Реферат по предмету "Философия"


Курс лекций по Философии 4

--PAGE_BREAK--
Лекция № 12 (27.02.08).

Теоретические модели, их основные характеристики и роль в познании действительности.

В структуре научного знания различают 2 главных уровня: теоретический и эмпирический.

По мнению Степина, в теоретическом уровне можно выделить 2 подуровня: 1) частные теоретические модели и законы; 2) развитые (фундаментальные, обобщенные) теоретические знания.

На каждом из этих уровней есть свои законы и модели. Теоретическая модель – некое теоретическое и схематическое представление о реальности (с помощью идеализированных абстракций, объектов).

Из фундаментальных знаний дедуктивным способом можно вывести частные модели. Например, ньютоновская механика – обобщающая теоретическая модель (3 закона Ньютона: 1) существуют системы отсчета (называемые инерциональными), в которых замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения (постулирует инертность тел); 2) F = ma; 3) F = — F). Развитая теория формулируется не путем схематического опыта, а путем обобщения частных моделей, при этом не повторяя конкретные частные теории, а обобщая их. Частная модель – это схематизация человеческого опыта для описания определенной части реальности. Примеры развитых частных теорий – механика Ньютона (минимум идеализированных объектов, использованных для построения этой системы), маркситская теория формаций.

Законы всегда формулируются относительно теоретических моделей на основании каких-либо идеализированных объектов. Например, социология как наука строится на основе транспортации идеализированных объектов – общества (в то время как общество – это совокупность конкретных людей), опираясь при этом на соответствующий эмпирический базис. В настоящее время большинство фундаментальных теоретических моделей конструируется не путем схематизации конкретного опыта, а на основе абстрактных теоретических объектов.

Генерация нового теоретического знания осуществляется в результате познавательного цикла, который заключается в движении исследовательской мысли от оснований науки (научной картины мира, философских оснований науки) к гипотетическим вариантам теоретических схем (планетарная модель атома возникла из специальной научной картины мира – астрологической). Эти схемы затем адаптируются к тому эмпирическому материалу, на объяснение которого они претендуют. Теоретические схемы (модели) в процессе такой адаптации перестраиваются, насыщаются новым содержанием и затем вновь сопоставляются с картиной мира, оказывая на нее активное обратное воздействие. Развитие научных понятий и представлений осуществляется благодаря многократному повторению описанного цикла.

Характеристика теоретических моделей:

1) Строятся из абстрактных (идеализированных) объектов.

2) Они замещают наиболее общие связи и представления реальности.

3) Позволяют формулировать теоретические законы.

4) На ранних стадиях развития науки возникают путем непосредственной схематизации опыта. В развитой науке – как гипотетические схемы.

5) Допускают перенос абстрактных объектов из других областей знания.

34. Обоснование закона как главная цель теоретического исследования.

Закон есть всеобщая, существенная, устойчивая, необходимая, повторяющаяся связь сторон какого-либо явления.

При ответе далее следует вспомнить какой-либо закон и на его примере все определение показать. Например, закон всемирного тяготения: G = m1m2 / r². Можно привести какие-либо простые экономические законы.

Теоретический закон относится только к идеализированным объектам, а не к эмпирической реальности.

Законы могут меняться, они меняются в зависимости от изменения самого объекта (общество: законы меняются на разных стадиях развития общества – первобытное и т.д.).

Все законы тоже эволюционируют, изменяются. Например, в сегодняшней физической реальности существует 4 вида взаимодействия: слабое, сильное, электромагнитное, гравитационное. По сегодняшним научным представлениям сразу после возникновения Вселенной эти взаимодействия не работали, закон всемирного тяготения также не работал. Можно вспомнить также теорию относительности Эйнштейна.

По уровням организации материи различают законы: физические, химические, биологические, социальные. Например, закон всемирного тяготения является физическим законом.

По глубине (фундаментальности) различают эмпирические и теоретические законы.

По механизму детерминации различают законы: динамические и статистические. Динамическая закономерность – это такая форма необходимой причинной связи, при которой отношение между причиной и следствием однозначно. Статистическая закономерность представляет собой диалектическое единство необходимых и случайных признаков. В этом случае изначально последующее состояние системы будет оцениваться не однозначно, а с определенной вероятностью. Характерной особенностью статистических законов является то, что они основываются на случайности, обладающей устойчивостью. Это значит, что они применяются только к большим совокупностям явлений, каждое из которых носит случайный характер.

Обоснование закона включает в себя:

1) сведение неизвестного к известному;

2) дедуцирование из более общих законов;

3) эмпирическую проверку.

Характеристика развитой (зрелой, обобщающей, фундаментальной) теории.

Особенности формирования (по Степину):

1) Развитые теории большой степени общности создаются коллективами исследователей (хотя многие известные теории создавались единолично: Ньютон, Максвелл, Эйнштейн, но в последнее время это стало скорее исключением, чем правилом). Квантовая механика (Н. Бор, Эйнштейн, Кварк, Шредингер и т.д.), теория Большого взрыва, синтетическая теория эволюции – синтез классического дарвинизма и генетики создавались коллективными усилиями научного сообщества. Современные развитые теории в одиночку создать практически невозможно – слишком сложны объекты.

