Вступ 2 Розділ 1. Електрофізичні властивості напівпровідників 1.1 Власні й домішкові напівпровідники 2. Енергетичні діаграми напівпровідників 1.3 Силові діоди. 11 Розділ 2. Загальні відомості про напівпровідникові розмикачі струму. 13 Розділ 3. Основні типи напівпровідникових розмикачів струму. 1. Дрейфовий діод з різким відновленням. 18 3.2.
SOS-діоди. 3. Розмикачі струму на основі карбіду кремнію. 30 Розділ 4. Промислові генератори імпульсів на основі ДДРВ й SOS-діодів. 32 Висновок. 35 Список використаної літератури. 41 Вступ Для проведення досліджень в експериментальній фізиці широко використовують імпульсні джерела живлення для потужніх лазерів, прискорювачів заряджених частинок, рентгенівських апаратів.
Але для створення таких імпульсних джерел живлення потрібно мати потужні перемикаючі пристрої, які б перемикали, із достатньо високою швидкістю джерела живлення із режиму накопичення енергії в режими розряду та навпаки. Такі перемикаючі пристрої повинні витримувати напруги порядку 103 - 106 В та струми густиною 102 - 105 А/см2 та мати можливість генерувати
імпульси із частотою 104 Гц і вище. Таким параметрам відповідають певні типи напівпровідникових діодів. У роботі розглянуто напівпровідникові діодні перемикачі струму для потужньої наносекундної імпульсної техніки. Особливу увагу приділено дрейфовим діодам із різким відновленням ДДРВ та SOS – діодам. Перший тип діодів був запропонований і розроблений у Фізико-технічному інституті ім. А.
Ф. Іоффе РАН, другий в Інституті електрофізики УрВ РАН. За допомогою ДДРВ вдається перемикати потужність до сотень мегаватів за наносекунду при щільності струму порядку 102 А/см2. SOS – діоди дозволяють перемикати потужності в кілька гігават за такі ж короткі часи при щільності струму більше 103 А/см2. Ще одною позитивною рисою таких напівпровідникових пристроїв є їх великий строк роботи. Розробка генераторів потужних наносекундних
імпульсів та напівпровідникових перемикачів струму сприятиме розвитку робіт з релятивістської надвисокочастотної електроніки, широкополосної радіолокації, систем живлення лазерів, прискорювачів електронів. Розділ 1. Електрофізичні властивості напівпровідників Напівпровідниками є речовини, що займають по величині питомої провідності проміжне положення між провідниками й діелектриками [1,2,3]. Ці речовини володіють як властивостями провідника, так
і властивостями діелектрика. Разом з тим вони володіють рядом специфічних властивостей, що різко відрізняють їх від провідників і діелектриків, основним з яких є сильна залежність питомої провідності від впливу зовнішніх факторів (температури, світла, електричного поля і т. п.). До напівпровідників відносяться елементи четвертої групи періодичної таблиці Д. І. Менделєєва, а також хімічні сполуки елементів третьої й п'ятої груп типу
AIII BV (GaAs, InSb) і другої й шостої груп типу AII B VI (Cd, B, CdFe). Провідне місце серед напівпровідникових матеріалів, які використовуються у напівпровідниковій електроніці, займають кремній, германій й арсенід галію GaAs. Хоча у наш час у наукових установах ведеться пошук нових напівпровідникових матеріалів, розробляються органічні напівпровідники. 1.1 Власні й домішкові напівпровідники
Власними напівпровідниками або напівпровідниками типу i (від англійського intrinsic - власний) називаються чисті напівпровідники, що не містять домішок. Домішковими напівпровідникам називаються напівпровідники, що містять домішки, валентність яких відрізняється від валентності основних атомів. Вони підрозділяються на електронні й діркові. Власні напівпровідники мають кристалічну структуру, що характеризується періодичним розташуванням атомів у вузлах просторової кристалічної решітки.
У такій решітці кожен атом взаємно пов'язаний із чотирма сусідніми атомами ковалентними зв'язками (мал. 1.1), у результаті яких відбувається усуспільнення валентних електронів й утворення стійких електронних оболонок, що складаються з восьми електронів. При температурі абсолютного нуля (T=0°K) всі валентні електрони перебувають у ковалентних зв'язках, отже, вільні носії заряду відсутні, і напівпровідник подібний до діелектрика[2,3]. При підвищенні температури або при опроміненні напівпровідника
світловою енергією, рентгенівським випромінюванням валентний електрон може вийти з ковалентного зв'язку й стати вільним носієм електричного заряду. При цьому ковалентний зв'язок стає дефектним, у ньому утвориться вільне (вакантне) місце, що може зайняти один з валентних електронів сусіднього зв'язку, у результаті чого вакантне місце переміститься до іншої пари атомів. Переміщення вакантного місця усередині кристалічної решітки можна розглядати як переміщення деякого
фіктивного (віртуального) позитивного заряду, величина якого дорівнює заряду електрона. Такий позитивний заряд прийнято називати діркою. Процес виникнення вільних електронів і дірок, обумовлений розривом ковалентних зв'язків, називається тепловою генерацією носіїв заряду. Його характеризують швидкістю генерації G, що визначає кількість пар носіїв заряду, що виникають в одиницю часу в одиниці об'єму напівпровідника. Швидкість генерації тим більше, чим вище температура
й чим менша енергія, яка затрачується на розрив ковалентних зв'язків. Утворені в результаті генерації електрони й дірки, перебуваючи в стані хаотичного теплового руху, через деякий час, середнє значення якого називається часом життя носіїв заряду, зустрічаються один з одним, у результаті чого відбувається відновлення ковалентних зв'язків. Цей процес називається рекомбінацією носіїв заряду й характеризується швидкістю рекомбінації
R, що визначає кількість пар носіїв заряду, що зникають в одиницю часу в одиниці об'єму. Добуток швидкості генерації на час життя носіїв заряду визначає їхню концентрацію, тобто кількість електронів і дірок в одиниці об'єму. При незмінній температурі генераційно – рекомбінаційні процеси перебувають у динамічній рівновазі, тобто в одиницю часу народжується й зникає однакова кількість носіїв заряду (R=G).
