Реферат по предмету "Химия"


Элементарные стадии химических реакций основы теории

Элементарные стадии химических реакций (основы теории)
При записи механизма реакции или при выдвижении набора механизмов (набора гипотез о механизмах) необходимо учитывать основные теоретические положения (постулаты, законы, принципы) и эвристические правила, которые позволяют оценить вероятность отнесения той или иной реакции к элементарным стадиям. Количественный ответ на этот вопрос дают пока еще очень трудоемкие профессионально выполненные квантово-химические расчеты. Поэтому использование простых правил и представлений о реакционной способности очень полезно.
В этом разделе мы рассмотрим очень кратко основные выводы и следствия различных теорий элементарной стадии, повторив и основные понятия химической кинетики.
Основные понятия химической кинетики
Концентрация вещества C определяется количеством молекул (или молей) в единице объема.
Число частиц должно быть большим, чтобы величину концентрации С можно было рассматривать как величину статистическую и одинаковую в любой части реакционного объема.
В системе устанавливается равновесное распределение частиц по внутренним степеням свободы (энергиям) и по скоростям поступательного движения – максвелл-больцмановское распределение (МБР). Между возбужденными и невозбужденными состояниями устанавливается статистическое (термическое) равновесие, характеризуемое одной температурой. Если химические реакции не нарушают термического МБР, то кинетику таких реакций называют “равновесной”. К равновесной кинетике относятся большинство реакций в газах, растворах и на поверхности при T
Взаимодействие нескольких частиц (реагентов) с образованием молекул (частиц), называемых продуктами реакции, проходящее через один потенциальный барьер, называют элементарным актом химического процесса. Многократное повторение таких актов с участием большого числа молекул (частиц), называют элементарной реакцией или элементарной стадией (ЭС).
Число участников (реагентов) ЭС называют молекулярностью ЭС. Молекулярность m есть сумма стехиометрических коэффициентов участников ЭС (/>).
Скорость реакции. Изменение количества молей i-того участника стадии (∆ni) в результате химической реакции определяется скоростью ri образования или расходования ni, временем реакции t и объемом V: Dni = j(ri, t, V). Поэтому скорость реакции ri есть производная второго порядка от ni по V и t:
/>(1)
Если ri одинакова по всему объему и V = const (закрытая система), то Dniµ V, и дифференцирование по V заменяется делением на V:
/>(2)
Если в открытой системе реакция стационарна, то Dniµ t, и дифференцирование по t заменяется делением на t (реактор идеального вытеснения):
/>(3)
где Fi – мольный поток (/>).
Если выполнены оба условия (безградиентный проточный реактор, реактор полного смешения), то скорость />или />.
Скорость j-той стадии при V = const есть производная степени глубины реакции c по времени в единице объема
/>, где />(4)
отсюда
/>(5)
Изложенные соображения справедливы и для участников итоговых уравнений стационарных, квазистационарных и нестационарных реакций.
Основные законы, постулаты и принципы
Рассмотрим основные законы, постулаты, принципы и эвристические правила, лежащие в основе теории элементарной стадии:
Законы сохранения массы и элементов в ходе химической реакции (в закрытой системе):
/>(6)
/>(7)
где />– вектор-строка стехиометрических коэффициентов участников реакции, />– вектор-столбец молекулярных масс участников реакции, H – атомная (молекулярная) матрица.
Закон сохранения энергии.
Закон действия масс (Гульдберг–Вааге, Вант-Гофф). Согласно этому закону скорость элементарной стадии в одном направлении пропорциональна произведению концентраций реагентов в степенях, соответствующих стехиометрическим коэффициентам в уравнении стадии
/>(8)
Для реакции />(9)
/>(10)
где k+ – константа скорости (удельная скорость при />= 1). Сумма bi соответствует молекулярности реакции, а показатель bi называют порядком реакции. В случае ЭС суммарный порядок совпадает с молекулярностью.
Постулат о необходимости соударений молекул (частиц) для реализации химического превращения. Даже в случае мономолекулярных реакций основой всех теорий считается схема Линдеманна-Христиансена, согласно которой молекула реагента А в реакции А ® В приобретает необходимую для превращения в В энергию в результате столкновения с любыми молекулами М (инертного газа, продукта и с другой молекулой реагента).
/>
/>
В случае квазистационарности по [А*]
/>(11)
При больших концентрациях М (больших давлениях)
k–1[M] >> k2 и />.
При низких концентрациях М лимитирующей становится первая стадия в прямом направлении с уравнением 2го порядка. Вероятность соударений двух молекул в бимолекулярной реакции или фактор соударений />см3/сек существенно ниже фактора (вероятности) тройных соударений />см6/сек, поэтому вероятность таких реакций низка. Тримолекулярные реакции в подавляющем числе примеров являются блоками бимолекулярных ЭС.
Простые соображения, вытекающие из теории соударений в газовой фазе, позволяют сформулировать первое очень важное правило отбора – молекулярность (m) элементарной стадии не превышает 2 (m £ 2).
В газовой фазе частицы сталкиваются по всему объему. В жидкой фазе – только в свободном объеме клетки из молекул растворителя. В первой сфере такой клетки молекулу реагента А окружает 8 – 12 молекул растворителя. Для того, чтобы столкнуться, молекулы A и B в этом случае должны в результате диффузии попасть из клеток Asol и Bsol в общую клетку (AB)sol, т.е. образовать так называемую диффузионную пару. Поскольку свободный объем клетки Vf составляет 0,2 – 2% от V растворителя, частота столкновений в таком объеме будет больше, чем в объеме V газовой фазы. Экспериментальное отношение констант скорости kж/ kг одинаковых бимолекулярных элементарных реакций в неполярных растворителях составляет 10 – 150. Очевидно, что вероятность соударения трех частиц в одной клетке не увеличится заметно по сравнению с газофазными реакциями, а вероятность образования диффузионной тройки в одной клетке ниже вероятности образования диффузионной пары. --PAGE_BREAK--
В реакциях таких сложных молекул, как ферменты, молекулярность отдельных стадий также не превышает двух. Однако, в случае ферментов в активном центре фермента возможно многоцентровое связывание и синхронное участие в элементарном акте большого числа (3 – 4) активных групп. Таким образом, по отношению к комплексу фермент-субстрат (ES) реакция является, например, бимолекулярной (ES + H2O), а в полости активного центра происходит многоцентровой процесс. Сильное падение энтропии активации в этом случае компенсируется повышением энтропии за счет изменения третичной структуры белка и его дегидратации в результате вызванной образованием комплекса ES перестройки белка.
Принцип микроскопической обратимости (постулат) исходит из обратимости любого элементарного акта, т.е. из обратимости любого микроскопического процесса, протекающего на молекулярном уровне. В макроскопическом описании больших ансамблей молекул (частиц) появляются МБР, статистические термодинамические характеристики (DH, DS) и, соответственно, возможность необратимости. Сумма элементарных актов в прямом направлении, т.е. макроскопический процесс, компенсируется суммой элементарных актов в обратном направлении при достижении равновесия. Микроскопически обратимый процесс в макроскопической системе может быть необратимым. В макросистеме обратимых стадий, каждая стадия (реакция) самостоятельно доходит до равновесия, когда изменение химического потенциала Dm (или химического сродства А) станет равным нулю
/>(/>) (12)
Равенство Dm = DG = –А = 0 означает и равенство скоростей прямой и обратной реакции W+ = W–.
Принцип детального равновесия (ПДР) определяет статистическое соотношение между константами скорости прямого (k+) и обратного (k–) элементарного процесса в условиях МБР, как константу равновесия этого процесса (k+/k– = K). ПДР следует из ПМО и равенства скоростей W+ = W– в точке химического равновесия (/>). ПДР есть макроскопическое проявление ПМО. Взяв в качестве постулата принцип микроскопической обратимости при равновесии в форме W+ = W–, получим ПДР и обратно, положив k+/k– = K в качестве постулата, приходим к равенству W+ = W– при равновесии. Например, запишем для реакции (9)
/>(13)
/>(14)
Примем k+/k– = K, тогда />, т.е.
/>(15)
Из (15) следует, что при />W+ = W–.
Рассмотренный вывод справедлив для случая идеальных газов и идеальных растворов. Из ПМО следует ряд важных следствий, касающихся механизмов сложных реакций. Приведем одно из них – сложная реакция в прямом и обратном направлениях проходит через те же самые ЭС и интермедиаты.
