00531697        0,0592555            -0,0897296                          0,9430
x3           -0,0536492          0,0250932            -2,13799                               0,2785
x4           0,000403861       0,000199043       2,02901                                0,2915
x5                           -0,00000996529                 0,00000547838  -1,81902                               0,3200
Дисперсионный анализ
Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
Модель                                43,4951                6                             7,24919                1,92                        0,4954
Остаток                               3,78362                1                             3,78362
— —
Общее кол.          47,2788                7
R2 (коэффициент детерминации) = 91,9972 %
R2 (приспособленный к числу значений) = 43,9804 %
Стандартная ошибка оценки = 1,94515
Средняя абсолютная ошибка = 0,508709
Уравнение регрессионной модели:
y1 = 99,1558 — 0,0999052*x1 — 0,00531697*x2 — 0,0536492*x3 + 0,000403861*x4 –
— 0,00000996529*x5 — 0,029481*x6
у2 – средняя продолжительность жизни мужчин Стандартная       T                                           р-
Параметр            Оценка                 ошибка                                 критерий                            значение
Постоянная         91,8641                                3,78199                                24,2899                0,0262
x1           -0,0967528          0,0228772            -4,22922                               0,1478
x2           -0,0309012          0,0182433            -1,69384                               0,3395
x3            -0,0844186         0,0077256            -10,9271                               0,0581
x4           0,000504772       0,0000612807  8,23705                   0,0769
x5                           -0,0000160501   0,00000168666                  -9,51586                               0,0667
x6           0,487637              0,107125              4,55203                                0,1377
Дисперсионный анализ
Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение

Модель                98,0564                6                             16,3427                45,57     0,1114
Остаток                               0,358641              1                             0,358641

Общее кол.                          98,415   7
R2 (коэффициент детерминации) = 99,6356 %
R2 (приспособленный к числу значений) = 97,4491 %
Стандартная ошибка оценки = 0,598866
Средняя абсолютная ошибка = 0,156619
Уравнение регрессионной модели:
y2 = 91,8641 — 0,0967528*x1 — 0,0309012*x2 — 0,0844186*x3 ++ 0,000504772*x4 — 0,0000160501*x5 + 0,487637*x6
у3 – рождаемость на 1000 человек Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение

Постоянная         11,1768                                1,74903                                6,39032                                0,0988
x2           -0,191681                            0,00843686         -22,7195                               0,0280
x1           0,0440065            0,0105799            4,15946                                0,1502
x3           0,0361766            0,0035728            10,1255                                0,0627
x4           0,0000281208     0,00002834         0,992265                              0,5025
x5                           -0,00000402137 7,80019E-7          -5,15548                               0,1220
x6           0,606653                              0,0495414            12,2454                                0,0519
Дисперсионный анализ

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение

Модель                 505,498                6                             84,2497                1098,39                0,0228
Остаток                               0,0767031            1                             0,0767031

Общее кол.                          505,575                7
R2 (коэффициент детерминации) = 99,9848 %
R2 (приспособленный к числу значений) = 99,8938 %
Стандартная ошибка оценки = 0,276953
Средняя абсолютная ошибка = 0,0724306

Уравнение регрессионной модели:
y3 = 11,1768 — 0,191681*x2 + 0,0440065*x1 + 0,0361766*x3 +
+ 0,0000281208*x4 — 0,00000402137*x5 + 0,606653*x6
  у4 – Смертность на 1000 человек                                                                Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение

Постоянная                        5,46707                                0,830794              6,58054                                0,0960
x2           0,0787761            0,00400754         19,657                   0,0324
x1           0,0111729            0,00502547         2,22325                0,2691
x3            -0,0155568         0,00169709         -9,16674               0,0692
    продолжение
--PAGE_BREAK--x4           0,000232669       0,0000134616  17,2839                   0,0368
x5                           -0,0000055904   3,70512E-7          -15,0883               0,0421
x6            -0,0626762         0,0235323            -2,66341               0,2287

Дисперсионный анализ

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение

Модель                47,8914                6                             7,98191                461,21   0,0352
Остаток                0,0173064            1                             0,0173064

Общее кол.          47,9088                7
R2 (коэффициент детерминации) = 99,9639 %
R2 (приспособленный к числу значений) = 99,7471 %
Стандартная ошибка оценки = 0,131554
Средняя абсолютная ошибка = 0,0344048
Уравнение регрессионной модели:

y4 = 5,46707 + 0,0787761*x2 + 0,0111729*x1 — 0,0155568*x3 + 0,000232669*x4 — 0,0000055904*x5 — 0,0626762*x6
у5 – коэффициент естественного прироста на 1000 человек Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение

Постоянная         6,11292                                2,52953                                2,41662                0,2498
x2           -0,269378             0,0122018            -22,0769               0,0288
x1           0,0294256            0,0153011            1,9231                   0,3053
x3           0,0521545            0,00516716         10,0935                0,0629
x4                           -0,000202351      0,0000409867      -4,93699              0,1272
x5                           0,00000154164                  0,0000011281     1,36658                0,4022
x6           0,660049                              0,0716492            9,21223                0,0688

Дисперсионный анализ

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение

Модель 838,498                6                             139,75   871,07   0,0256
Остаток 0,160435             1                             0,160435

Общее кол.          838,659                7
R2 (коэффициент детерминации) = 99,9809 %
R2 (приспособленный к числу значений) = 99,8661 %
Стандартная ошибка оценки = 0,400543
Средняя абсолютная ошибка = 0,104753
Уравнение приспособленной модели:
y5 = 6,11292 — 0,269378*x2 + 0,0294256*x1 + 0,0521545*x3 – 0,000202351*x4 + 0,00000154164*x5 + 0,660049*x6
у6 – уровень рождаемости Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение

Постоянная         0,352785              0,161948              2,17838                0,2740
x2           -0,0193954          0,000781198       -24,8278               0,0256
x1           0,0121752                           0,000979625       12,4284                0,0511
x3           0,00371783         0,000330818       11,2383                0,0565
x4                           0,00000811489                  0,0000026241     3,09245                0,1991
x5           -6,31109E-7         7,22246E-8           -8,73814              0,0725
x6           0,0425779            0,00458721         9,28189                0,0683

Дисперсионный анализ

Источник              Сумма  Число   Среднее                              F-                            р-
квадратов            значений              квадратов                            критерий              значение

Модель                2,71434                                6             0,45239                                687,92   0,0288
Остаток                0,000657617       1             0,000657617

Общее кол. 2,715                              7
R2 (коэффициент детерминации) = 99,9758 %
R2 (приспособленный к числу значений) = 99,8304 %
Стандартная ошибка оценки = 0,025644
Средняя абсолютная ошибка = 0,00670659
Уравнение регрессионной модели:
y6 = 0,352785 — 0,0193954*x2 + 0,0121752*x1 + 0,00371783*x3 + 0,00000811489*x4 — 6,31109E-7*x5 + 0,0425779*x6

у7 – уровень детской смертности                 Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение

Постоянная         40,8464                                40,1822                                1,01653                0,4948
x2           -0,461165             0,193829              -2,37924               0,2533
x1           0,0250685            0,243062              0,103136              0,9346
x3           0,166108                              0,0820816            2,0237                   0,2922
x4           -0,000308391      0,000651084       -0,473657             0,7184
x5                           0,00000562441                  0,0000179202     0,31386                0,8064
x6           -0,582212             1,13816                                -0,511536             0,6990

Дисперсионный анализ

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение

Модель                1403,02                6                             233,836                5,78        0,3039
Остаток                40,4843                1                             40,4843

Общее кол.          1443,5   7
R2 (коэффициент детерминации) = 97,1954 %
R2 (приспособленный к числу значений) = 80,3679 %
Стандартная ошибка оценки = 6,36272
Средняя абсолютная ошибка = 1,66402
Уравнение регрессионной модели:
y7 = 40,8464 — 0,461165*x2 + 0,0250685*x1 + 0,166108*x3 – 0,000308391*x4 + 0,00000562441*x5 — 0,582212*x6
у8 – смертность детей до 5 лет на 1000 рожденных                                                                Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение

Постоянная         366,892                                81,0421                                4,52718                0,1384
x2           -0,735043             0,390927              -1,88026               0,3112
x1           -1,49102                               0,490223              -3,04151               0,2022
x3           0,248001              0,165548              1,49807                0,3747
x4            -0,00223802       0,00131315         -1,70432               0,3378
x5           0,0000643646     0,0000361426  1,78085                   0,3257
x6           -5,0967                                 2,29553                                -2,22027               0,2694

Дисперсионный анализ

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение

Модель                6645,32                6                             1107,55                6,73        0,2830
Остаток                164,68   1                             164,68