Ця умова називається законом рівноваги мас. Стан напівпровідника, коли R=G, називається рівноважним; у цьому стані у власному напівпровіднику встановлюються рівноважні концентрації електронів і дірок, які позначають ni й pi . Оскільки електрони й дірки генеруються парами, то виконується умова: ni=pi . При цьому напівпровідник залишається електрично нейтральним, тому що сумарний негативний заряд електронів компенсується сумарним позитивним зарядом дірок.
Ця умова називається законом нейтральності заряду. Для знаходження кон 1.3 Силові діоди. Діоди, які використовуються в електричних пристроях для перетворення змінного струму в струм однієї полярності називаються випрямними. На вольтамперній характеристиці (ВАХ) Значення прямого й зворотного струмів відрізняються на кілька порядків, а пряме спадання напруги не перевищує одиниць вольтів у порівнянні зі зворотною напругою,
що може становити сотні й більше вольтів. Тому діоди мають однобічну провідність, що дозволяє використати їх як випрямні елементи. З малюнка також можна зробити висновок, що з ростом температури зворотний струм зростає. У більшості діодів цей струм при температурі 125ºС може збільшиться на 2-3 порядки в порівнянні зі струмом при 25ºС Зі збільшенням зворотної напруги зворотний струм також росте, але повільніше, ніж з підвищенням температури. Лише при подачі зворотної напруги, більше нормованої,
відбувається різке його збільшення, що може привести до пробою p – n-переходу. Пряма напруга при малих прямих струмах, коли переважає спад напруги на переході діода, з ростом температури зменшується. При більших струмах, коли переважає спад на базі діода, залежність прямої напруги від температури стає позитивною. Точка, у якій відсутня залежність прямого спаду напруги від температури або ця напруга міняє знак, називається точкою інверсії. У більшості діодів малої й середньої потужності допустимий
прямий струм, як правило, не перевищує точки інверсії, а в силових потужних діодів допустимий струм може бути вище цієї точки. Розділ 2. Загальні відомості про напівпровідникові розмикачі струму. Нано- і субнаносекундні електричні імпульси піковою потужністю від мегават до терават використовуються в цілому ряді областей найсучаснішої техніки, таких як релятивістська надвисокочастотна електроніка, широкополосна радіолокація, дослідження електромагнітної сумісності складних систем, підземна радіолокація,
системи живлення лазерів і прискорювачів і т.п. Потужні короткі імпульси використовуються також й у цілому ряді напрямків сучасної експериментальної фізики, наприклад, в області керованого термоядерного синтезу й в інших широкомасштабних фізичних експериментах. Для генерування потужних наносекундных імпульсів є два підходи, що розрізняються за способом нагромадження енергії – нагромадження в ємнісних накопичувачах (малоіндуктивні конденсатори й формуючі лінії) з наступною
передачею енергії в навантаження через замикаючий ключ і нагромадження в магнітному полі індуктивного контуру зі струмом; в останньому випадку для передачі енергії в навантаження необхідно здійснити наносекундне розмикання великого струму. Другий метод представляє дуже великий інтерес для потужної імпульсної техніки, оскільки густина накопиченої енергії в
індуктивних накопичувачах на півтора – два порядки більша, ніж у ємнісних, істотно менша вартість накопичувачів й, що теж істотно, імпульсна напруга на навантаженні при обриві струму може бути значно вища, ніж напруга на попередніх рівнях формування імпульсу. Однак швидкий обрив більших струмів, коли потрібно розмикати струми в десятки килоампер при імпульсній напрузі мегавольтного рівня,
є значно більше складнішим, чим швидке замикання. На стадії лабораторних експериментів ця проблема звичайно вирішується за допомогою плазмових розмикачів з нано- і мікросекундним накачуванням, інжекційних тиратронів. Однак для реального застосування, особливо в області промислових технологій, така елементна база не може бути використана - в основному через малий термін служби розмикачів, нестабільності спрацьовування
й неможливості їхнього використання в періодично. Зі звичайних приладів, що випускаються промисловістю, розмикання струму за час порядку 10 нс може бути здійснене в спеціальних типах польових транзисторів. Такий транзистор являє собою, по суті, силову інтегральну схему із сотень тисяч паралельно працюючих мікротранзисторів з розміром 10-15 мкм. Робоча напруга приладу кілька сотень вольт, струм десятки ампер,
і для створення імпульсу потужністю, скажемо, 50 МВт розмикач повинен складатися з 104 транзисторів. Через очевидну складність і високу вартість таких систем питання про їхнє створення навіть не обговорювалося.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |