Реферат по предмету "Химия"


Лантаноиды 2

--PAGE_BREAK--ФИЗИЧЕСКИЕ СВОЙСТВА

Лантаноиды в виде простых веществ — серебристо — белые металлы (празеодим и неодим слегка желтоватого цвета), тускнеющие во влажном воздухе. Все лантаноиды в основном имеют структуру ГПУ, за исключением европия (объёмно — центрированная кристаллическая решётка), иттербия (гранецентрированная кристаллическая решётка) и самария, который кристаллизуется в ромбоэдрической структуре. Металлы подсемейства церия пластичны, сравнительно мягки, причём их твёрдость возрастает с увеличением атомного номера, за исключением иттербия, который имеет аномально высокую проводимость; она в 3 раза больше, чем у других лантаноидов, которые по этому параметру приближаются к ртути. Все лантаноиды — парамагнетики, но лютеций обладает слабой магнитной восприимчивостью, а европий, гадолиний, диспрозий и эрбий при Т

ниже комнатной обладают ферромагнетизмом. Только гадолиний имеет наивысшую точку Кюри (16°С). Интересными магнитными свойствами обладает диспрозий, который в зависимости от Т проявляет свойства парамагнетика, ферромагнетика и антиферромагнетика. Наиболее тугоплавкими являются тулий и лютеций. В характере изменения Тпл лантаноидов чётко проявляется внутренняя периодичность. Минимальными Тпл обладают европий и иттербий, у которых имеются устойчивые 4f75d06s2 и 4f145d06s2 электронные конфигурации. Легкоплавкие лантан, церий и празеодим характеризуются высокими Ткип, то есть являются трудноиспаряемыми. Европий и иттербий в ряду лантаноидов имеют самые низкие Ткип — наиболее летучи. Гадолиний отличается от других лантаноидов наибольшим электрическим сопротивлением и теплопроводностью. Лист металлического гадолиния в несколько сантиметров обладает такой же надёжностью, что и многометровая толща бетона или воды. Электропроводность иттербия в 3 раза больше, чем у остальных лантаноидов.

Все лантаноиды — довольно тяжёлые металлы (табл. 4).

Европий — самый лёгкий из лантаноидов, его плотность равна 5,245г/см3. У него же наибольшие из всех лантаноидов атомные радиус и объём. С этими «аномалиями» свойств европия некоторые исследователи связывают тот факт, что из всех лантаноидов европий — наиболее устойчив к корродирующему действию влажного воздуха и воды.

А вот у гадолиния максимальное по сравнению со всеми другими лантаноидами удельное электрическое сопротивление — примерно вдвое больше, чем у его аналогов. И удельная теплоёмкость этого элемента на 20% превышает удельную теплоёмкость лантана и церия1. Наконец, магнитные свойства ставят гадолиний в один ряд с железом,

кобальтом и никелем. В обычных условиях, когда лантан и остальные лантаноиды парамагнитны, гадолиний — ферромагнетик, причём даже более сильный, чем никель и кобальт.

1 — При 25°С

Табл. 4. Физические свойства лантаноидов



Элемент

с, г/см3

Тпл, °С

Ткип, °С



Лантан

6,17

920

3454



Церий

6,66

795

3257



Празеодим

6,78

935

3212



Неодим

7,00

1024

3127



Прометий

7,22

1027

2730



Самарий

7,54

1072

1752



Европий

5,26

826

1597



Гадолиний

7,90

1321

3233



Тербий

8,27

1356

3041



Диспрозий

8,54

1406

2335



Гольмий

8,80

1461

2572



Эрбий

9,05

1497

2510



Тулий

9,33

1545

1732



Иттербий

6,98

824

1193



Лютеций

9,84

1652

3315













Но и железо, и кобальт сохраняют ферромагнитность и при температуре около 1000°С (железо) и 631°С (никель). Гадолиний теряет это свойство, будучи нагретым, всего до

290°К (17°С). Необычны магнитные свойства и у некоторых соединений гадолиния. Его сульфат и хлорид, размагничиваясь, заметно охлаждаются. Это свойство использовали для получения сверхнизкой температуры. Сначала соль Gd2(SO4)3*H2O помещают в магнитное поле и охлаждают до предельно возможной температуры. А потом дают её размагнититься. При этом запас энергии, которой обладала соль, ещё уменьшается, и в конце опыта температура кристаллов отличается от абсолютного нуля всего на 0,001°С.