Общее кол.          6810,0   7
R2 (коэффициент детерминации) = 97,5818 %
R2 (приспособленный к числу значений) = 83,0725 %
Стандартная ошибка оценки = 12,8328
Средняя абсолютная ошибка = 3,35611
Уравнение регрессионной модели:
y8 = 366,892 — 0,735043*x2 — 1,49102*x1 + 0,248001*x3 — 0,00223802*x4 + 0,0000643646*x5 — 5,0967*x6
Результаты анализа многократной регрессии:

Переменные, ранжированные в порядке увеличения р-значения
Т.к. р-значение переменной у3 наименьшее, то переменная у3 (рождаемость на 1000 человек) является наиболее зависимой от 6 независимых переменных.
Т.к. р-значение переменных у3, у4, у5, у6 меньше 0,05, то модели многократной регрессии, соответствующие этим переменным можно считать достаточно значимыми.
2.4 Анализ простой регрессии В данном разделе приведены результаты приспособления моделей для описания отношений между переменными и уравнения регрессионных моделей.
R2 (Коэффициент детерминации) показывает, на сколько процентов модель объясняет зависимость между переменными.
Коэффициент корреляции указывает на силу отношений между переменными.
F-критерий показывает уровень адекватности модели. При значении F- критерия > 3 модель считается адекватной.
р-значение показывает уровень значимости модели или ее компонентов. Если р-значение меньше чем 0.05, то имеется статистически существенная зависимость между переменными с 95 % уровнем доверительности.
Т-критерий показывает уровень достоверности модели. Модель считается достоверной при значении Т-критерии >3.
Ниже приведены наиболее значимые модели для описания отношений между переменными.
у1– средняя продолжительность жизни женщин Обратная-X модель: Y = a + b/X
Зависимая переменная: y1 — средняя продолжительность жизни женщин
Независимая переменная: x3 — количество человек на 1 врача
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 Ошибка                                 критерий                            значение
 

Свободный член               64,5814                2,2283                   28,9823                0,0000
Параметр                            2141,42                                550,556                                3,88956                0,0030
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                39,1266                1                             39,1266                15,13     0,0030
Остаток 25,8626               10                           2,58626
 

Всего                                   64,9892                11
Коэффициент корреляции = 0,775917
R2 = 60,2048 процента
Стандартная ошибка оценки = 1,60818
Уравнение регрессионной модели:
y1 = 64,5814 + 2141,42/x3
у2 – средняя продолжительность жизни мужчин Мультипликативная модель: Y = a*X^b
Зависимая переменная: y2 – средняя продолжительность жизни мужчин
Независимая переменная: x5 — протяженность дорог, км
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 Ошибка                                 критерий                            значение
 

Свободный член               4,42797                                0,104014              42,571                   0,0000
Параметр                            -0,0241414          0,00963474         -2,50566               0,0311
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                0,0123563            1                             0,0123563            6,28        0,0311
Остаток 0,0196808           10                           0,00196808
 

Всего                                   0,0320372            11
Коэффициент корреляции = -0,621037
R2 = 38,5687 процента
Стандартная ошибка оценки = 0,0443631
Уравнение регрессионной модели:
y2 = 83,7608*x5^-0,0241414
у3 – рождаемость на 1000 человек
Линейная модель: Y = a + b*X
Зависимая переменная: y3 – рождаемость на 1000 человек
Независимая переменная: x1 — расходы на здравоохранение на душу населения, $
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 Ошибка                                 критерий                            значение
 

Свободный член               57,4752                                10,7628                                5,34018                0,0003
Параметр                            -0,296141             0,0794397            -3,72787               0,0039
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                467,759                1                             467,759                13,90     0,0039
Остаток 336,59 10           33,659
 

Всего                                   804,349 11
Коэффициент корреляции = -0,762586
R2 = 58,1538 процента
Стандартная ошибка оценки = 5,80164
y3 = 57,4752 — 0,296141*x1
Обратная-Y модель: Y = 1/(a + b*X)
Зависимая переменная: y3 – рождаемость на 1000 человек
Независимая переменная: x2 — количество больничных коек на 10000 человек
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 Ошибка                                 критерий                            значение
 
    продолжение
--PAGE_BREAK--
Свободный член               -0,0336736          0,0467988            -0,71954               0,4883
Параметр                            0,000980712       0,000443268       2,21246                0,0513
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                0,00321264 1                      0,00321264  4,89               0,0513
Остаток 0,00656315 10                  0,000656315
 