2) Фундаментальные развитые теории: все чаще создаются на базе достаточно развитого слоя первичных теоретических схем и законов, характеризующих отдельные аспекты новой области явления. Механика Ньютона появилась после появления частных теоретических схем и законов (Галилей и др.). Сегодня создание развитой теории таким образом практически невозможно в связи со все большим движением естествознания вглубь материи (вторжение в мегамир, микромир), в таких случаях получение фундаментального знания путем обобщения частных теоретических схем и законов невозможно. Социальные науки сразу пошли таким путем: вначале формируется какая-либо теория, а затем выводятся частные формулировки и обобщения. В дальнейшем уже социология пошла по пути создания и обобщения эмпирической базы.

3) Имеется в виду только естествознание. Применение методов математической гипотезы заключается в том, что при выдвижении теории оттачиваются не эмпирические обобщения, а используются методы математической формализации. Т.е. в данном случае объектом исследования выступает не эмпирическая реальность, а математическая (формула Кулона – q1q2 / r² построена по аналогии с формулой Ньютона, успешно применена к определенной области).

35. Проблемные ситуации в науке, их основные признаки. Соотношение проблемы, гипотезы, теории (по Кохановскому).

Проблема – это научная задача, способы решения которой неизвестны, или известны не полностью. Можно при ответе привести какие-нибудь примеры: проблема построения сколь-нибудь приемлемой модели атома натыкалось на противоречия электромагнетизма, в результате это привело к появлению квантовой теории. Парадокс классической физики – гравитационный парадокс: почему вся Вселенная не сжимается под действием гравитации в одну большую массу? Фотометрический парадокс: Вселенная бесконечно большая, звезд бесконечно много, все они сияют – почему ночью темно? Свет может рассеиваться только по каким-то объектам.

Эти парадоксы без проблем снимаются космологией Большого взрыва. Вселенная не бесконечная, ее масса тоже не бесконечна; мешает энергия, возникшая при Большом взрыве, она расширяет Вселенную – так считалось во второй половине XX в. В XXI в. выяснилось, что расширение Вселенной ускоряется – перед наукой возникает очередная проблема. При толковании этого момента пытаются ссылаться на «темную» энергию, которая поглощает энергию, правда конкретного представления о ней нет.

Научные проблемы рано или поздно решаются с помощью гипотез – предположительное знание, которое может быть либо подтверждено, либо опровергнуто.

1) Предположение должно быть непротиворечиво.

2) Предположение должно быть принципиально верифицируемо.

3) Непротиворечивость ранее сформулированным теориям (?).

4) Довольно широкое проявление.

5) Широта круга явлений, которые объясняют гипотезу. Гипотеза тем более вероятна, чем больше явлений может быть объяснено с ее помощью. Гипотеза тем более вероятна, чем больше явлений она помогает предвидеть.

Термин «проблемная ситуация» следует использовать применительно к смене научной картины мира и т.п.

Нужно быть готовым к вопросу на экзамене о проблемах в личном научном исследовании (диссертации).

Проблема в любом случае должна быть, решения может и не быть.

Лекция № 13 (05.03.08).

36. Преемственность в развитии научных знаний, ее сущность и объективная основа. Традиции и новаторство. Редукционизм в научном познании.

Закономерность может быть выражена в виде диалектически противоречивого единства традиций, преемственности и новаторства в развитии науки.

Куматоид (от греч. кума – волны) – общий механизм взаимодействия – напоминает волнообразную концепцию – волнообразный процесс, в котором изменения происходят, но сама форма взаимодействия остается неизменной. Это характерно для науки – проявление традиционализма в научном познании (например, постановка проблемы в науке – от Аристотеля). Любое научное знание – истина относительная, но, по диалектическому принципу, если есть истина относительная (фрагменты того, что в будущем в принципе меняться существенно не будет – атомы Демокрита), то должна быть и истина абсолютная. Традиции могут быть выражены как вербализованные (в виде каких либо символов – тексты, слова) и невербализованные (не могут как-либо быть выражены общепринятыми приемами).

Научная школа – союз единомышленников, им недостаточно чтения научных текстов, необходимо также и личностное взаимодействие сторонников между собой. Традиции можно представить как некий образец действия, однако это не совсем так. Большая часть научного знания – образцы – результаты действия, а вот как им следовать – одна из сложных задач в научном познании. В качестве примера, можно рассмотреть классификацию Нет однозначного рецепта, как построить удачную эвристичную классификацию. Традиции можно разделить на специально-научные и общенаучные.

Вторая сторона противоречия, помимо традиций, – новации. Предлагается все новации разделить на незнание и неведение. Незнание – процесс преодоления, заключающийся в расширении существующего знания, речь при этом идет о такой информации, о которой можно что-то спросить (например, Демокрит знал об атомах и задал вопрос о размере атома – это незнание) – оно не изменит конкретную парадигму.

Неведение – система знаний, о которой ничего не известно, нечего спросить, то, что находится за пределами конкретной парадигмы (например, мы знаем о трехмерном пространстве, в котором живем, знаем, что пространств может быть больше, при этом их количество может составлять нечетное число, но что там, в этих пространствах, мы не знаем – это неведение). Ученые узнают о том, что находится в области неведения не путем постановки конкретной цели, а случайно, работая в рамках нормальной науки. То, что вдруг вытаскивается из области неведения – это и есть новация, последующее развитие науки в этом направлении приводит к появлению новых знаний и в конце концов – к смене парадигмы.

Преодоления неведения осуществляется в рамках научных традиций. Механизм преодоления неведения:

1. «Пришелец» — в какую-либо область приходит человек из другой области знания. Он во первых не обременен традициями, авторитетами, а во-вторых – приносит из другой области какие-то новые методы. Альфред Вегерн (?) – теория о первоначальном единстве материков и их последующем расплывании. Он сначала был астрологом, метерологом, а затем занялся геологией. Полагают, что если бы он был геологом над ним бы довлели определенные представления того времени и он бы не добился таких результатов.

2. «Побочный результат» — когда главные цели, направлены на одно, а открывают совсем другое (1792 г. – открытие Ивановским вирусов).

3. «Движение с пересадками». Непреднамеренные результаты, полученные в одной традиции, и совершенно бесполезные, но могут оказаться полезными в другой традиции (XX в. – когда в руки археологов попали результаты аэрофотосъемок) – непреднамеренные новации, цель здесь сформулирована быть не может.

Можно вспомнить принцип соответствия (см. предыдущую лекцию), сформулированный Бором (1913). Около 95 % этот принцип покрывает.

Редукционизм (редукция – сведение) в научном познании.

Редукционизм – это сведение законов вышележащих структурных уровней организации материи к законам на нижележащих структурных уровнях организации материи. На каждом уровне свои законы.

Суть редукционизма сводится к положению о том, что законы на всех уровнях одинаковы, если они действуют на одном уровне, то они действуют на всех других уровнях. Пример редукционизма – абсолютизация классической механики в XVII в.

Вместе с редукционизмом существует также и антиредукционизм.

37. Единство количественных и качественных изменений в развитии науки.

Существует следующие взаимосвязанные категории: количество – взаимоотношение качественно однородных предметов; качество – совокупность свойств какого-либо объекта, отличного от всех остальных; мера – единство количества и качества – это те границы, внутри которых предмет остается самим собой, основные его качества сохраняются, нарушение границ меры – это скачок (может быть растянуто). Взаимосвязь этих категорий образует устойчивое взаимоотношение, которое в диалектике называется закономерностью. Например, нормальная наука – период накопления количественных изменений, рано или поздно эти изменения превысят допустимые рамки, в результате происходит скачок (научная революция), сопровождающийся сменой качества (парадигмы). Количество и качество – это диалектическое противоречие (одновременное отношение взаимополагания и взаимоотрицания).

Без повседневной рутинной научной работы (накопления фактов) не было бы гениев науки.

Взаимоотношение естествознания / гуманитарных дисциплин.

Естествознание добилось выдающихся успехов в XVII в. с математизацией науки – выражение количественных изменений. В естествознании математизация – неотъемленный признак науки, в гуманитарных науках математики очень мало. При объяснении такого положения вещей встречаются следующие интерпретации:

1) гуманитарная отрасль еще очень молодая и не дошла до таких высот;

2) гуманитарное знание по природе другое, объект гуманитарного познания – человека – нельзя свести к количественным математическим зависимостям.

Какой ответ правильный – науке неизвестно.

Можно обратиться к проблемам применения логико-математического аппарата в личном научном исследовании.

38. Взаимодействие наук как обмен знаниями и методами исследования.

Все в мире взаимосвязано (системно). Любой элемент любой системы взаимосвязан с другими элементами, поэтому в науке также все знания также должны быть систематизированы, взаимосвязаны. Все разделения в науке абстрактны, нет в реальности отдельного физического, химического мира и т.д., идеального и материального – все едино. Поэтому и в науке все должно быть взаимосвязано. Правда, здесь бывают не совсем адекватные проявления – редукционизм.

Эволюция – необратимое количественное изменение, приводящее к качественным изменениям. В Средневековье эти изменения в обществе трудно было заметить. Значительные изменения произошли в эпоху промышленных революций (XVII– XVIII вв.). Тогда и стали заметны изменения в обществе, научно-технический прогресс, отсюда появились идеи эволюции животного, растительного мира, и как следствие галактики, Вселенной. Решающим прорывом стала концепция Большого взрыва.

Принцип фундаментальности гласит, что основные законы на высших уровнях познания должны найти свое обоснование на низших уровнях познания. Классический пример: периодическая система элементов Д.И.Менделеева. Химические законы в соответствии с принципом фундаментальности нашли свое обоснование на более низком – физическом уровне. Отсюда предположение, что законы социологии должны найти свое фундаментальное обоснование на биологическом уровне – это попыталась объяснить новая дисциплина – социобиология.

Системный метод – общенаучный метод, применяющийся на любом уровне научного познания (можно сослаться на учебник Кохановского).

На стыке любых уровней организации материи могут быть такие явления, которые нельзя объяснить исключительно, например, либо с позиции физики, либо с позиции химии. Переплетение направлено на решение какой-либо проблемы.

Стержнизация: единый принцип системы пронизывает все объекты, уровни.

Лекция № 14 (12.03.08).

39. Дифференциация и интеграция наук как закономерность их развития. Ускорение развития наук.

По мере освоения мира возникали попытки его немифологического понимания. По мере развития самой философии (которая на первых порах доминировала) происходило выделение ее онтологии, гносеологии и т.д. Далее происходит разделение знания на философское и научное. Выделяются крупные научные дисциплины: физика, биология и т.д. В XIXв развивается термодинамика, электромагнетизм; возникают гуманитарные дисциплины (вторая половина XIX в.) – социология, психология и т.д. На любом этапе можно увидеть дифференциацию наук – по аналогии с процессом разделения труда. Чем более обширно научное знание, тем большая дифференциация характерна для него. В XX в. этот процесс продолжился. Например, в социологии произошло подразделение на микросоциологию, социологию труда; психология стала подразделяться на социальную психологию, психологию труда, психологию делового общения и т.д. Закономерность такой дифференциации очевидна, однако, диалектически сущность какого-либо явления проявляется в его противоположности: если есть дифференциация, то должна быть и интеграция. Все разделение науки искусственное, абстрактное. Например, абстрактно, для анализа можно в человеке выделить физическое, химическое, биологическое, генетическое, социальное. Однако, в реальности такого быть не может. Аналогично и в других областях: может существовать класс проблем, которые нельзя решить только в рамках какой-либо конкретной дисциплины, например, физики и химии. Это и есть проявление интеграции научного знания.

Существуют также комплексные проблемы, которые заведомо нельзя решить с помощью конкретных дисциплин, требуются усилия представителей разных дисциплин (например, проблема возникновения жизни на Земле.

В естествознании присутствует также концепция великого объединения. Например, существует 4 типа взаимодействия: слабое, сильное, гравитационное и электромагнитное взаимодействие. Физики считают, что должен быть некий универсальный тип взаимодействия. Полагают, что именно он существовал после Большого взрыва, а затем, по мере остывания, расширения Вселенной, он распался на 4 типа взаимодействия).

В XXIв. считается характерной ускорение развития и расширение научного знания, интегративная тенденция научного знания.

Ускорение развития наук.

Этот процесс очевидный. Его можно проследить по научным революциям: первая – IV в. до н.э., вторая – XVII в., третья – рубеж XIX– XX вв.Сегодня уже имеются опасения по поводу четвертой научной революции. Таким образом, налицо ускорение развития научного знания – следствие ускоренного развития общества. Это связано с механизмом социального наследия – информация от одного поколения к другому передается в знаково-символической форме. Одно поколение накапливает знания и передает их другому, следующее поколение наращивает эти знания и передает их дальше, следовательно, каждое новое поколение в этом плане должно быть умнее предыдущего; такого нет в животном и растительном мире – путь их эволюции совсем другой (они приспосабливаются к окружающей среде). У нас принцип эволюции другой, то, что когда-то было найдено получает дальнейшее развитие в следующих поколениях. Таким образом, для общества характерно ускоренное развитие, поэтому ускоряется развитие науки – следствие ускоренного развития общества.

40. Углубление и расширение процессов математизации и компьютеризации в современной науке.

Математика – наука о количественных отношениях и пространственных формах в реальном мире. Математика развивалась на протяжении всего существования человечества. Первым ученым считается Фалес, при ответе можно вспомнить про Пифагора (философ и математик, по его мнению, «все есть число» — выражение сути мироздания), Платоновскую академию и т.д. В XVII в. вместе с открытиями Галилея, Кеплера, Ньютона происходит становление экспериментального математического естествознания. Формируется утверждение, что знание тем более истинно, научно чем больше в нем математики.

Следует помнить, что единство количества и качества – диалектическое единство противоположностей – не может быть одного без другого.

Предпосылки процесса математизации:

1) Математизировано должно быть любое научное знание.

2) Развитость (зрелость) научного знания. Проблемы должны быть сформулированы четко, однозначно, чтобы быть математизированными.

В современных условиях процесс математизации развивается ускоренными темпами. Научное знание добралось до таких объектов, аналогов которым среди предметов нашего мира просто нет. Т.е. научное знание все больше уходит от наглядности. Наука переходит к оперированию абстрактными моделями (например, устройство ядра атома, квантовая физика), оперировать абстрактными моделями может только математик. Поэтому математика в какой-то степени необходимая мера, так как для описания таких явлений недостаточно языка макромира. Язык математики призван восполнить потерю наглядности, очевидности.

Математика дает:

1) точность описания;

2) универсальный язык описания;

3) математизация позволяет в ряде случаев предсказывать ранее неизвестные явления в научном познании;

4) математика активирует эвристику, создание новых научных теорий, дает импульсы созданию новых объяснительных схем; сегодня считается, что чем более математизирована теория, тем легче ее проверить;

5) использование математического аппарата дает преимущество при обосновании каких-либо положений в процессе решения разных проблем.

Поэтому, в этом плане, естествознание имеет преимущество перед социально-гуманитарными дисциплинами, если это можно так назвать.

Один из основных методов математизации: 1) математическое моделирование – отображение изучаемой реальности посредством множества математических объектов;

2) формализация – процесс кодирования объектов изучаемой реальности неким искусственным языком и объяснение основных законов этим языком;

3) аксиоматизация (основоположник аксиом – Евклид – автор первой аксиоматической системы в математизации научного знания);

4) метод математическое гипотезы – подбор нового конкретного содержания к готовым математическим формулам (формула Кулона, выведенная на основе закона всемирного тяготения); сегодня роль математической гипотезы возрастает в связи с недостатком эмпирических материалов (отсутствие аналогов и т.д.).

Серьезная проблема – пределы в математизации и формализации научного знания. Была в начале XX в. поставлена задача формализации самого математического знания. В 30-е гг. выяснилось, что это невозможно. В начале 30-х годов К. Геделем была сформулирована и доказана теорема «О неполноте». В соответствии с этой теоремой любая достаточно содержательная система знаний обязательно содержит в себе заведомо невыводимые, недоказуемые положения (по аналогии с геометрией Евклида – геометрией Лобачевского). Поэтому формализовать научное знание до конца невозможно.

Другая проблема – невозможность математизации социально-гуманитарного познания. Математика родом из материального мира, а знание гуманитарное – духовное, а духовный мир имеет свои особенности, как их формализовать – пока неизвестно и, возможно, это никогда не удастся. Возможно, духовный мир имеет совсем другую природу. Сознание формализовать никому не удавалось и вопрос его формализации – спорный.
    продолжение
--PAGE_BREAK--
41. Теоретизация и диалектизация науки. Свобода критики, недопустимость монополизма и догматизма.

Говорить следует о нарастании степени абстрактности научного знания, вспомнить про различия теоретического и эмпирического знания.

Первый этап: сбор эмпирических фактов, их обобщение, классификация, систематизация (выявление закономерностей), переход ко второму – теоретическому уровню.

Современная наука имеет дело с объектами, экспериментировать с которыми невозможно, выводы делаются по косвенным признакам.

Теоретизация – возрастание роли теоретического знания по сравнению с эмпирическим.

Диалектизация науки: широкое внедрение во все сферы познания идеи развития. Развитие – это необратимое качественное изменение. Диалектика – это философское учение о развитии. Первым диалектику в философию ввел Гераклит – учение о борьбе противоположностей, развили диалектику Платон, Сократ, Зенон Элейский, Гегель, Маркс. Философия толкует о том, что мир развивается. В науке идея о развитии впервые нашла отражение в учении об эволюции живой природы Дарвина (вторая половина XIXв.). В космологию идея о развитии пришла в XX в. (концепция Большого взрыва и т.д.). Научное сообщество шло к этому так долго потому, что такие эмпирические факты долгое время не могли быть наблюдаемы, лишь в XXв. такие признаки появились, что способствовало дальнейшей диалектизации науки. Идеи эволюции (развития) можно найти во многих даже элементарных вещах (таблица Менделеева построена по возрастанию заряда ядра атома – порядок появления во Вселенной на разных этапах эволюции химических элементов). Раньше наука такими вещами не занималась.

Принципы диалектики:

1) Принцип всеобщности развития. Развитие также всеобщно, как и движение.

2) Принцип всеобщей взаимосвязи всех веществ (общая теория систем) – Вселенная устроена системно-структурировано. При системном подходе в этом мире нет невзаимосвязанных вещей. Любой элемент любой системы связан с другими элементами любой другой системы.

3) Принцип борьбы противоположностей. Источником всякого развития является становление и разрешение противоречий (принцип дополнительности Н. Бора).

4) Принцип диалектической взаимосвязи количественных и качественных изменений.

5) Принцип диалектического отрицания.

6) Принцип соответствия (Н. Бор: всякая новая научная теория не отвергает достижения предыдущей и включает ее положения в частном порядке).

Многое, к чему философы приходят умозрительно, получает подтверждение в научном познании, т.е. философия выполняет роль своего рода разведчика.

Диалектизация науки в принципе может считаться закономерностью эволюции научного знания.

Свобода критики, недопустимость монополизации (см. также схоластическое теоретизирование)..

Одна из основных особенностей научного познания – в его неодолимом стремлении к новациям. Наука жива, когда есть новации. Поэтому свобода в науке – это позитивная составляющая научного познания. Когда нет свободы, новации, наука начинает пробуксовывать. Молодые люди не обременены высокими регалиями, титулами, им трудно конкурировать с научными авторитетами – в этом особенность (диалектичность) развития научного знания. Сама критика в научном познании обязательна. Имеет место и человеческий фактор, особенность человеческой натуры, психологический аспект: люди любят новое, если оно не затрагивает их личные интересы.

Особенности научного познания: мы естественным порядком стремились к ясности, точности, нам нужно точно знать что правильно, что неправильно. Всякая новация вносит некий элемент неопределенности (например, переворот в представлениях, внесенный Эйнштейном). Естественным образом возникает сопротивление. Поэтому истоки догматизма носят не только субъективный характер, но и вытекают из самих особенностей человеческой природы.
Тема
VI. Методы научного исследования.

42. Понятие метода научного исследования и методологии. Классификация методов.

Метод – это система правил, способов, приемов познавательной и практической исследовательской деятельности, исходящих из особенностей изучаемого объекта.

Методология:

1) это система наиболее общих методов, применяемых в той или иной сфере деятельности;

2) это учение о системе методов (общая теория методов).

Учение о методологии (методах) разрабатывается философией. Любая теория содержит свои специальные методы, которые должны использоваться для работы с объектами Основная функция метода – внутренняя организация и регулирование процесса познания. Для изучения живой и неживой природы присущи собственные методы. Методы детерминированы в самой объяснительной схеме. Методы приспосабливаются к особенностям изучаемого объекта.

Классификация методов:

1) всеобщие (философско-диалектические), общие (математические), частные;

2) теоретические, эмпирические и т.д.

См. также учебную литературу.

Выделяют 3 группы методов:

1) философские (диалектические), материалистические, философско-аналитические методы;

2) общенаучные (моделирование, формализация, анализ, синтез, аналогии и т.д.);

3) частнонаучные методы (физические, химические и т.д.);

4) дисциплинарные методы;

Под частнонаучными понимаются методы, относящиеся к крупной области науки (физике, химии). К дисциплинарным методам относятся специфичные для той или иной области методы (термодинамика).

5) междисциплинарные методы (синтетические и интегративные методы – синергетические методы (группа методов) – синергетический подход).

Лекция № 15 (19.03.08).

43. Модели соотношения философии и частных наук. Функции философии в научном познании.

Существует 2 основных типа взаимоотношений философии и частных наук:

1) абсолютизация какой-либо стороны философии или частных наук (выражается в натурфилософии;

2) постулируется диалектическая взаимосвязь философии и частных наук (оформляется в философском направлении – позитивизм).

Первая модель: философия (природы) – абстрактное, умозрительное, спекулятивное знание без опоры на какую-либо частнонаучную дисциплину.