Закон (уравнение) Аррениуса описывает фундаментальное свойство константы скорости ЭС в условиях МБР – экспоненциальную зависимость от температуры
/>(16)
Экспериментально, уравнение (16) было получено Худом в 1885 г. Зависимость такого вида была предсказана Вант-Гоффом в рамках равновесной термодинамики (1883 г.) и обоснована Аррениусом в рамках статистической физики (1889 г.). Классический механизм бинарных соударений молекул как упругих шаров приводит к выражению
/>(17)
С учетом необходимой ориентации молекул получим простейшую форму уравнения
/>(18)
где p – стерический фактор, Z0– фактор соударений или общее число соударений. Энергия Е – энергия активации ЭС в уравнениях (17 – 18) есть разность между средней энергией реагирующих частиц и средней энергией всех частиц.
Экспоненциальный множитель в уравнениях выражает долю “активных” столкновений, т.е. тех столкновений, энергия которых равна или выше энергии барьера Е. Такое выражение – следствие того, что основной вклад в Еакт в газовой фазе вносит поступательное движение молекул А и В.
Величины предэкспонентов в уравнениях (16) и (17) для мономолекулярных (АМ), бимолекулярных (АБ) и тримолекулярных (АТ) реакций составляют 1013 сек–1, 1010–11 л·моль-1·сек–1 и 106 – 108 л·моль-2·сек–2, соответственно.
В рамках теории переходного состояния (или активированного комплекса) константа скорости ЭС (9)
/>, (19)
где />– частота перехода через барьер, сек–1, c – трансмиссионный коэффициент, определяющий долю активированных комплексов, переваливающих через барьер, />– термодинамическая константа равновесия образования активированного комплекса в условиях МБР всех частиц, gi – коэффициенты активности реагентов и активированного комплекса />.
/>(20)
Из общих принципов, важных для химической кинетики и полезных для определения статуса химической реакции как элементарной стадии, отметим еще два принципа.
Принцип независимости химических реакций.
Одновременное протекание множества ЭС в реагирующей системе подчиняется принципу (постулату) независимости химических реакций (В.Оствальд): все элементарные химические реакции протекают независимо. Связь между реакциями осуществляется на уровне материальных балансов, за счет изменения концентраций реагентов.
Согласно этому принципу, прямая и обратная элементарные реакции также протекают независимо, и это позволяет установиться химическому равновесию (см. ПМО).
Принцип наименьшего движения Райса и Теллера. Согласно этому принципу, ЭС будет протекать быстро, с низкой Eакт, если в ходе этой ЭС:
происходит наименьшее движение ядер, т.е. движение с минимальным изменением координат ядер;
происходит наименьшее движение электронов, т.е. такое, при котором изменение электронных оболочек не приводит к изменению валентного состояния.
Если в системе происходит незначительное изменение координат ядер, то это означает, что термы реагентов и продуктов близки. А чем ближе термы, тем ниже, в общем случае, величина барьера (Eакт). Однако, это не всегда так. Путь наименьшего движения может и не совпадать с путем наименьшей энергии. Условие наименьшего движения электронов более универсально. В случае мономолекулярных реакций, например, это условие означает, что электронное строение реакционного центра реагирующей молекулы должно быть близко к электронному строению активированного комплекса для того, чтобы величина барьера (или />) была небольшой.
Энергетические правила отбора элементарных стадий
Энергетические правила отбора ЭС рассматривают случаи, когда причиной больших значений />являются термохимические особенности ЭС.
Эндотермические ЭС. В этом случае величина />определяет нижний предел Еакт, поскольку в подавляющем большинстве случаев максимумы на кривых потенциальной энергии и свободной энергии расположены при одном и том же значении координаты реакции. В случае, если />велика, например />= 40000 кал/моль, а типичная величина предэкспонента бимолекулярной реакции SN2-типа 1011 л×моль–1×сек–1 (интервал значений А 1010–1012 л×моль–1×сек–1), величина константы скорости k составит при 298 К
/>л×моль–1×сек–1.
Для того, чтобы скорость стадии (Wj) была не ниже 0,01 моль×л–1×ч–1 (практически приемлемая скорость), произведение концентраций реагентов в реакции типа (6) должно равняться
/>моль2×л–2,    продолжение
--PAGE_BREAK--
что, естественно, нереально. При этом же значении скорости для CACB = 10–4 моль2×л–2k = 2,8×10–2 л×моль–1×сек–1, откуда Еакт@ 17000 кал/моль.
Таким образом, в зависимости от температуры реакции и ожидаемой скорости стационарного или квазистационарного процесса можно задать ограничения на величину />при выборе какой-либо реакции на роль ЭС.