Всего                                   0,00977579          11
Коэффициент корреляции = 0,573264
R2 = 32,8632 процента
Стандартная ошибка оценки = 0,0256187
Уравнение регрессионной модели:
y3 = 1/(-0,0336736 + 0,000980712*x2)
Модель квадратного корня-X: Y = a + b*sqrt(X)
Зависимая переменная: y3 – рождаемость на 1000 человек
Независимая переменная: Х3 — количество человек на 1 врача
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               -45,2058               9,1446                   -4,94344               0,0006
Параметр                            3,89259                                0,560691              6,94248                0,0000
Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                666,14   1                             666,14   48,20     0,0000
Остаток 138,209               10                           13,8209
 

Всего                                   804,349                  11
Коэффициент корреляции = 0,91004
R2 = 82,8173 процента
Стандартная ошибка оценки = 3,71765
y3 = -45,2058 + 3,89259*sqrt(x3)
Линейная модель: Y = a + b*X
Зависимая переменная: y3 – рождаемость на 1000 человек
Независимая переменная: х6 — количество человек на 1 транспортное средство
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               -1,39218               3,96159                                -0,351419             0,7373
Параметр                            1,06955                                0,211454              5,05809                0,0023
Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                409,532                1                             409,532                25,58     0,0023
Остаток 96,0431               6                             16,0072
 

Всего                                   505,575                7
Коэффициент корреляции = 0,900018
R2 = 81,0032 процента
Стандартная ошибка оценки = 4,0009
Уравнение регрессионной модели:
y3 = -1,39218 + 1,06955*x6
у4 – Смертность на 1000 человек Обратная-Y модель: Y = 1/(a + b*X)
Зависимая переменная: y4 – смертность на 1000 человек
Независимая переменная: x1 — расходы на здравоохранение на душу населения, $
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               0,180163              0,031408              5,73622                0,0002
Параметр                            -0,000651228      0,000231821       -2,80918               0,0185
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                0,002262 1                          0,002262  7,89    0,0185
Остаток 0,00286636        10                           0,000286636
 

Всего                                   0,00512836         11
Коэффициент корреляции = -0,664135
R2 = 44,1076 процента
Уравнение регрессионной модели:

y4 = 1/(0,180163 — 0,000651228*x1)
Линейная модель: Y = a + b*X
Зависимая переменная: y4 – смертность на 1000 человек
Независимая переменная: x2 — количество больничных коек на 10000 человек
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               -1,36012               3,52725                                -0,385604             0,7079
Параметр                            0,12184                                0,0334094            3,64687                0,0045
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                49,5857                1                             49,5857                13,30     0,0045
Остаток 37,2835               10                           3,72835
 

Всего                                   86,8692                11
Коэффициент корреляции = 0,755519
R2 = 57,0809 процента
Стандартная ошибка оценки = 1,93089
Уравнение регрессионной модели:
y4 = -1,36012 + 0,12184*x2
Двойная обратная модель: Y = 1/(a + b/X)
Зависимая переменная: y4 – смертность на 1000 человек
Независимая переменная: x3 — количество человек на 1 врача
 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               0,16104                                0,0223772            7,19663                0,0000
Параметр                            -17,1863               5,52882                                -3,1085                 0,0111
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                0,00252021 1                      0,00252021  9,66               0,0111
Остаток 0,00260816 10                  0,000260816
 

Всего                                   0,00512836 11
Коэффициент корреляции = -0,701017
R2 = 49,1425 процента
Стандартная ошибка оценки = 0,0161498
Уравнение регрессионной модели:
y4 = 1/(0,16104 — 17,1863/x3)
Обратная-Y модель: Y = 1/(a + b*X)
Зависимая переменная: y4 – смертность на 1000 человек
Независимая переменная: x6 — количество человек на 1 транспортное средство

 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               0,0465714            0,0129091            3,60763                0,0113
Параметр                            0,00256031         0,000689039       3,71577                0,0099
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                0,00234675 1  0,00234675 13,81  0,0099
Остаток 0,00101982 6 0,000169969
 

Всего                                   0,00336657 7
Коэффициент корреляции = 0,83491
R2 = 69,7075 процента
Стандартная ошибка оценки = 0,0130372
Уравнение регрессионной модели:
y4 = 1/(0,0465714 + 0,00256031*x6)
у5 – коэффициент естественного прироста на 1000 человек Линейная модель: Y = a + b*X
Зависимая переменная: y5 – коэффициент естественного прироста на 1000 человек
Независимая переменная: x1 — расходы на здравоохранение на душу населения, $