По данным академика А. П. Виноградова, по тугоплавкости тулий второй среди лантаноидов: температура его плавления — 1545° С. Лишь лютецию он уступает по температуре плавления (табл. 4).

ХИМИЧЕСКИЕ СВОЙСТВА

По своим химическим свойствам лантаноиды — достаточно активные металлы, взаимодействующие с большинством неметаллов и образующие сплавы со многими металлами. С увеличением порядкового номера лантаноида его химическая активность уменьшается. Например, церий на воздухе сгорает при более низкой температуре, чем магний и алюминий, неодим окисляется медленно, а гадолиний устойчив на воздухе в течение многих месяцев.

Уже во влажном воздухе для многих лантаноидов характерны потеря металлического блеска и образование на поверхности плёнки оксидов.
Табл. 5. Стандартные электродные потенциалы лантаноидов



Лантаноид

ц°298, эв



Лантан

-2,52



Церий

-2,92



Празеодим

-2,46



Неодим

-2,43



Прометий

-2,42



Самарий

-2,41



Европий

-2,40



Гадолиний

-2,40



Тербий

-2,34



Диспрозий

-2,35



Гольмий

-2,32



Эрбий

-2,30



Тулий

-2,38



Иттербий

-2,27



Лютеций

-2,25









??????? ??? ?????????? ???????????????? ?????? ?????????? ????????:

2Ме + 6Н2О > 2Ме(ОН)3 + 3Н2 ?

Се + 2Н2О > СеО2 + 2Н2 ?

Реагируя с водой, только европий образует растворимый кристаллогидрат жёлтого цвета, который при хранении белеет. По — видимому, здесь происходит дальнейшее разложение до оксида европия (III).

2Eu + 10H2O? 2Eu(OH)3*2H2O + 5H2?

2Eu(OH)3*2H2O? Eu2O3 + 5H2O

Химическая активность простых веществ лантаноидов очень высока, поэтому они взаимодействуют почти со всеми элементами периодической системы Д. И. Менделеева: с кислородом, ??????????, ?????, ?????????, азотом, водородом, ????????, ???????? и т. д. Причём с двумя последними реакции идут при нагревании. Х????????? ?????????? ?????????? ???? Ce — Lu ????????? ??????????? ??-?? ?????????? ?? ????????.

4Ме + 3O2200-400°С > 2Ме2O3

Се + О2 > СеО2

2Me + 3Hal2? 2MeHal3

2Me + 3S? Me2S3

4Me + 3C? Me4C3

2Me + N2750-1000ъC ? 2MeN

2Me + 3H2? 2MeH3

4Me + 3Si t°C? Me4Si3

Me + P t°C? MeP

Лантаноиды благодаря положению в ряду СЭП реагируют и с кислотами — неокислителями с выделением водорода:

2Ме + 6HCl > 2МеCl3 + 3Н2?

2Ме + 3H2SO4(разб.) > Ме2(SO4)3 + 3Н2 ?

Лантаноиды также образуют непрерывные твёрдые растворы с металлами подгруппы галлия. При взаимодействии лантаноидов, например со скандием, возникают очень прочные металлиды (рис 2)



t°C 1470°

1500

1400

1300

1200

1100 Pr2Ga3 1044°

1000

900 (911°) 852° PrGa2

800 686° PrGa

700

600 576° Pr3Ga

0

10 20 30 40 50 60 70 80 90 100

Pr Ат. доли, % Ga Ga

Рис3. Диаграмма состояния системы празеодим — галлий







ХАРАКТЕРИСТИЧЕСКИЕ СОЕДИНЕНИЯ

Лантаноиды, как и другие группы химических элементов, имеют так называемые характеристические соединения. Это чаще всего оксиды, сульфиды, нитриды, гидриды и другие бинарные соединения.

