СОДЕРЖАНИЕ
Введение
1.Человеческий фактор в обеспечении производственной безопасности
1.1 Характеристики основных форм деятельности человека
1.2 Физиологические характеристики человека
1.3 Психологические характеристики человека
Заключение
Список литературы
Ведение
Деятельность человека с позиции анализа опасностей целесообразно рассматривать как систему, состоящую из двух взаимосвязанных сложных подсистем: «человек (организм — личность)» и «среда обитания (производственная среда)». Опасности, формируемые системой «человек (организм — личность)», определяются антропометрическими, физиологическими, психофизическими и психологическими возможностями человека выполнять производственную деятельность. Они рассматриваются в данной работе.
1.1 Характеристики основных форм деятельности человека.
Деятельность человека носит самый разнообразный характер. Несмотря на это, ее можно разграничить на три основные группы по характеру выполняемых человеком функций (рис.1). Физический труд. Физическим трудом (работой) называют выполнение человеком энергетических функций в системе «человек — орудие труда». Физическая работа требует значительной мышечной активности. Она подразделяется на два вида: динамическую и статическую. Динамическая работа связана с перемещением тела человека, его рук, ног, пальцев в пространстве; статическая — с воздействием нагрузки на верхние конечности, мышцы корпуса и ног при удерживании груза, при выполнении работы стоя или сидя. Динамическая физическая работа, при котором в процессе трудовой деятельности задействовано более 2/3 мышц человека, — называется общей, при участии в работе от 2/3 до 1/3 мышц человека (мышцы только корпуса, ног, рук) — региональной, при локальной динамической физической работе задействовано менее 1/3 мышц (например, набор текста на компьютере). Физическая тяжесть работы определяется энергетическими затратами в процессе трудовой деятельности и подразделяется на следующие категории: легкие, средней тяжести и тяжелые физические работы.
Деятельность человека
Физический труд
Механизированные формы физического труда
Умственный труд
Рисунок 1. Основные формы деятельности человека
Легкие физические работы (категория I) подразделяются на две категории: 1а, при которой энергозатраты составляют до 139 Вт, и 16, при которой энергозатраты составляют 140—174 Вт. К категории 1а относятся работы, проводимые сидя и сопровождающиеся незначительным физическим усилием. К категории 16 относятся работы, проводимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим усилием. Физические работы средней тяжести (категория II) подразделяются на две категории: На, при которой энергозатраты составляют 175—232 Вт, и IIб, при которой энергозатраты составляют 233—290 Вт. К категории Па относятся работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенных физических усилий. К категории IIб относятся работы, связанные с ходьбой, перемещением и перенесением тяжестей массой до 10 кг и сопровождающиеся умеренным физическим усилием. Тяжелые физические работы характеризуются расходом энергии более 290 Вт. К этой категории относятся работы, связанные с постоянными передвижениями, перемещением и перенесением значительных (свыше 10 кг) тяжестей и требующие больших физических усилий. Энергетические затраты на мышечную работу. Затраты энергии на мышечную работу в труде (сверх уровня покоя и независимо от влияния эмоций, связанных с работой, влияния температуры воздуха и пр.) могут быть рассчитаны для среднего рабочего как сумма затрат на поддержание рабочей позы (табл.1) и на выполняемую мышцами механическую работу (табл.2). Механизированные формы физического труда в системе «человек — машина». Человек выполняет умственные и физические функции. Деятельность человека (далее человека-оператора) происходит по одному из процессов:
детерминированному — по заранее известным правилам, инструкциям, алгоритмам действий, жесткому технологическому графику и т. п.;
Таблица 1. Энергетические затраты на поддержание рабочей позы
Поза | Количество затрачиваемой энергии, кДж/мин |
Сидя | 1,3 |
На коленях | 2,1 |
На корточках | 2,1 |
Стоя | 2,5 |
Стоя в наклоне более чем на 15 % и другие неудобные позы | 3,4 |
Таблица 2. Энергетические затраты при выполнении мышцами механической работы
Части тела, занятые в работе | Количество затрачиваемой энергии при условных степенях интенсивности работы, кДж/мин | ||
1 | 2 | 3 | |
Кисти и пальцы рук | 1,7(1,3-2,5) | 3,0(2,5-3,8) | 4,2(3,8-5,0) |
Руки | 4,6(2,9-5,9) | 7,6(5,9-9,2) | 10,9(9,2-12,6) |
Руки и туловище, а также одновременная работа трех или четырех конечностей | 13,9(10,5-16,8) | 21,0(16,8-25,2) | 30,2(25,5-35,7) |
недетерминированному — когда возможны неожиданные события в выполняемом технологическом процессе, неожиданное появление сигналов, но в то же время известны управляющие действия при появлении неожиданных событий (расписаны правила, инструкции и т.п.) в выполняемом процессе. Различают несколько типов операторской деятельности в технических системах, классифицируемых в зависимости от основной функции, выполняемой человеком, и доли мыслительной и физической загрузки, включенных в операторскую работу. Оператор-технолог непосредственно включен в технологический процесс, работает в основном режиме немедленного обслуживания, совершает преимущественно исполнительные действия, руководствуясь четко регламентирующими действия инструкциями, содержащими, как правило, полный набор ситуаций и решений. Это — операторы технологических процессов, автоматических линий и пр. Оператор-манипулятор (машинист). Основную роль в его деятельности играют механизмы сенсомоторной регуляции (исполнения действий) и в меньшей степени — понятийного и образного мышления. К числу выполняемых им функций относится управление отдельными машинами и механизмами. Оператор-наблюдатель, контролер (например, диспетчер технологической линии или транспортной системы). В его деятельности преобладает удельный вес информационных и концептуальных моделей. Оператор работает как в режиме немедленного, так и отсроченного обслуживания в масштабах реального (настоящего) времени. В его деятельности в значительной мере используется аппарат понятийного мышления и опыт, заложенный в образно-концептуальных моделях. Физическая работа здесь играет несущественную роль. Функционирование организма требует протекания в нем химических и биохимических процессов в достаточно строгих температурных пределах. Для температуры тела это интервал находится в пределах 36,5—37,0° С. В процессе взаимодействия человека с окружающей средой температура тела может значительно изменяться, что связано с температурой, влажностью и подвижностью воздуха в окружающей среде, а также тепловой радиацией от различных видов оборудования, используемых в производственной среде. Приспособление организма человека к изменениям параметров состояния окружающей среды выражается в способности протекания в нем процессов терморегуляции. Терморегуляция — совокупность физиологических и химических процессов в организме человека, направленных на поддержание постоянства температуры тела ( 36—37 °С). Это обеспечивает нормальное функционирование организма, способствует протеканию биохимических процессов в организме человека. Терморегуляция (Q) исключает переохлаждение или перегрев организма человека. Поддержание постоянства температуры тела определяется теплопродукцией организма (М), т.е. процессами обмена веществ в клетках и мышечной дрожью, теплоотдачей или теплоприходом (R) за счет инфракрасного излучения, которое излучает или получает поверхность тела; теплоотдачей или теплоприходом за счет конвекции (С), т.е. через нагрев или охлаждение тела воздухом, омываемым поверхность тела; теплоотдачей (Е), обусловленной испарением влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей, легких. Терморегуляция, таким образом, обеспечивает равновесие между количеством тепла, непрерывно образующимся в организме и излишком тепла, непрерывно отдаваемым в окружающую среду, т.е. сохраняет тепловой баланс организма.
Терморегуляцию можно представить следующим выражением:
Q = M ± R ± C — E.
В нормальных условиях при слабом движении воздуха человек в состоянии покоя теряет в результате тепловой радиации около 45 % всей вырабатываемой организмом тепловой энергии, конвекцией до 30 % и испарением до 25 %. При этом свыше 80 % тепла отдается через кожу, примерно 13 % через органы дыхания, около 7 % тепла расходуется на согревание принимаемой пищи, воды и вдыхаемого воздуха. При покое организма и температуре воздуха 15 °С потоотделение незначительно и составляет примерно 30 мл за 1 ч. При высокой температуре (30 °С и выше), особенно при выполнении тяжелой физической работы, потоотделение может усиливаться в десятки раз. Так, в горячих цехах при усиленной мышечной работе количество выделяемого пота 1—1,5 л/ч, на испарение которого затрачивается около 2500-3800 кДж. Различают острые и хронические формы нарушения терморегуляции. Острые формы нарушения терморегуляции:
тепловая гипертермия — теплоотдача при относительной влажности воздуха 75-80 % — легкое повышение температуры тела, обильное потоотделение, жажда, небольшое учащение дыхания и пульса. При более значительном перегреве возникает также одышка, головная боль и головокружение, затрудняется речь и др.
судорожная болезнь — преобладание нарушения водно-солевого обмена — различные судороги, особенно икроножных мышц, и сопровождаемые большой потерей пота, сильным сгущением крови. Вязкость крови увеличивается, скорость ее движения уменьшается и поэтому клетки не получают необходимого количества кислорода.
тепловой удар—дальнейшее протекание судорожной болезни — потеря сознания, повышение температуры до 40—41 °С, слабый учащенный пульс. Признаком тяжелого поражения при тепловом ударе является полное прекращение потоотделения.
Тепловой удар и судорожная болезнь могут заканчиваться и смертельным исходом. Хронические формы нарушения терморегуляции приводят к изменениям в состоянии нервной, сердечнососудистой и пищеварительной системе человека, формируя производственно-обусловленные заболевания. Длительное охлаждение часто приводит к расстройству деятельности капилляров и мелких артерий (ознобление пальцев рук, ног и кончиков ушей). При этом происходит и переохлаждение всего организма. Широко распространены вызываемые охлаждением заболевания периферийной нервной системы, особенно пояснично-крестцовый радикулит, невралгия лицевого, тройничного, седалищного и других нервов, обострения суставного и мышечного ревматизма, плеврит, бронхит, асептическое и инфекционное воспаление слизистых оболочек дыхательных путей и др. Влажный воздух лучше проводит тепло, а подвижность его увеличивает теплоотдачу конвекцией — это приводит к большому обморожению (даже смерти) при условии низкой температуры, высокой влажности и подвижности воздуха. Выделяют три стадии охлаждения организма человека, которые характеризуются следующими показателями:
I—II стадии температура тела от 37 до 35,5° С. При этом происходит:
спазм сосудов кожи;
урежение пульса;
снижение температуры тела;
повышение артериального давления;
увеличение легочной вентиляции;
увеличение теплопродукции.
Таким образом, в пределах до 35 °С организм пытается бороться собственными силами против охлаждающего микроклимата.
III стадия —температура тела ниже 35 °С. При этом происходит:
падение температуры тела;
снижение деятельности центральной нервной системы;
снижение артериального давления;
уменьшение легочной вентиляции;
уменьшение теплопродукции.
Заболевания, вызываемые охлаждением: обморожения, отеки локтей и ступней, острые респираторные заболевания и грипп. Создание благоприятного микроклимата рабочей зоны является гарантом поддержания терморегуляции организма, повышения работоспособности человека на производстве. Умственный труд (интеллектуальная деятельность). Этот труд объединяет работы, связанные с приемом и переработкой информации, требующие преимущественного напряжения внимания, сенсорного аппарата, памяти, а также активации процессов мышления, эмоциональной сферы (управление, творчество, преподавание, наука, учеба и т. п.). Операторский труд — отличается большой ответственностью и высоким нервно-эмоциональным напряжением. Управленческий труд — определяется чрезмерным ростом объема информации, возрастанием дефицита времени для ее переработки, повышения личной ответственности за принятие решений, периодическим возникновением конфликтных ситуаций. Творческий труд — требует значительного объема памяти, напряжения внимания, нервно-эмоционального напряжения. Труд преподавателя — постоянный контакт с людьми, повышенная ответственность, дефицит времени и информации для принятия решения,— это обуславливает высокую степень нервно-эмоционального напряжения. Труд учащегося — память, внимание, восприятие, наличие стрессовых ситуаций. При интенсивной интеллектуальной деятельности потребность мозга в энергии повышается, составляя 15-20 % от общего объема в организме. При этом потребление кислорода 100 г коры головного мозга оказывается в 5 раз больше, чем расходует скелетная мышца такого же веса при максимальной нагрузке. Суточный расход энергии при умственном труде составляет от 10,5 до 12,5 МДж. Так, при чтении вслух расход энергии повышается на 48 %, при выступлении с публичной лекцией — на 94 %, у операторов вычислительных машин — на 60—100 %. При выполнении человеком умственной работы при нервно-эмоциональном напряжении имеют место сдвиги в вегетативных функциях человека: повышение кровяного давления, изменение ЭКГ, увеличение легочной вентиляции и потребление кислорода, повышение температуры тела. По окончании умственной работы утомление остается дольше, чем при физической работе. При эксплуатации технических систем в любой области среды обитания чело-век-руководитель управляет не техническими компонентами системы или отдельной машиной, а другими людьми. Управление осуществляется как непосредственно, так и опосредованно — через технические средства и каналы связи. К этой категории персонала относятся организаторы, руководители различных уровней, лица, принимающие ответственные решения, обладающие соответствующими знаниями, опытом, навыками принятия решения, интуицией и учитывающие в своей деятельности не только возможности и ограничения технических систем и их компонентов, но и в полной мере особенности подчиненных — их возможности и ограничения, состояния и настроения. Тяжесть и напряженность труда. Тяжесть труда является количественной характеристикой физического труда. Напряженность труда — количественная характеристика умственного труда. Она определяется величиной информационной нагрузки. На производстве различают четыре уровня воздействия факторов условий труда на человека:
комфортные условия труда обеспечивают оптимальную динамику работоспособности человека и сохранение его здоровья;
относительно дискомфортные условия труда при воздействии в течение определенного интервала времени обеспечивают заданную работоспособность и сохранение здоровья, но вызывают субъективные ощущения и функциональные изменения, не выходящие за пределы нормы;
экстремальные условия труда приводят к снижению работоспособности человека, не вызывают функциональные изменения, выводящие за пределы нормы, но не ведущие к патологическим изменениям;
сверхэкстремальные условия труда приводят к возникновению в организме человека патологических изменений и к потере трудоспособности.
Медико-физиологическая классификация тяжести и напряженности труда проводится на основании комплексной количественной оценки факторов условий труда, называемой интегральной величиной тяжести и напряженности труда (Ит). К I категории относят работы, выполняемые в оптимальных условиях труда при благоприятных нагрузках. II категория включает работы, выполняемые в условиях, соответствующих предельно допустимым значениям производственных факторов. К III категории относят работы, при которых вследствие не вполне благоприятных условий труда у людей формируются реакции, характерные для пограничного состояния организма (ухудшение некоторых показателей психофизиологического состояния к концу работы). IV категория включает работы, при которых неблагоприятные условия труда приводят к реакциям, характерным для предпатологического состояния у большинства людей. К V категории относят работы, при которых в результате воздействия весьма неблагоприятных условий труда у людей в конце рабочего периода формируются реакции, характерные для патологического функционального состояния организма. VI категория включает работы, при которых подобные реакции формируются вскоре после начала трудового периода (смены, недели). I и II категории тяжести и напряженности труда соответствуют комфортным производственным условиям, III — относительно дискомфортным, IV и V — экстремальным и VI — сверхэкстремальным. Категорию тяжести и напряженности труда определяют расчетным путем. Для этого каждый фактор производственных условий оценивают по шестибалльной системе с помощью специальных таблиц. Интегральная оценка тяжести и напряженности труда рассчитывается по формуле:
где хОП — определяющий (самый большой по баллу) элемент условий труда на i -ом рабочем месте; j — сумма баллов всех i - ых биологически значимых элементов без определяющего элемента на j -ом рабочем месте; n — число всех элементов, имеющихся на рабочем месте; хij — балльная оценка i -го фактора на j-ом рабочем месте. Каждый элемент условий труда на рабочем месте получает оценку от 1 до 6 в зависимости от своей величины и продолжительности действия (экспозиции). При экспозиции меньше 90 % времени восьмичасовой рабочей смены фактическая оценка элемента в баллах составит:
где хmax — максимальная оценка элемента при экспозиции от 90 % и более; Tфi — фактическая продолжительность действия элемента в течение рабочей смены, мин; 480 — фон рабочего времени восьмичасовой рабочей смены, мин. В этом случае вместо хij в формуле (1) расчета Ит используют xфi. При наличии на рабочем месте факторов, имеющих с учетом экспозиции оценку 2 балла и более, в расчет оценки принимают только эти биологически значимые факторы. Факторы с оценкой 1 и 2 балла в расчет не принимают. Категорию тяжести и напряженности труда определяют по интегральной оценке Ит:
Категория тяжести труда | 1 | II | III | IV | V | VI |
Интегральная оценка Ит, балл | 18 | 19—33 | 34^5 | 46—53 | 54—59 | 59,1—60 |
При оценки тяжести физического труда пользуются показателями динамической и статической нагрузки. Показатели динамической нагрузки:
масса поднимаемого и перемещаемого груза вручную;
расстояние перемещения груза;
мощность выполняемой работы: при работе с участием мышц нижних конечностей и туловища, с преимущественным участием мышц плечевого пояса;
мелкие, стереотипные движения кистей и пальцев рук, количество за смену;
перемещение в пространстве (переходы, обусловленные технологическим процессом), км.
Показатели статической нагрузки:
масса удерживаемого груза, кг;
продолжительность удерживания груза, с;
статическая нагрузка за рабочую смену, Н, при удержании груза: одной рукой, двумя руками, с участием мышц корпуса и ног;
рабочая поза, нахождение в наклонном положении, процент сменного времени;
вынужденные наклоны корпуса более 30°, количество за смену;
линейный пространственный компоновочный параметр элементов производственного оборудования и рабочего места, мм;
угловой пространственно-компоновочный параметр элементов производственного оборудования и рабочего места, угол обзора;
значение сопротивления приводных элементов органов управления (усилие, необходимое для перемещения органов управления), Н.
Динамическую физическую нагрузку определяют, как правило, одним из следующих показателей:
1) работой (кг«м);
2) мощностью усилия (Вт); статическую физическую нагрузку определяют в кг/с.
Для определения динамической работы, выполняемой человеком в каждом отдельном отрезке рабочей смены, рекомендуется пользоваться следующей формулой:
W= (РН + (PL/9) + РН1/2))К, (3)
где W— работа, кг м; Р — масса груза, кг; Н — высота, на которую помещают груз из исходного положения, м; L —расстояние, на которое перемещают груз по горизонтали, м; Н1 —расстояние, на которое опускают груз, м; К — коэффициент, равный 6. Для расчета среднесменной мощности следует суммировать работу, произведенную человеком за всю смену, и разделить ее на длительность смены:
N= WK1/t, (4)
где N— мощность, Вт, t — длительность смены, с; K1 — коэффициент перевода работы (W) из кгм в Джоуль (Дж), равный 9,8.
Статическая нагрузка — это усилия на мышцы человека без перемещения тела или его отдельных частей. Величина статической нагрузки определяется произведением величины усилия на время поддержания (в случае различных величин усилий время поддержания каждого из них определяют отдельно, находят произведения величины усилия на время поддержания и затем эти произведения суммируют). При оценке напряженности умственного труда используют показатели внимания, напряженности зрительной работы и слуха, монотонности труда.
1.2 Физиологические характеристики человекаОбщие характеристики анализаторов. Целесообразная и безопасная деятельность человека основывается на постоянном приеме и анализе информации о характеристиках внешней среды и внутренних системах организма. Этот процесс осуществляется с помощью анализаторов — подсистем центральной нервной системы (ЦНС), обеспечивающих прием и первичный анализ информационных сигналов. Информация, поступающая через анализаторы, называется сенсорной (от лат. sensus — чувство, ощущение), а процесс ее приема и первичной переработки — сенсорным восприятием.
Рисунок 2. Функциональная схема анализатора
Общая функциональная схема анализатора представлена на рисунке 2. Центральной частью анализатора является некоторая зона в коре головного мозга. Периферическая часть — рецепторы — находится на поверхности тела для приема внешней информации либо размещена во внутренних системах и органах для восприятия информации об их состоянии (внешние рецепторы в обычной речи называют органами чувств). Проводящие нервные пути соединяют рецепторы с соответствующими зонами мозга. В зависимости от специфики принимаемых сигналов различают следующие анализаторы: Внешние — зрительный (рецептор — глаз); слуховой (рецептор — ухо); тактильный, болевой, температурный (рецепторы кожи); обонятельный (рецептор в носовой полости); вкусовой (рецепторы на поверхности языка и неба). Внутренние — анализатор давления; кинестетический (рецепторы в мышцах и сухожилиях); вестибулярный (рецептор в полости уха); специальные, расположенные во внутренних органах и полостях тела. Рассмотрим основные параметры анализаторов:
1. Абсолютная чувствительность к интенсивности сигнала (абсолютный порог ощущения по интенсивности) — характеризуется минимальным значением воздействующего раздражителя, при котором возникает ощущение. В зависимости от вида раздражителя абсолютный порог измеряется в единицах энергии, давления, температуры, количества или концентрации вещества и т.п. Минимальную адекватно ощущаемую интенсивность сигнала принято называть нижним порогом чувствительности. Психофизическими опытами установлено, что величина ощущений изменяется медленнее, чем сила раздражителя. Интенсивность ощущений Е выражается логарифмической зависимостью (закон Вебера-Фехнера)
где J — интенсивность раздражителя; K и С — константы, определяемые данной сенсорной системой.
2. Предельно допустимая интенсивность сигнала (обычно близка к болевому порогу). Максимальную адекватно ощущаемую величину сигнала принято называть верхним порогом чувствительности.
3. Диапазон чувствительности к интенсивности — включает все переходные значения раздражителя от абсолютного порога чувствительности до болевого порога.
4. Дифференциальная (различительная) чувствительность к изменению интенсивности сигнала — это минимальное изменение интенсивности сигнала, ощущаемое человеком. Различают абсолютные дифференциальные пороги, характеризуемые значением
5. Дифференциальная (различительная) чувствительность к изменению частоты сигнала — это минимальное изменение частоты F сигнала, ощущаемое человеком. Измеряется аналогично дифференциальному порогу по интенсивности, либо в абсолютных единицах
6. Границы (диапазон) спектральной чувствительности (абсолютные пороги ощущений по частоте, длине волны) определяются для анализаторов, чувствительных к изменению частотных характеристик сигнала (зрительного, слухового, вибрационного), отдельно нижний и верхний пороги.
7. Пространственные характеристики чувствительности специфичны для каждого анализатора.
8. Для каждого анализатора характерна минимальная длительность сигнала, необходимая для возникновения ощущений. Время, проходящее от начала воздействия раздражителя до появления ответного действия на сигнал (сенсомоторная реакция), называют латентным периодом.
Величина латентного периода (с) для различных анализаторов следующая:
тактильный (прикосновение)...………………………. 0,09...0,22
слуховой (звук)..........…………………………………. 0,12...0,18
зрительный (свет).........……………………………….. 0,15...0,22
обонятельный (запах).......…………………………….. 0,31...0,39
температурный (тепло-холод)...……………………… 0,28...1,6
вестибулярный аппарат (при вращении)…………….. 0,4
болевой (рана)…………………………………………. 0,13...0,89
9. Адаптация (привыкание) и сенсибилизация (повышение чувствительности) — характеризуются временем и присущи каждому типу анализаторов.
Функционирование разных анализаторов существенно изменяется под влиянием неблагоприятных для человека условий. Низке и высокие температуры, вибрации, перегрузки, невесомость, слишком интенсивные потоки информации, ведущие к дефициту времени, и ее недостаток, утомление, вызванное длительной работой или неблагоприятными условиями, состояние стресса — все эти факторы вызывают различные изменения характеристик анализаторов.
Рисунок. 3 Спектральная чувствительность глаза
Чтобы обеспечить достаточную надежность деятельности человека при приеме и анализе сигналов в любых условиях, для практических расчетов рекомендуется использовать не абсолютные и дифференциальные пороги чувствительности анализаторов к различным характеристикам сигналов, а оперативные пороги, характеризующие не минимальную, а некоторую оптимальную различимость сигналов. Обычно оперативный порог в 10-15 раз выше соответствующего абсолютного и дифференциального. Характеристика зрительного анализатора. В процессе деятельности человек до 90 % всей информации получает через зрительный анализатор. Прием и анализ информации происходит в световом диапазоне (380—760 нм) электромагнитных волн. Цветовые ощущения вызываются действием световых волн, имеющих различную длину. Приблизительные границы длин и соответствующие им ощущения показаны на рис.3. Глаз различает семь основных цветов и более сотни их оттенков. Наибольшая чувствительность в условиях обычного дневного освещения (В = 9,56 кд/м2) достигается при длине волн 554 нм (в желто-зеленой части спектра) и убывает в обе стороны от этого значения. Характеристикой чувствительности является относительная видность —
темный объект на светлом фоне (прямой контраст):
светлый объект на темном фоне (обратный контраст):
где Воб и Вф — яркости объекта и фона. Оптимальная величина контраста считается 0,6-0,9.
Временные характеристики восприятия сигналов:
латентный период (скрытый период) — время от подачи сигнала до момента возникновения ощущения (0, 15-0,22 с);
порог обнаружения сигнала при большей яркости — 0,00 1 с, при длительности вспышки 0,1 с. Яркость сигнала практического значения не имеет;
привыкание к темноте (неполная темновая адаптация) длится от нескольких секунд до нескольких минут;
восприятие мелькающего света (критическая частота слияния мельканий) изменяется от 14 до 70 Гц в зависимости от яркости импульсов, их формы, угловых размеров объекта, уровня зрительной адаптации, функционального состояния человека и т.п. Для исключения слияния мельканий рекомендуется проецирование сигналов с частотой 3-8 Гц.
При оценке восприятия пространственных характеристик основным понятием является острота зрения, которая характеризуется минимальным углом, под которым две точки видны как раздельные. Острота зрения зависит от освещенности, контрастности, формы объекта и других факторов. При оптимальной освещенности (100-700 лк) порог разрешения составляет от Г до 5 мин. При уменьшении контрастности острота зрения снижается. При восприятии объектов в двухмерном и трехмерном пространстве различают поле зрения и глубинное зрение. Бинокулярное поле зрения охватывает в горизонтальном направлении 120-180°, по вертикали вверх — 55-60° и вниз —65-72°. Опознание взаимного расположения, форм объектов возможно в границах: вверх — 25, вниз—35, право и влево — по 32° от оси зрения. В поле бинокулярного зрения предметы не распознаются, но обнаруживаются. Точное восприятие зрительных сигналов и четкое различение деталей возможно только в центральной части поля зрения размером 3° от оси во все стороны. Глубинное зрение связано с восприятием пространства. Ошибка восприятия абсолютной удаленности составляет 12 % при дистанции 30 м. Восприятие пространства — формы, объема, величины и взаимного расположения объектов, их рельефа, удаленности и направления, в котором они находятся, достигается за счет бинокулярного зрения двумя глазами. Информация об удалении предметов достигается за счет конвергенции — сведений зрительных осей на объекте восприятия, благодаря чему возникают мышечные двигательные ощущения, которые и дают информацию. Характеристика слухового анализатора. С помощью звуковых сигналов человек получает до 10 % информации. Характерными особенностями слухового анализатора являются:
способность быть готовым к приему информации в любой момент времени;
способность воспринимать звуки в широком диапазоне частот и выделять необходимые;
способность устанавливать со значительной точностью месторасположение источника звука.
В связи с этим слуховое представление информации осуществляется в тех случаях, когда оказывается возможным использовать указанные свойства слухового анализатора. Наиболее часто слуховые сигналы применяются для сосредоточенного внимания человека — оператора (предупредительные сигналы и сигналы опасности), для передачи информации человеку-оператору, находящемуся в положении, не обеспечивающим ему достаточной для работы видимости объекта управления, приборной панели и т.п., а также для разгрузки зрительной системы. Для эффективного использования слуховой формы представления информации необходимо знание характеристик слухового анализатора. Свойства слухового анализатора оператора проявляются в восприятии звуковых сигналов. С физической точки зрения звуки представляют собой распространяющиеся механические колебательные движения в слышимом диапазоне частот. Механические колебания характеризуются амплитудой и частотой. Амплитуда — наибольшая величина измерения давления при сгущениях и разрежениях. Частота — число полных колебаний в одну секунду. Единицей ее измерения является герц (Гц) — одно колебание в секунду. Амплитуда колебаний определяет величину звукового давления и интенсивность звука (или силу звучания). Звуковое давление принято измерять в Паскалях (Па). Основные параметры (характеристики) звуковых сигналов (колебаний):
интенсивность (амплитуда),
частота и форма, которые отражаются в таких звуковых ощущениях как громкость, высота и тембр.
Воздействие звуковых сигналов на звуковой анализатор определяется уровнем звукового давления (Па). Интенсивность (сила) звука (Вт/м2) определяется плотностью потока звуковой энергии (плотностью мощности). Для характеристики величин, определяющих восприятие звука, существенными являются не только абсолютные значения интенсивности звука и звукового давления, сколько их отношение к пороговым значениям (J0=10-12 Вт/м2 или Р0=210-5 Па). В качестве таких относительных единиц измерения используют децибелы (дБ)
где J и Р — соответственно интенсивность и уровень звукового давления, J0 и Р0 — их пороговые значения.
Интенсивность звука уменьшается обратно пропорционально квадрату расстояния; при удвоении расстояния снижается на 6 дБ. Абсолютный порог слышимости звука составляет (принят) 210-5 Па (10-12 Вт/м2) и соответствует уровню 0 дБ. Пользование шкалой децибел удобно, так как почти весь диапазон слышимых звуков укладывается менее чем в 140 дБ (рис. 2.13). Громкость — характеристика слухового ощущения, наиболее тесно связанная с интенсивностью звука. Уровень громкости выражается в фонах; фон численно равен уровню звукового давления в дБ для чистого тона частотой 1000 Гц. Дифференциальная чувствительность к изменению громкости — К=(
Рисунок 4. Диаграмма области слухового восприятия
Минимальный уровень определенного звука, который требуется для того, чтобы вызвать слуховое ощущение в отсутствие шума, называют абсолютным порогом слышимости. Значение его зависит от тона звука (частота, длительность, форма сигнала), метода его предъявления и субъективных особенностей слухового анализатора оператора. Абсолютный порог слышимости имеет тенденцию с возрастом уменьшаться (рис.5). Высота звука, как и его громкость, характеризует звуковое ощущение оператора. Частотный спектр слуховых ощущений простирается от 16-20 Гц до 20 000-22 000 Гц. В реальных условиях человек воспринимает звуковые сигналы на определенном акустическом фоне. При этом фон может маскировать полезный сигнал. Эффект маскировки имеет двоякое значение. В ряде случаев фон может маскировать полезный (нужный) сигнал, в некоторых случаях может улучшать акустическую обстановку. Так, известно, имеется тенденция маскировки высокочастотного тона низкочастотным, который менее вреден для человека.
Рисунок 5. Зависимость потери слуха с возрастом для различных частот звукового сигнала.
