Реферат по предмету "Астрономия"


Основи двійкової арифметики Порозрядні логічні операції

Контрольна робота з дисципліни “інформатика” на тему: Основи двійкової арифметики. Порозрядні логічні операції (Булівські операції) Основні поняття
Множину {0, 1} позначимо літерою B. Множину всіх можливих послідовностей з 0 і 1 – Bn. Такі послідовності за традицією будемо називати наборамиабо векторамидовжини n. Очевидно, Bnмістить 2nелементів. Значення 0 і 1 називаються протилежнимиодне до одного.
Означення. Всюди визначена функція з Bnу B називається n-місною функцією алгебри логікиабо n-місною бульовою функцією.
Послідовність змінних (x1, x2, …, xn) із значеннями у B позначимо />. Бульова функція f(/>) задається у вигляді таблиці, або графіказі стандартним розташуванням наборів:
x1, x2, …, xn
f(x1, x2, …, xn)
0, 0, …, 0, 0
f(0, 0, …, 0, 0)
0, 0, …, 0, 1
f(0, 0, …, 0, 1)
0, 0, …, 1, 0
f(0, 0, …, 1, 0)
0, 0, …, 1, 1
f(0, 0, …, 1, 1)


0, 1, …, 1, 1
f(0, 1, …, 1, 1)
1, 0, …, 0, 0
f(1, 0, …, 0, 0)