В XIX в. формируется позитивизм (О. Конт) как противоположное направление, абсолютизирующее науку: «Наука – сама себе философия. Философия призвана лишь обобщать знания позитивных наук. Наука отвечает на вопрос «как», а не «почему» — эта позитивистская линия выбросила науку из философии. Различают 4 формы:

1) Классический позитивизм.

2) Эмпириокритицизм.

3) Логический позитивизм (неопозитивизм) (20 – 30 гг. XX в.) – сфокусировался на знаковых проблемах. Не выбрасывает философию из науки, считая философию деятельностью по анализу языка науки; различают аналитические (определения и тавтологии) и синтетические (требуют обобщения опыта) суждения. Все остальные суждения бессмысленны. Философия должна выбрасывать все псевдонаучные, бессмысленные суждения.

4) Постпозитивизм – анализ роста научного знания (Поппер, Кун, Лакатос). Задача философии – анализ методологии научного познания.

Вторая модель: постулирование диалектической взаимосвязи противоположных суждений. Философия и наука необходимы друг другу. Функции философии в научном познании (стандарты):

1) мировоззренческая;

2) методологическая;

3) гносеологическая;

4) аксеологическая;

5) критическая.

1) Мировоззренческая – общее представление об устройстве мироздания. Всякая естественнонаучная дисциплина имеет дело с частью науки, мира, но в соответствии с системным подходом – требуется обобщение, увязка воедино всех фрагментов научной дисциплины – непротиворечивость, единство картины.

2) Методологическая (учение о методе познания; совокупность предельно общих приемов, способов). Философия – общее учение о методах научного познания. Кроме того, она разрабатывает свои методы, некоторые из которых имеют значение для всех научных дисциплин (диалектический метод, системно-структурный метод, метод восхождения от абстрактного к конкретному).

3) Гносеологическая функция. Философия занимается анализом содержания наиболее общих понятий (универсалий) нашего мышления. Занимается поиском ответов на вопросы: достижима ли истина, какие ее критерии, черты и т.д.

4) Аксеологическая (теория ценностей). Философия пытается показать связь достижений науки с конкретным культурным контекстом.

5) Критическая – критический анализ науки, ее смысла, ценностей, претензий на истину. Кохановский выделяет умозрительно-прогностическую функцию. Философия, работая на территории между наукой и религией, натыкается иногда на концепции (теории), задающие стратегию научных исследований.

44. Соотношение эмпирических, теоретических и общелогических методов и приемов исследования.

Методы эмпирического исследования: наблюдение, измерение, описание, эксперимент, сравнения.

На экзамене кратко охарактеризовать с выходом на какие-либо проблемы. Можно сказать, например, про проблематику наблюдений.

1) Научное познание добралось до таких вещей, где наблюдение дает сбои.

2) Вмешательство субъекта в объект (например, изменение у объекта микромира свойств при взаимодействии с макроприборами).

Можно добавить про проблемы наблюдения в социально-научном познании. Наблюдающий зачастую вмешивается в общественную жизнь (субъект и объект познания тесно взаимосвязаны).

Эксперименты: исследовательские, проверочные, мысленные. Вспомнить про какие-нибудь естественно-научные, социальные эксперименты – эксперимент по определению скорости света. Со скоростью света ничего нельзя сложить, ни одну земную скорость – для установления был поставлен эксперимент Мандельсона – подтверждение тезиса о постоянстве скорости света.

Теоретико-познавательные методы:

Формализация – отображение реальности в знаково-математической форме.

Аксиоматический метод – метод построения теорий (аксиомы принимаются без доказательств).

Гипотетико-дедуктивный метод.

Восхождение от абстрактного к конкретному. Абстрактное – это нечто отвлеченное от чего-то несущественного, не имеющего значения в данном случае; выделяется одна сторона объекта, которая повторяется в других объектах того же класса (абстрактное – примитивное мышление, когда выделяется конкретная сторона без выделения других существенных сторон). Задача ученого – докопаться до такой абстракции, которая позволила бы построить объяснительную смысловую схему.

Сначала выделяется абстрактное существенное, главное, к ней присоединяются другие абстракции, она применяется к другим объектам – вновь восхождение от абстрактного к конкретному, но она уже мысленная, когда мы поняли что это за объект со всеми его взаимосвязями.

Пример. По Марксу, постоянная стоимость – стоимость материальных и др. ресурсов, перенесших свою стоимость на конкретный товар; переменная стоимость – стоимость рабочей силы, которая обладает двойственным характером – способна, кроме всей своей стоимости, создавать свою прибавочную стоимость («догма Маркса»). Чтобы спуститься с уровня абстракций к конкретному, нужно искать какую-либо исходную абстракцию, которая даст некую объяснительную схему, позволяющую рассмотреть объект во всех его причинно-следственных взаимосвязях.

К теоретическим методам можно отнести системный и системно-структурный подход (у Кохановского эти методы отнесены к общелогическим).

Общелогические методы научного исследования: анализ, синтез, индукция, дедукция, обобщение, аналогия, моделирование.

Методы социально-гуманитарных наук: социология (анкетирование, интервьюирование, шкалирование и т.д.).

При подготовке к экзамену подумать о методах личного научного исследования (метод системного подхода, общелогические методы), привести что-нибудь из экономико-математических методов.

45. Проблема понимания и объяснения в научном познании.

Методология естественнонаучного познания – объясняющая, а методология гуманитарных наук – понимающая. Винтейс: «природу мы объясняем, а общество понимаем». Понимание – познавание, постижение смысла.

Телеология – признание всеобщей целесообразности всех вещей и явлений.