Слуховой анализатор способен фиксировать даже незначительные изменения частоты входного звукового сигнала, т.е. обладает избирательностью, которая зависит от уровня звукового давления, частоты и длительности звукового сигнала. Минимально заметные различения составляют 2-3 Гц и имеют место на частотах менее 10 Гц, для частот более 10 Гц минимально заметные различения составляют около 0,3 % частоты звукового сигнала. Избирательность повышается при уровнях громкости 30 дБ и более и длительности звучания, превышающей 0,1 с. Минимально заметные различения частоты звукового сигнала существенно уменьшаются при его периодическом повторении. Оптимальными считаются сигналы, повторяющиеся с частотой 2-3 Гц. Слышимость, а следовательно, и обнаруживаемость звукового сигнала зависят от длительности его звучания. Так для обнаружения звуковой сигнал должен длиться не менее 0,1 с. Наряду с рассмотренными звуковыми сигналами в управлении используются речевые сигналы для передачи информации или команд управления от оператора к оператору. Важным условием восприятия речи является различение длительности и интенсивности отдельных звуков и их комбинаций. Среднее время длительности произнесения гласного звука равно примерно 0,36 с, согласного 0,02-0,03 с. Восприятие и понимание речевых сообщений существенно зависят от темпа их передачи, наличия интервалов между словами и фразами. Оптимальным считается темп 120 слов/мин, интенсивность речевых сигналов должна превышать интенсивность шумов на 6,5 дБ. При одновременном увеличении уровня речевых сигналов и шумов при постоянном их отношении разборчивость речи сохраняется и даже несколько увеличивается. При значительном увеличении уровня речи и шума до 120 и 115 дБ и соответственно разборчивость речи ухудшается на 20 %. Опознание речевых сигналов зависит от длины слова. Так, односложные слова распознаются в 13 % случаев, шестисложные — в 41 %. Это объясняется наличием в сложных словах большого числа опознавательных признаков. Имеет место повышение до 10 % точности распознавания слов, начинающихся с гласного звука. При переходе к фразам оператор воспринимает не отдельные слова или их сочетания, а смысловые грамматические конструкции, длина которых (до уровня 11 слов) не имеет особого значения. Полезно знать, что используемые стереотипные словосочетания, фразеологизмы, распознаются значительно хуже, чем это можно было ожидать. Увеличение альтернативных слов возможных словосочетаний, фраз, повышает правильность опознания. Однако включение фраз, допускающих неоднозначность толкования их смыслового содержания, приводит к замедлению процесса восприятия. Таким образом, вопрос организации звукового и речевого взаимодействия «оператор — оператор», «техническое средство — оператор» является не тривиальным и его оптимальное решение оказывает существенное воздействие на безопасность производственных процессов. Характеристика кожного анализатора. Обеспечивает восприятие прикосновения (слабого давления), боли, тепла, холода и вибрации. Для каждого из этих ощущений (кроме вибрации) в коже имеются специфические рецепторы, либо их роль выполняют свободные нервные окончания. Каждый микроучасток кожи обладает наибольшей чувствительностью к тем раздражителям (сигналам), для которых на этом участке имеется наибольшая концентрация соответствующих рецепторов — болевых, температурных и тактильных. Так, плотность размещения составляет: на тыльной части кисти —188 болевых, 14 осязательных, 7 Холодовых и 0,5 тепловых на квадратный сантиметр поверхности; на грудной клетке соответственно —196, 29,9 и 0,3. Воздействие в этих точках даже не специфическим, но достаточно сильным раздражителем независимо от его характера вызывает специфическое ощущение, обусловленное типом рецептора. Например, интенсивный тепловой луч, попадая в точку боли, вызывает ощущение боли. Чувствительность к прикосновению. Это — ощущение, возникающее при действии на кожную поверхность различных механических стимулов (прикосновение, давление), вызывающих деформацию кожи. Ощущение возникает только в момент деформации. Абсолютный порог тактильной чувствительности определяется по тому минимальному давлению предмета на кожную поверхность, которое производит едва заметное ощущение прикосновения. Наиболее высокоразвита чувствительность на дистальных частях тела. Примерные пороги ощущений: для кончиков пальцев руки — 3 г/мм2; на тыльной стороне пальца — 5 г/мм2, на тыльной стороне кисти —12 г/мм2; на животе — 26 г/мм2; на пятке — 250 г/мм2. Порог различения в среднем равен примерно 0,07 исходной величины давления. Тактильный анализатор обладает высокой способностью к пространственной локализации. При последовательном воздействии одиночных раздражителей ошибка в локализации колеблется в пределах 2-8 мм. Характерной особенностью тактильного анализатора является быстрое развитие адаптации, т.е. исчезновение чувства прикосновения или давления. Время адаптации зависит от силы раздражителя и для различных участков тела может изменяться в пределах 2-20 с. При ритмических последовательных прикосновениях к коже каждое из них воспринимается как раздельное, пока не будет достигнута критическая частота Fкр, при которой ощущение последовательности прикосновений переходит в специфическое ощущение вибрации. В зависимости от условий и места раздражения Fкр — 5-20 Гц. При F>Fкр от анализа собственно тактильной чувствительности переходят к анализу вибрационной. Вибрационная чувствительность. Вибрационная чувствительность обусловлена теми же рецепторами, что и тактильная, поэтому топография распределения вибрационной чувствительности по поверхности тела аналогична тактильной. Диапазон ощущения вибрации высок: 5-12 000 Гц. Наиболее высока чувствительность к частотам 200-250 Гц. При их увеличении и уменьшении вибрационная чувствительность снижается. В этом случае пороговая амплитуда вибрации минимальна и равна 1 мкм. Пороги вибрационной чувствительности различны для разных участков тела. Наибольшей чувствительностью обладают дистальные участки тела человека, т.е. которые наиболее удалены от его медиальной плоскости (например, кисти рук). Кожная чувствительность к боли. Этот вид чувствительности обусловлен воздействием на поверхность кожи механических, тепловых, химических, электрических и других раздражителей. В эпителиальном слое кожи имеются свободные нервные окончания, которые являются специализированными нервными рецепторами. Между тактильными и болевыми рецепторами существуют противоречивые отношения. Проявляются они в том, что наименьшая плотность болевых рецепторов приходится на те участки кожи, которые наиболее богаты тактильными рецепторами, и наоборот. Противоречие обусловлено различием функций рецепторов в жизни организма. Болевые ощущения вызывают оборонительные рефлексы, в частности, рефлекс удаления от раздражителя. Тактильная чувствительность связана с ориентировочными рефлексами, в частности, это вызывает рефлекс сближения с раздражителем. Биологический смысл боли состоит в том, что она, являясь сигналом опасности, мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность. Болевой порог при механическом давлении на кожу измеряется в единицах давления и зависит от места измерений. Например, порог болевой чувствительности кожи живота составляет 15-20 г/мм2, кончиков пальцев — 300 г/мм2. Латентный период около 370 мс. Критическая частота слияния дискретных болевых раздражителей — 3 Гц. Пороговая плотность потока тепла, вызывающего болевое ощущение, составляет 88 Дж/(мс). Температурная чувствительность. Свойственна организмам, обладающим постоянной температурой тела, обеспечиваемой терморегуляцией. Температура кожи несколько ниже температуры тела и различна, для отдельных участков: на лбу — 34-35 °С, на лице —20-25 °С, на животе — 34 °С, стопах ног — 25-27 °С. Средняя температура свободных от одежды участков кожи 30...32 °С. Коже присущи два вида рецепторов. Одни реагируют только на холод, другие только на тепло. Пространственные пороги зависят от стимулирующих факторов: при контактном воздействии, например, ощущение возникает уже на площади в 1 мм2, при лучевом — начиная с 700 мм2. Латентный период температурного ощущения равен примерно 0,20 с. Абсолютный порог температурной чувствительности определяется по минимально ощущаемому изменению температуры участков кожи относительно физиологического нуля, т.е. собственной температуры данной области кожи, адаптировавшейся к внешней температуре. Физиологический нуль для различных областей кожи достигается при температурах среды между 12-18°С и 41-42 °С. Для тепловых рецепторов абсолютный порог составляет примерно 0,2 °С, для холодных — 0,4 °С. Порог различительной чувствительности составляет примерно 1 °С. Кинестетический анализатор. Обеспечивает ощущение положения и движений тела и его частей. Имеется три вида рецепторов, воспринимающих:
1. Растяжение мышц при их расслаблении — «мускульные веретена»;
2. Сокращение мышц — сухожильные органы Гольджи;
3. Положение суставов (обусловливающее так называемое «суставное чувство»). Предполагается, что их функции выполняют глубинные рецепторы давления.
Возможности двигательного аппарата представляют определенную значимость при конструировании защитных устройств, органов управления. Сила сокращения мышц человека колеблется в широких пределах. Например, номинальная сила кисти в 450-650 Н при соответствующей тренировке может быть доведена до 900 Н. Сила сжатия, в среднем равная 500 Н для правой и 450 Н для левой руки, может увеличиваться в два раза и более.
Оптимальные усилия на органы управления:
для рукояток 20-40 Н (100 Н — максимальное);
для кнопок, тумблеров, переключателей легкого типа 1400-1600Н, тяжелого —6000-12000 Н;
для ножных педалей управления от 20-50 (используемых часто) до ЗООН (используемых редко);
для рычажного управления от 20-40 (используемых часто) до 120-160Н (используемых редко).
Диапазон скоростей, развиваемых движущимися руками человека, находится в пределах 0,01-8000 см/с. Наиболее часто используются скорости порядка 5-800 см/с. Скорость движения больше в направлении к себе, чем от себя; в вертикальной плоскости, чем в горизонтальной; сверху вниз, чем снизу вверх; вперед-назад, чем вправо-влево; слева направо для правой руки и справа налево для левой, чем наоборот. Вращательные движения в 1,5 раз быстрее поступательных. Обонятельный анализатор. Предназначен для восприятия человеком различных запахов (их диапазон охватывает до 400 наименований). Рецепторы расположены на участке площадью около 2,5 см2 слизистой оболочки в носовой полости. Условиями восприятия запахов являются летучесть пахучего вещества (выделение его молекул в свободном виде); растворимость веществ в жирах; движение воздуха, содержащего молекулы пахучего вещества в области обонятельного анализатора. Абсолютный порог обоняния измеряется долями миллиграмма вещества на литр воздуха (мг/л). Запахи могут сигнализировать человеку о нарушениях в ходе технологических процессов и об опасностях. Вкусовой анализатор. В физиологии и психологии распространена четырехкомпонентная теория вкуса, согласно которой существуют четыре вида элементарных вкусовых ощущений: сладкого, кислого, горького и соленого. Все остальные ощущения представляют их комбинации. Абсолютные пороги вкусового анализатора выражаются в величинах концентраций раствора, и они примерно в 10 000 раз выше, чем обонятельного. Различная чувствительность вкусового анализатора довольно груба, в среднем она составляет 20 %. Восстановление вкусовой чувствительности после воздействия различных раздражителей заканчивается через 10-15 мин.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |
Реферат | Расчёт токов короткого замыкания |
Реферат | Ремонт генератора |
Реферат | Анализ РТТ г. Казань |
Реферат | Сертификаця систем управления окружающей средой |
Реферат | Светоизлучающие диоды |
Реферат | Реальные рабочие тела – вода и водяной пар |
Реферат | Умягчение воды |
Реферат | Ремонт деталей рулевого механизма |
Реферат | Расчет распределительных сетей |
Реферат | Ремонт двигателей внутреннего сгорания |
Реферат | Расчёт комплекса из двух ректификационных колонн |
Реферат | Система управления тиристорного электропривода продольно-строгального станка |
Реферат | Расчет индуктивности |
Реферат | Тепловые машины |
Реферат | Реактивное движение. Межконтинентальная баллистическая ракета. |