1, 1, …, 1, 0
f(1, 1, …, 1, 0)
1, 1, …, 1, 1
f(1, 1, …, 1, 1)
Зауважимо, що в стандартному розташуванні набори можна розглядати як двійкові записи послідовних чисел від 0 до 2n-1. Функцію, задану зі стандартним розташуванням наборів, можна ототожнити з набором довжини 2n. Наприклад, двомісну функцію, задану таблицею
x y
f(x, y)
0 0
1
0 1
1 0
1
1 1
1
можна ототожнити з вектором (1011).
Далі іноді будемо позначати n-місну функцію f(/>) як f(n)(/>), підкреслюючи кількість змінних, від яких вона залежить.
Очевидно, що множина всіх можливих наборів довжини 2n, тобто множина n-місних бульових функцій, складається з 22nелементів. При n=0 це 2, при n=1 – 4, при n=2 – 16, при n=3 – 256 тощо.
Нуль-місними функціями є сталі 0 і 1.
Одномісні функції подано у наступній таблиці разом з виразами, якими ці функції позначаються:
x
1
x
x
1
1
1
1
1
Функції і 1називаються тотожними нулемі одиницею, функція x – тотожною, x – запереченням. Замість виразу x вживається ще вираз />. Ці вирази читаються як «не x».
Подамо також деякі з 16 двомісних функцій разом із їх позначеннями:
x y
xy
xy
xy
xy
xy
x | y
xy
0 0
1
1
1
1
0 1
1
1
1
1
1 0
1
1
1
1 1--PAGE_BREAK----PAGE_BREAK--
1
1 1 1
1
1
1
2. h2(x, y)=S(; xy, yx) задається таблицею:
x y
xy
yx
h2(x, y)
0 0
1
0 1
1
1 0
1
1
1
1 1
1
1
1
Нехай є множина бульових функцій F. Утворюючи з них та їх суперпозицій усі можливі суперпозиції, ми одержимо множину функцій, яку позначимо [F]. Отже, маємо алгебру ([F]; S), породжену множиною функцій F. Інша множина функцій F1буде породжувати, взагалі кажучи, іншу алгебру ([F1]; S). Наприклад, алгебри ({(0111), (0001)}; S) і ({(10), (0001)}; S).
Розглянемо тепер поняття алгебри формул(термів, або виразів). Нехай є множина функцій F. Кожній n-місній функції з F поставимо у взаємно однозначну відповідність символ, що її позначає (функціональнийсимвол) f(n). Нехай X – зліченна множина змінних (точніше, їх імен).
Означення.
1. Ім'я змінної є формулою.
2. Якщо f(n)– функціональний символ, а T1, T2, …, Tnє формулами, то f(n)( T1, T2, …, Tn) є формулою.
3. Інших формул немає.
Це означення задає множину формул із функціональними символами з множини F, які одержуються за допомогою підстановок, тобто суперпозицій. Таким чином, ми маємо алгебру формул, породжену множиною функціональних символів F. Інша множина функціональних символів буде породжувати й іншу алгебру формул.
Зв'язки між алгебрами функцій і алгебрами формул встановлюють наступні два означення.
Означення. Значенням формули T на наборі значень зміннихз множини X є:
1) значення змінної x, якщо T є змінною x;
2) f(n)(1, 2, …, n), якщо T=f(n)(T1, T2, …, Tn), а формули T1, T2, …, Tnмають на цьому наборі значення відповідно 1, 2, …, n.
Означення. n-місна бульова функція f(n)задається формулоюT, якщо всі змінні у формулі T є змінними з множини X, і при будь-якому наборі значень (1, 2, …, n) цих змінних x1, x2, …, xnзначення формули дорівнює значенню f(n)(1, 2, …, n).
Звідси випливає інше означення суперпозиції функцій.
Означення. n-місна бульова функція f(n)є суперпозицієюфункцій f1, f2, …, fn, якщо її можна задати формулою, усі функціональні символи якої є серед символів функцій f1, f2, …, fn.
З наведених прикладів 1 і 2 видно, що функція h1(x, y, z) задається формулою ((x, y), (y, z)), або в інфіксному записі (xy)(yz). Аналогічно функція h2(x, y) задається формулою ((x, y), (y, x)), або (xy)(yx). Як бачимо, обидві функції задаються формулами з тими самими функціональними символами , , , тобто є суперпозиціями цих функцій.
Наостанок наведемо узгодження, які склалися в математиці й дозволяють у формулах з функціональними символами , , , , , , |, записувати не всі необхідні дужки. **** Суттєві та несуттєві змінні
Розглянемо поняття суттєвої залежності функції від її змінних. Почнемо з прикладів: значення функції h2(x, y) з прикладу 2 на кожному з наборів збігаються зі значеннями x. Отже, зміна значення y не впливає на значення функції, тобто вона фактично не залежить від y. В той час як зміна значення x веде до зміни значення h2. Уточнимо ці міркування наступними означеннями.
Означення. Змінна xiфункції f(n)(x1, x2, …, xi, …, xn) називається суттєвою, якщо існує хоча б одна пара наборівзначень змінних
(1, 2, …, i-1, 0, i+1, …, n) і (1, 2, …, i-1, 1, i+1, …, n),
така, що
f(n)(1, 2, …, i-1, 0, i+1, …, n) f(n)(1, 2, …, i-1, 1, i+1, …, n).    продолжение
--PAGE_BREAK--
Змінна xiназивається несуттєвоюу противному разі, тобто коли за всіх можливих пар наборівзначень
(1, 2, …, i-1, 0, i+1, …, n) і (1, 2, …, i-1, 1, i+1, …, n)
мають місце рівності:
f(n)(1, 2, …, i-1, 0, i+1, …, n) = f(n)(1, 2, …, i-1, 1, i+1, …, n).
Наприклад, неважко переконатися, що всі змінні функції h1 з прикладу 1 є суттєвими. Функція h2 має суттєву змінну x і несуттєву y. Функція двох змінних, задана як вектор (1111), не має суттєвих змінних. Еквівалентні формули та закони
Одна й та сама бульова функція задається, взагалі кажучи, багатьма різними формулами. Наприклад, неважко переконатися, що формули xy і xy обидві задають функцію (1101). Таким чином, можна говорити про еквівалентність цих двох формул.
Означення. Нехай **** Формули 1і 2називаються еквівалентними, якщо Бульові функції та комбінаційні схеми