В природе нам понимать нечего. Понимание означает чувствование себя другим, по отношению к природным объектам понимания быть не может (можно поставить себя на место какого-либо другого человека, но нельзя представить себя на месте камня или дуба). Под объяснением понимается подведение конкретного факта, явления под обобщение, закон  — дедуктивно-номологическая (номос – закон) модель научного знания – выведение частных случаев из общего закона.

В гуманитарных науках тоже должны быть законы. К дедуктивно-номологической модели добавляются рациональная и телеологическая формы объяснения. В рациональной форме объяснения наблюдаемый субъект считается разумным, значит его рациональное поведение объясняется мотивами. Добавляется понимание – это постижение, познавание смысла исследуемого объекта. Понимание предполагает существование цели какого-то субъекта. Основные познавательные процедуры:

1) Цикличность (герменевтический круг). Герменевтика – философское учение о понимании. Герменевтический круг – объяснение на основе взаимоотношения части и целого. Чтобы реально понять смысл, нужно знать целое. Например, чтобы понять предмет дисциплины, нужно изучить ее всю.

2) Придание дополнительного смысла тому, что пытаются понять. Например, при чтении текста прибавляется смысл к тому, что туда закладывает автор (например, при чтении Платона).

3) Диалогичность. При объяснении природы взаимодействия субъекта и объекта познания. В гуманитарном познании имеет место добавление смысла – диалог.

Типы понимания:

1) В процессе языковой коммуникации.

2) Перевод одного языка на другой.

3) Интерпретация поступков.

Тема
VII. Научные традиции и научные революции. Типы научной рациональности.

1. Научные революции как перестройка оснований науки. Проблема типологии научных революций. Внутридисциплинарные и междисциплинарные факторы революционных преобразований в науке.

Научная революция – смена оснований науки. Роль научной революции в научном познании велика (Кун, Лакатос).

По мнению Степина, смена оснований науки может осуществляться в 2 формах:

1) Революции, связанные с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования (Максвелл – мини-революция в физике в XIX в. Электромагнетизм расширил рамки физического учения, но это не глобальная революция).

2) Революция, в период которой вместе с картиной мира меняются идеалы и нормы науки (становление квантовой механики) – меняются представления о взаимоотношении субъекта и объекта познания. VII – VIII вв. – субъект познания не взаимодействует с объектом познания. В квантовой механике, чтобы изучить объект, необходимо воздействовать на него, в результате чего он меняет свойство. Квантовая механика носит вероятностный характер. Вероятность в классической механике берется из какой-то группы событий. К одному объекту вероятность неприменима в классической физике. В квантовой механике все наоборот – вероятность применима к одному объекту. Новая картина исследуемой реальности может оказывать революционное воздействие на другие науки.

Пути перестройки оснований научного знания:

1) За счет внутридисциплинарного научного знания (примеры строить на примере конкретного знания).

2) За счет междисциплинарных связей при переходе с одних парадигм и установок к другим (идея эволюции).

Общественные изменения наиболее заметны. Идея эволюции от общества переходит в биологию.

Середина XX в. – космология Большого взрыва.

Физики VII в. принимали атомистическую концепцию. При этом в VII в. начинает формироваться химия – заимствование физической концепции атомарного строения, появление концепции молекулы (состоящей из атомов) – позаимствовано из химии.

Революции: частнонаучные – смена специальной научной картины мира конкретных наук и общенаучные (глобальные) – смена общенаучной картины мира. Глобальные революции происходят гораздо реже. По Кохановскому, их было 3: 1) Аристотелевская (IV – III вв. до н.э.) – в результате этой революции рождается сама наука – революция в духовном мире; 2) Ньютоновская (XVII в.): осуществлена Коперником, Галилеем, Кеплером (XVI– XVII вв.), Ньютоном (механика, дифференциальное и интегральное исчисление, оптика); 3) Эйнштейновская (XIX– XX вв.): М. Квант, Н. Бор, А. Эйнштейн и др. – радикально поменялась научная общая картина мира. Возникла теория Большого взрыва.

На экзамене уметь описать научные революции. По другому мнению, научных революций было 4 (Степин): в качестве четвертой научной революции рассматривается становление постнеклассической науки (синергетики).

Лекция № 16 (26.03.08).

47. Социокультурные предпосылки глобальных научных революций. Роль философских категорий в освоении новых типов системных объектов. Прогностическая функция философского знания.

Научные революции:

1) Аристотелевская (IV – IIIвв. до н.э.): появляется сама наука.

2) Ньютоновская (XVII в.): становление экспериментального математического естествознания, формирование большей части современной научной картины мира.

3) Эйнштейновская (XIX – XX вв.).

4) Спорная, знаковой фигуры нет.

Сфера научных революций связана со всеми другими сферами жизни общества (духовной, политической, экономической и др.).

Зарождение науки происходит в Древней Греции. Причины: изменения в сфере материального: рост производительных сил, влекущих изменение социальной структуры, что, в свою очередь, влечет за собой изменение политической структуры (появление политической формы – полисной); расширение географического кругозора древних греков, экспансия Средиземноморья; отсутствие жрецов, монополизирующих всю духовную жизнь; конкуренция в политической сфере жизнь общества. Таким образом, возникла уникальная ситуация – одновременное появление нескольких важных условий – общество разбогатело настолько, что могло способствовать появлению самой науки, искусства. Греки в ходе экспансии других территорий сталкивались с другим укладом, мышлением, религиями; сравнительность вызывает критическое мышление, критичность в отношении к действительности.

Философия играет первую роль, именно из философии возникает наука. Аристотель первым разделил философию и науку.

Вторая научная революция – Ньютоновская (XVII в.). Социо-культурные предпосылки: материалистическая методика (философия). XVI – XVII вв. – эпоха становления капитализма: развитие промышленности – изменения в социальной структуре. Буржуазная революция начинается в Голландии. Центральное событие: Великая английская буржуазная революция. В этих условиях наука не могла остаться неизменной. Раз меняется образ жизни людей, меняется и их мировоззрение, в основе которого появляется наука. Философия (XVII в.): Ф. Бэкон, Р. Декарт, Дж. Локк, Т. Гоббс. Напрямую отношение к науке имеют Ф. Бэкон и Р. Декарт – создание универсальных научных методов. Эти философы, а также Лейбниц внесли существенный вклад в развитие методологического знания.

Третья научная революция – Эйнштейновская. Переход в монополистическую, империалистическую стадию, создание конвейерного крупномасштабного производства. Для этого периода характерны первые попытки на принципиально новых основаниях переустроить общественную жизнь. Одна из социокультурных предпосылок: кризис идей эпохи Просвещения (лозунг «свобода – равенство – братство»), основные идеи были реализованы недостаточно успешно. Надежда просветителей на разумное общество не оправдались (бойня – мировая война); поиск иных форм – появление неклассической философии: философия жизни Ницше, Дильтей, экзистенциализм. Основные идеи философии – принцип иррационализма. Происходит появление разнообразных новых течений (русская литература – Л.Н. Толстой – пишет ясно, прозрачно («Война и мир»); у Достоевского нет такой однозначности, противопоставление добра и зла уходит, появляется более сложная литературная картина мира). Такие же черты иррациональности характерны и для науки: начинают реализовываться новые (иррациональные) системы построения научного знания (Фрейд).

Четвертая революция: можно ли увидеть социокультурные предпосылки научной революции. В 50-х гг. началось становление постиндустриального общества, все большая часть населения вовлекается в непроизводственную сферу, возникают глобальные проблемы: экономические, экологические и т.д. Крах системы социализма (80-е гг.), возникновение однополярного мира. В философии все эти особенности выразились в постмодернизме.

Прогностическая роль философского знания: философия начинает чувствовать социокультурные изменения раньше, выступая в роли разведчика.

48. Научные революции как точки бифуркации в развитии знания. Нелинейность роста знания.

Бифуркация – точка раздвоения, после которой идет нелинейное развитие.

Синергетика – теория самоорганизации (основоположники: Хакен, И. Пригожин). Синергетика растет из недоумения в отношении вопроса направленности эволюции. Эволюция в мире живом – это непрерывное возрастание упорядоченности, уровней сложности, организации и др. Даже рост одного организма – это непрерывное возрастание организации, упорядоченности. В мире неживом характерно движение эволюции в противоположном порядке – возрастание энтропии. Система, предоставленная самой себе, стремится перейти в менее упорядоченное состояние. Возникает недоумение: почему в мире живом упорядоченность возрастает, в то время, как в мире неживой природе – уменьшается. Синергетика постулировала: тенденции возрастания упорядоченности в живой и неживой природе имеют свойство возрастать. Однако это не есть некое фундаментальное прозрение, это последствие концепции Большого взрыва, философия же утверждает это 2,5 тыс. лет. Основная идея: постоянное увеличение, нарастание уровня сложности, свойственное всей Вселенной. Должен быть какой-то общий механизм: философское единство взаимоперехода количественных и качественных изменений. Спонтанный переход могут демонстрировать только открытые неравновесные системы. Различают 2 типа развития: 1) эволюционное – период линейных изменений; 2) нелинейный период: неупорядоченное развитие. Точка перехода из первого типа во второй называется точкой бифуркации. Находясь в сильно неравновесном состоянии, система может начать развиваться в одном из нескольких направлений (аттракторов). Какой именно из них окажется самым привлекательным, предсказать нельзя. Но если она перешла к какому-либо аттрактору, то она пойдет именно по данному пути, все прочие возможности при этом исчезнут. Для науки как для сложной системы характерен подобный тип развития (что встречается в философии Куна) – далее у науки возникает подобная ситуация, подобное развитие науки называется нелинейным. Черты нелинейной картины мира: хаос – источник порядка – ключевой постулат синергетики.

Основные признаки синерегетической концепции:

1) Признание многовариантности путей развития сложных систем.

2) Новая оценка роли случайности.

3) Еще одно подтверждение необратимости времени.

4) Настоящее зависит не только от прошлого, но и от будущего.

Появление синергетики привело к изменению стиля научного мышления во всех дисциплинах и в философии тоже.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Производство сульфатной целлюлозы
Реферат Бухгалтерский баланс 19
Реферат Протокол об административном правонарушении
Реферат Norman Rockwell Essay Research Paper Norman Percevel
Реферат Українські народні обряди зимового циклу
Реферат Леонардо да Винчи художник и изобретатель
Реферат Проектування схеми універсального блоку регуляторів
Реферат Основные финансовые коэффициенты, используемые при анализе финансовой деятельности предприятия
Реферат Організація самостійної роботи учнів початкових класів на уроках математики
Реферат Право ограниченного пользования чужим земельным участком
Реферат Экология и культура
Реферат Развитие операций коммерческих банков с производными ценными бумагами на фондовом и финансовом рынках
Реферат Antigone
Реферат «Банковские операции» и«Учет в банке» тема: «Методы оценки коммерческим банком уровня кредитоспособности заемщика»
Реферат Крапчатая сумчатая куница