 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               56,5493                                14,2023                                3,98169                0,0026
Параметр                            -0,373905             0,104827              -3,56689               0,0051
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                745,672                1                             745,672                12,72     0,0051
Остаток 586,097               10                           58,6097
 

Всего                                   1331,77 11
Коэффициент корреляции = -0,748272
R2 = 55,9911 процента
Стандартная ошибка оценки = 7,6557
Уравнение регрессионной модели:
y5 = 56,5493 — 0,373905*x1
Линейная модель: Y = a + b*X
Зависимая переменная: y5 – коэффициент естественного прироста на 1000 человек
Независимая переменная: x2 — количество больничных коек на 10000 человек

 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               43,7492                                17,3831                                2,51677                0,0306
Параметр                            -0,357226             0,164649              -2,16962               0,0552
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                426,251                1                             426,251                4,71        0,0552
Остаток 905,518               10                           90,5518
 

Всего                                   1331,77                11
Коэффициент корреляции = -0,565742
R2 = 32,0064 процента
Стандартная ошибка оценки = 9,51587
Уравнение регрессионной модели:
y5 = 43,7492 — 0,357226*x2
Логарифмическая-X модель: Y = a + b*ln(X)
Зависимая переменная: y5 – коэффициент естественного прироста на 1000 человек
Независимая переменная: x3 — количество человек на 1 врача

 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               -220,444               38,6654                                -5,70131               0,0002
Параметр                            40,8451                6,9529                   5,87454                0,0002
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                1032,56                1                             1032,56                34,51     0,0002
Остаток 299,205               10                           29,9205
 

Всего                                   1331,77                11
Коэффициент корреляции = 0,88053
R2 = 77,5332 процента
Стандартная ошибка оценки = 5,46997
Уравнение регрессионной модели:
y5 = -220,444 + 40,8451*ln(x3)
Линейная модель: Y = a + b*X
Зависимая переменная: y5 – коэффициент естественного прироста на 1000 человек
Независимая переменная: x6 — количество человек на 1 транспортное средство

 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               -18,0925               5,2372                   -3,45461               0,0136
Параметр                            1,36885                                0,279541              4,89679                0,0027
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                670,807                1                             670,807                23,98     0,0027
Остаток 167,851               6                             27,9752
 

Всего                                   838,659 7
Коэффициент корреляции = 0,894347
R2 = 79,9857 процента
Стандартная ошибка оценки = 5,28916
Уравнение регрессионной модели:
y5 = -18,0925 + 1,36885*x6
у6 – уровень рождаемости Обратная-Y модель: Y = 1/(a + b*X)
Зависимая переменная: y6 – уровень рождаемости, человек в год
Независимая переменная: x1 — расходы на здравоохранение на душу населения, $

 

                                                               Стандартная       T                                           р-
Параметр                            Оценка                 ошибка                                 критерий                            значение
 

Свободный член               -0,198952             0,349465                              -0,569305             0,5817
Параметр                            0,00627034         0,00257939         2,43094                0,0354
 

Дисперсионный анализ
 

Источник                             Сумма   Число   Среднее               F-                           р-
квадратов            значений              квадратов            критерий              значение
 

Модель                0,209705 1                          0,209705  5,91    0,0354
Остаток 0,354862 10                       0,0354862
 

Всего                                   0,564566 11
Коэффициент корреляции = 0,609462
R2 = 37,1444 процента
Стандартная ошибка оценки = 0,188378
Уравнение регрессионной модели:
y6 = 1/(-0,198952 + 0,00627034*x1
Логарифмическая-X модель: Y = a + b*ln(X)
Зависимая переменная: y6 – уровень рождаемости, человек в год
Независимая переменная: x3 — количество человек на 1 врача

 
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Расчет электромагнитного переходного процесса
Реферат Факторы производства: определение и классификация
Реферат Карточный долг
Реферат Источники финансирования инвестиционной деятельности
Реферат Порядок организации финансов в унитарных предприятиях, основанных на праве оперативного управления
Реферат Обзор рынка коммерческой недвижимости в России
Реферат Проектирование туристического продукта
Реферат Порядок формирования и использования инвестиционного фонда
Реферат Налоговые, таможенные и другие льготы, предоставляемые резидентам
Реферат Микроэкономика: межвременной выбор
Реферат Понятие и элементы финансовой системы
Реферат Поняття юридична особа
Реферат Как Вольтер стал «русским»
Реферат Система управления и контроль качества продукции на ОАО «Гродненский мясокомбинат»
Реферат Основные модели и методы прогнозирования материально-технического обеспечения