Использование величины />в качестве термодинамического критерия в случае ЭС не является столь же жестким, как для оценок реализуемости брутто-процесса (итоговой реакции). В последнем случае для выбора условий реакции (P, T) оценивают />, Kравн и равновесный выход продукта, который из любых соображений должен быть большим. В случае ЭС образования промежуточного соединения Х
/>(21)
допустимой концентрацией Х является такая, которая обеспечит положительное сродство (А > 0, Dm
W1 > 0 при />
В стадии образования Х (21)
/>.
В рассмотренном примере происходит кинетическое сопряжение двух ЭС через общий интермедиат Х, позволяющее проводить процесс синтеза продукта Р, с термодинамически невыгодной первой стадией. Сопряжение первой термодинамически невыгодной стадии (/>или даже />, т.е. А в пределе вырастает до величины />.
Полезно еще раз уточнить некоторые понятия в связи с рассмотренными выше проблемами. Любая кинетически обратимая стадия (взаимно-обратная, двухсторонняя реакция), протекающая в закрытой системе при неизменных внешних условиях Р, Т, является термодинамически необратимым процессом (/>= Dmi (/>). Например, если Kравн@ 1015, то на всем протяжении процесса от a = 0 до a = 0,999 величина j >> 1 и отношение />меняется в интервале 1012¸ 107, сохраняясь очень большим в течении всего процесса. Другими словами
/>
Процессы такого типа можно считать кинетически необратимыми.
Эмпирические зависимости Еакт и />от термодинамических характеристик стадии. На основании экспериментальных наблюдений (Бренстед, Белл, Поляни) и теоретических соображений Беллом, Эвансом и Поляни был сформулирован принцип линейности свободных энергий (ПЛСЭ), называемый также правилом БЭП. В ряду однотипных элементарных реакций эти принципы отражают связь величин />и />или Еакт и />, т.е. связь кинетических и термодинамических характеристик, которая была аппроксимирована линейными уравнениями
/>(22)
/>(23)
Коэффициенты уравнения (23) найдены Н.Н. Семеновым для ряда ЭС радикалов с молекулами (уравнение Поляни-Семенова).
Eэкзо = 11,5 – 0,25|DH0| (24)
Eэндо = 11,5 + 0,75|DH0| (25)
где DH0– энтальпия стадии по абсолютной величине.
Правило БЭП позволяет при отборе ЭС использовать в качестве ограничения сверху не значения DH0, а величины Еакт, что делает отбор ЭС более точным.
Принципиально важным является безусловно вопрос о виде функции E = f(DH0). Еще Поляни (30е годы ХХ века) было ясно, что ПЛСЭ или уравнение Поляни являются лишь грубой линейной аппроксимацией в узком интервале термодинамических величин DG0и DH0более сложных функций, например, квадратичного уравнения (26)
/>(26)
Уравнение типа (26) было позднее получено для реакций переноса электрона (Р.Маркус, 1956 г.), предложено по аналогии для переноса протона (Р.Маркус, 1968) и уточнено и теоретически обосновано В.Г.Левичем, Р.Р.Догонадзе и А.М.Кузнецовым (1965 – 1975 гг). Получены параболические и более сложные степенные уравнения для расчета Еакт стадий радикальных реакций по значениям DH0.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат МСФО
Реферат Формирование современной картины мира средствами биологии
Реферат О. Уайльд
Реферат "19" квітня 2011 р м. Южноукраїнськ Голова Качко С
Реферат Общее сведения о больнице и показатели здоровья населения (республика Беларусь)
Реферат Воздействие телевизионной рекламы на приобщение молодежи к пиву
Реферат Расчет механизмов – козлового консольного крана грузоподъемностью 8 тонн
Реферат Создание новой военной техники накануне великой отечественной войны
Реферат "Актуальные вопросы бухгалтерского учета и налогообложения", 2006, n 24
Реферат Комплекс маркетинга в туризме
Реферат Пространство и время в творчестве М.А.Булгакова (по роману Мастер и Маргарита)
Реферат Комплексная механизация уборки сахарной свеклы агрегатом свеклоуборочным АС-1
Реферат "Выбирая Бога, мы выбираем судьбу"
Реферат Методика обучения истории в схемах, таблицах, описаниях
Реферат Когда умер Семен Гордый?