Оксиды лантаноидов — самые прочные оксиды. Об этом свидетельствуют величины энтальпий образования (табл. 6).

Табл. 6. Энтальпии образования оксидов лантаноидов



Соединения

La2O3

Nd2O3

Eu2O3

Gd2O3

Dy2O3

Er2O3

Yb2O3

Lu2O3



ДН° 298 КДж/моль

-1795

-1808

-1661

-1821

-1863

-1894

-1815

-1878























В свою очередь, среди оксидов лантаноидов наименьшей прочностью отличается оксид
европия (III). Оксиды лантаноидов — тугоплавкие и трудно растворимые в воде вещества, хотя интенсивно взаимодействуют с ней с выделением теплоты. Получают оксиды прокаливанием соответствующих гидроксидов, нитратов и карбонатов, а также непосредственным окислением металлов.

2Ме(ОН)3 > Ме2О3 + 3Н2О

4Ме(NO3)3? 2Me2O3 + 12NO2 + 3O2?

Mе2(СО3)3 > Ме2О3 + 3СО2 ?

4Ме + 3O2200-400°С > 2Ме2O3

2Ме(ОН)3t°C? Me2O3 + 3H2O

Цвет оксидов разнообразен — от белого до красного и голубого. В воде оксиды практически нерастворимы. Характер оксидов основный, хотя основность уменьшается от церия к лютецию. Это подтверждается возможностью у некоторых из этих элементов при сплавлении с оксидами щелочных металлов соединений типа МеLnO2:

Ме2О3 + Na2O > 2NaМеО2

Данная реакция свидетельствует о некоторой амфотерности оксидов лантаноидов.

Некоторые оксиды лантаноидов являются сильными восстановителями, например, оксид празеодима (III):

3Pr2O3 + KClO3? 6PrO2 + KCl

Pr+3 -e —? Pr+4 1 6

Cl+5 -6e--? Cl-1 6 1

?????? ???????????? ???? ????????????, ?? ????????? ?? ????????????? ???????????? ???????????:

Э2О3 + 3Н2О > 2Э(ОН)3

Нагревание металлических тербия и празеодима на воздухе ведёт к образованию смешанных оксидов Tb4O7 (Tb2O3*2TbO2) и Pr7O12 (2Pr2O3*3PrO2) тёмно — бурого цвета. Если на воздухе прокалить соль празеодима, то образуется промежуточный тёмно — серый продукт состава Pr6O11 с молекулярной массой 1021,5. Его можно рассматривать либо как Pr2O5*2Pr2O3, либо как Pr2O3*4PrO2.

Известны также и оксиды со степенью окисления +2. Например, оксид европия (EuO). Его можно получить из оксида европия (III) путём нагревания на воздухе с графитом:

Eu2O3 + C(графит)1700°C? 2EuO + CO ?

Моноксид европия — тугоплавкие кубические кристаллы — медленно разлагаются водой с выделением водорода, то есть является сильным восстановителем.

Известен также и оксид SmO. Но его свойства пока ещё мало изучены.

Сульфиды лантаноидов имеют разнообразный состав в зависимости от количества серы: Me2S3, Me3S4, MeS, Ме2S7, Me5S7, MеS2 и др. Большинство сульфидов переменного состава с преобладающим металлическим типом связи. Для многих лантаноидов характерны тугоплавкие моносульфиды, кристаллизующиеся в кубической структуре. В сульфидах МеS степень окисления лантаноидов +2 чисто формальная, так как при растворении в кислотах они выделяют сероводород и водород. Они отличаются чрезвычайно высокой термической стойкостью и даже способны заменить графит при плавлении тугоплавких металлов. Однако такие огнеупоры боятся кислорода. Получают сульфиды взаимодействием металлов с расплавленной серой:

xМе + yS? MexSy

В кубической структуре кристаллизуются и нитриды МеN. Чёрные или серо — чёрные нитриды МеN получены для всех лантаноидов. Такие соединения образуются при непосредственном взаимодействии металлов с азотом при высокой температуре или при прокаливании металлического порошка в атмосфере аммиака:

2Ме+ N21000°С? 2MeN

2Me + 2NH3? 2MeN + 3H2 ?