І/>/>/>/>/>/>/>/>/>-елемент АБО-елемент -елемент НЕ-елемент
a/>/>a a
b/>/>/>r b r b r a r


r = ab r = ab r = ab r = a
Розглянемо реалізацію бульових функцій у вигляді комбінаційних схем. Найпростішими з них є логічні елементи, відповідні бульовим функціям: кон'юнкції , диз'юнкції , додавання за модулем 2 та заперечення . Вони позначаються й зображаються таким чином:
Входи перших трьох елементів вважаються симетричними згідно законів комутативності, яким задовольняють кон'юнкція, диз'юнкція та додавання за модулем 2.
З наведених логічних елементів будуються складніші схеми, які в загальному випадку мають n входів і m виходів і реалізують набір з m функцій від n аргументів:

/>

a/>/>1b1
a/>/>2b2
.
.
.
a/>/>nbm


Тут bj=fj(a1, a2, …, an), j=1, 2, …, m..
Приклади.
1. Побудуємо схему з І-, АБО- та НЕ-елементів, яка реалізує функцію . Виразимо її за допомогою функцій набору {, , }:
xy = xyxy.

/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>

x
/>



/>

y/>
Звідси відповідна схема має вигляд:
2. Побудуємо схему з І- та -елементів, яка реалізує функцію . Виразимо її за допомогою функцій набору {, , 1}:
xy = xyxy.
Звідси відповідна схема має вигляд:

/>/>/>/>/>/>

x/>/>/>
/>/>/>/>

/>/>

/>

y/>
3. Побудуємо схему з І-, АБО- та НЕ-елементів, яка реалізує так званий «однорозрядний напівсуматор»[****] з двома симетричними входами x, y і двома виходами: s = xy, d = xy. З цих формул видно, що схема має реалізувати додавання двох однорозрядних чисел із переносом. Виразимо s за допомогою функцій набору {, , }: s = xyxy. Тоді схема має вигляд:

/>/>/>/>/>/>/>/>/>/>/>/>/>/>

x/>/>/>/>s
/>/>/>

/>

/>/>d
y/>/>/>/>/>/>

Список літератури
Виленкин Н.Я. Популярная комбинаторика.–М.: Наука, 2000.
Гильберт Д., Бернайс П. Основания математики. Логические исчисления и формализация арифметики.–М.: Наука, 1982
Глушков В.М., Цейтлин Г.Е., Ющенко Е.Л. Алгебра. Языки. Программирование.–К.: Наукова думка, 1988.
Ершов Ю.Л., Палютин Е.А., Математическая логика.–М.: Наука, 1979.
Карри Х.Б. Основания математической логики.–М.: Мир, 1969.
Клини С.К. Математическая логика.– М.: Мир, 1973.
Колмогоров А.Н. Фомин С.В. Элементы теории функций и функционального анализа.–М.: Наука, 1981.
Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера.–М.: Энергоатомиздат, 1988.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Мониторинг исследования тестовых заданий на основе применения коэффициентов связи и корреляционной матрицы
Реферат Knowledge Of Information Essay Research Paper Knowledge
Реферат Hidden Politics Essay Research Paper Hidden Politics
Реферат Гальванические элементы. Аккумуляторы
Реферат Технология механической обработки деталей машин
Реферат Технологическая карта механической обработки «Шкив»
Реферат Церковнославянская письменность
Реферат Технология эпитаксиальных пленок InAs
Реферат Технологическая оснастка
Реферат Роль и функции валютного рынка и валютного регулирования в современной российской экономике
Реферат Имидж менеджера 3
Реферат "Утечка мозгов" или миграция научных кадров из России
Реферат Технологические средства автоматизации
Реферат 1. Графический интерфейс     Большая часть манипуляций с объектами в графической оболочке системы Windows производится с помощью мыши
Реферат История государственного управления в России: опыт и проблемы