Все нитриды довольно тугоплавки и термически устойчивы. Однако они легко растворяются в кислотах и почти также легко гидролизуются:

MeN + 3HNO3? Me(NO3)3 + NH3 ?

MeN + 3H2O? Me(OH)3 + NH3 ?

Гидриды лантаноидов в основном отвечают формулам МеН2 и МеН3. Европий и иттербий образуют гидриды состава МеН2 — чёрные порошки, обладающие высокой химической проводимостью. Получают гидриды при непосредственном взаимодействии металлов с водородом:

Ме + х/2Н2 > МеНх

По своим физико-химическим свойствам они являются металлоподобными гидридами, и, следовательно, только формально похожи на солеобразные гидриды щёлочноземельных металлов. Остальные лантаноиды образуют гидриды МеН2 и МеН3. Последние также представляют собой металлоподобные вещества. Для лантана наиболее устойчивым является гидрид состава LaH2,5, который можно рассматривать как смесь двух гидридов состава LaH2 и LaH3. Гидриды МеН3 легко гидролизуются:

МеН3 + 3Н2О > Ме(ОН)3v + 3Н2?

Галогениды лантаноидов тугоплавки и труднолетучи. Фториды нераствоимы в воде, а

остальные галогениды растворимы не только в воде, но и в низших спиртах. В ряду лантаноидов имеет место слабое последовательное уменьшение теплот образования для трифторидов (табл. 7).

Табл. 7. Энтальпии образования фторидов лантаноидов.



Соединения

LaF3

NeF3

EuF3

GdF3

DyF3

ErF3

YbF3

LuF3



ДН° 298 КДж/моль

-1732

-1713

-1619

-1713

-1720

-1723

-1657

-1701























От фторидов к иодидам теплоты образования убывают для лантаноидов.

Из тетрагалогенидов известны только MeF4. CeF4 получают растворением СеО2 в плавиковой кислоте:

CeO2 + 4HF? CeF4 + 2H2O

Тетрафторид церия (IV) — бесцветный порошок, разлагающийся при 390°С. ТbF4 можно получить окислением трифторида фтором:

2TbF3 + F2? 2TbF4

Тетрафториды лантаноидов получают окислением соответствующих трифторидов тетрафторидом ксенона:

4MeF3 + XeF4? 4MeF4 + Xe

Жёлтые кристаллы TbF4 разлагаются при 180°С. Известен и бесцветный PrF4 c температурой разложения 90°С.

Известны также и галогениды лантаноидов со степенью окисления +2. Восстановлением трифторида европия водородом при 1000°С можно получить дифторид, который изоморфен с CaF2:

2EuF3 + H2? 2EuF2 + 2HF

Известны также дихлориды, дибромиды и дииодиды Sm, Eu, Tm, Yb. Их устойчивость в указанном ряду лантаноидов снижается от хлоридов к иодидам.

Интересны по химическим свойствам и карбиды лантаноидов. Наиболее характерны жёлтые карбиды состава МеС2. Некоторые лантаноиды могут также образовывать карбиды состава Ме3С. Все карбиды устойчивы к нагреванию, плавятся лишь при 2000°С. Интересно, что карбиды лантаноидов имеют такую же электрическую проводимость, как и чистые металлы. При гидролизе карбидов выделяются углеводороды, среди которых доминирует ацетилен. Получают карбиды обычным для бинарных соединений способом:

хМе + уС > МехСу

  Для лантаноидов при высокотемпературном сплавлении получены моно — и дисилициды: MeSi и MeSi2. Известны также силициды с меньшим содержанием кремния.

Удалось получить также и бориды лантаноидов состава: МеВ2, МеВ6, МеВ4, МеВ12. Все бориды металлоподобны, тугоплавки (2000 — 2500°С), обладают высокой электропроводимостью и твёрдостью. Для иттрия и лютеция получены дибориды MeВ2. Для всех лантаноидов получены наиболее устойчивые гексабориды MeВ6. Кроме того, для многих лантаноидов известны бориды MeВ4 и MeВ12, а также более богатые бором соединения.

  Известны также и фосфиды типа МеР. При сплавлении компонентов легко образуются изоморфные фосфидам арсениды, стибиды и висмутиды.

  Состав селенидов и теллуридов чаще всего отвечает формулам МеSe(Te) или Ме2Se(Te)3. Только при сплавлении церия с теллуром получается СеТе2. В отличие от сульфидов селениды устойчивы к воде и разлагаются только кислотами. При нагревании селенидов типа Ме2Se3 до 1200-1700°С они выделяют селен и переходят в селениды Ме3Se4 с металлическим блеском:

3Ме2Se3 > 2Ме3Se4 + Se

  Гидроксиды лантаноидов получают путём добавления к растворимым солям металлов сильной щёлочи:

МеCl3 + 3NaOH? Me(OH)3? + 3NaCl

  Гидроксиды лантаноидов по силе уступают лишь гидроксидам щёлочноземельных металлов. Латаноидное сжатие приводит к уменьшению ионности связи Э — ОН и уменьшению основности в ряду Се(ОН)3 — Lu(OH)3. В ряду лантаноидов основная сила гидроксидов постепенно уменьшается. Гидроксиды иттербия и лютеция проявляют слабую амфотерность.

  В кислых растворах гидроксид церия (IV) выступает как сильный окислитель:

2Ce(OH)4 + 8HCl? 2CeCl3 + Cl2? + 8H2O

2Cl- -2e-? Cl2 2 1

Ce(OH)4 + 4H+ +e-? Ce3+ + 4H2O 1 2

2Ce(OH)4 + 2Cl- + 8H+? 2Ce3+ + Cl2 + 8H2O

  Гидроксиды лантаноидов со степенью окисления +2 имеют ярко выраженный основный характер. По свойствам они близки к гидроксидам щелочноземельных металлов.

  Считают, что 4f-орбитали лантаноидов, входящих в состав соединения, подвергаются, хотя и неполному экранированию электронами, занимающими 5s- и 5p-подуровни энергии. По сравнению с одиночными атомами порядок подуровней энергии у лантаноидов иной: 4f2-14 5s2 5p6 5d0-1 6s2. Эффект экранирования сильно уменьшает перекрывание 6f-орбиталей с атомными орбиталями и связи Ме-L имеют преимущественно ионный характер, связанный с ион-дипольным электростатическим взаимодействием. Комплексообразовательная способность лантаноидов невелика. Это связано с неблагоприятной для орбитальной гибридизации электронной структурой, так как достраивающиеся 4f — оболочки расположены очень глубоко. Наибольшую способность к комплексообразованию проявляет церий, поскольку катион Се4+ обладает большим значением ионного потенциала. При этом высшая степень окисления более стабильна. Для церия с такой степенью известны довольно устойчивые комплексы: [Ce(C2O4)3]2- и [Ce(NO3)6]2-. Из галогенидных комплексов наиболее устойчивы фторидные: [MeF6]2-(Ce и Pr), [MeF7]2-(Ce, Pr, Tb), а для диспрозия известен только Cs3[DyF7]. Координационное число в комплексах лантаноидов может изменяться в интервале 6 -12. В бромидных и хлоридных комплексах координационное число равно 6 ([PrCl6]3-, [NdBr6]3-, [DyBr6]3-); в сульфатных, тиоцианатных, оксалатных и хроматных комплексах — 8

([Sm{CrO4}2]-, [Pr{CrO4}2]-); в иодидных и броматных — 9 ([NdI9]6-, [Gd{BrO3}9]6-, [PrI9]6-). Комплексы лантаноидов с координационным числом 10 с монодентантными лигандами неизвестны.

Синтезировано небольшое число комплексов с координационным числом 11, например, биядерный комплекс. Больше известны комплексы с координационным числом 12: Ме[Ce(NO3)6], Ме — Mg, Co, Mn. Высокие переменные координационные числа в комплексах лантаноидов вызваны ионным характером связи.

  В водной среде молекулы воды и другие кислородсодержащие лиганды образуют связи с лантаноидами через атом кислорода. Ln — O.

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.