Реферат по предмету "Физика"


Кристалоквазіхімія дефектів Фізико-хімічні властивості легованих кристалів телуриду кадмію

Міністерство освіти і науки України
Прикарпатський університет імені Василя Стефаника
КРИСТАЛОКВАЗІХІМІЯ ДЕФЕКТІВ ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ ЛЕГОВАНИХ КРИСТАЛІВ ТЕЛУРИДУ КАДМІЮ
дипломна робота
м. Івано-Франківськ
2008
ЗМІСТ
Вступ 3
Моделі структур в халькогенідах кадмію і цинку 5
Характеристика областей існування структур сфалериту і в’юрциту
Кристалічна структура і антиструктура в телуриді кадмію 15
Кристалоквазіхімічний аналіз 17
Процеси легування 17
Утворення твердих розчинів 20
Обговорення результатів 21
Висновки 23
Література 24
Вступ
Актуальність вивчення поведінки домішок у телуриді кадмію обумовлена широким його використанням в оптоелектроніці, при створені модулів сонячних елементів, детекторів іонізуючого випромінювання, які працюють при кімнатній температурі [13-15].
Ширина області гомогенності в CdTe збагачена як Cd, так і Te, складає ~ 10-1 ат.%, при цьому на кожен заряджений дефект припадає 100 електрично неактивних дефектів. Переважаючими видами дефектів в телуриді кадмію, збагаченому Сd є електрично неактивні вакансії телуру, а з сторони Те – вакансії кадмію, що дає можливість припустити наявність в CdTe поряд з дефектами Френкеля дефектів Шоткі. Введення в основну матрицю телуриду кадмію як стехіометричного складу так і при нестехіометрії домішок дозволяє одержати матеріал з різною дефектною підсистемою, яка визначає тип провідності і концентрацію носіїв струму матеріалу. Так, надлишкові відносно стехіометричного складу атоми кадмію вкорінюються в міжвузля решітки і є донорами. При надлишку телуру утворюються вакансії кадмію, які є акцепторами з рівнем 0,15 еВ над валентною зоною [16].
Ряд елементів (Ga, In, Al) III групи в CdTe проявляють донорні властивості, тобто дають можливість одержати матеріал n-типу провідності [17]. Елементи VII групи, а саме хлор, утворює в телуриді кадмію малі донорні рівні і займає в кристалічній решітці позицію атомів телуру. Однак також відомо, що хлор поводить себе як акцептор, утворюючи з вакансіями кадмію комплекси (VCd-Cl) [15].
В роботі на основі кристалоквазіхімічних підходів [18] запропоновані кристалоквазіхімічні моделі процесів нестехіометрії та легування телуриду кадмію хлором і утворення твердих розчинів Cd1-xMnxTe, Cd1-xZnxTe.
1. Моделі структур в халькогенідах кадмію і цинку
Кристалографія сполук А2В6, утворених із елементів II i VI груп періодичної системи, дещо ускладнена внаслідок того, що вони здатні кристалізуватися в різних поліморфних модифікаціях.
Цинкова обманка ZnS (сфалерит) – кубічна структура, в’юрцит – гексагональна, характеризуються тетраедричним розміщенням атомів. Крім того, вони утворюють ряд близьких за структурою політипів, які характеризуються також тетраедричним розміщенням атомів. Тип зв’язку в цих кристалах може змінюватися від чисто іонного характеру до ковалентного і змішаного [2].
Моделі структур сфалериту і в’юрциту показані на рис.1(а, б), параметри гратки в таблицях 1,2. Всі халькогеніди цинку і кадмію і в частковості CdTe, ZnTe і ZnSe кристалізуються в структурі цинкової обманки типу (В3). Структура сфалериту характеризується щільною трьохшаровою кубічною упаковкою шарів, в’юрциту — двохшаровою гексагональною. В структурі в’юрциту (В4) кристалізуються майже всі халькогеніди цинку і кадмію[2].
/>/>
а) б)
Рис.1. Моделі структур: а – сфалериту, б – в’юрциту
Слід відмітити, що атомами будь-яких ідеальних щільних упаковок простір заповнюється на 74.05%. Т.чином ¼ всього простору упаковки належить пустотам [3]. Розрізняють два види пустот: пустоти оточені чотирма атомами – тетраедричні, оточені шістьма атомами – октаедричні. Щільноупакованні аніонні решітки мають одну октаедричну і дві тетраедричні порожнини. На рис.2(а, б) і 3(а, б) графічно показано розміщення цих порожнин (дефектів) в елементарній комірці сфалериту і в’юрциту. Із яких видно, що октаедричні пустоти в них не заповнені, а тетраедричні на половину. На основі розрахованої кількості розміщення атомів в елементарній комірці розрахували, що на одну комірку сфалериту припадає 4 октаедричні і 8 тетраедричних порожнин, в’юрциту – 12 тетраедричних, 6 октаедричних. Так як тетраедричні порожнини в цих структурах заповнені наполовино металом, а октаедричні не заповнені, то дефектна підсистема буде утворена тетраедричними і октаедричними кристалічними вакансіями і між вузловими атомами металу в тетраедричних порожнинах.
/>/>
а) б)
Рис 2. Графічне розміщення тетраедричних порожнин (ТП) для структур: а – сфалериту, б – в’юрциту
/>/>
а) б)
Рис 3. Графічне розміщення октаедричних порожнин (ОП) для структур: а – сфалериту, б – в’юрциту
Повернемося до відомої теорії структур щільної упоковки, яка дозволяє в рамках цього підходу визначити всі необхідні геометричні характеристики кристалічних структур напівпровідників А2В6. В цій теорії під кристалічною будовою розуміють послідовну шарову упаковку твердих сфер з утворенням тетра- і октапорожнин [12].
Якщо вважати структури сфалериту і в’юрциту щільноупаковані по аніону тоді необхідне виконання наступних двох умов:
топологія аніонної підрешітки співпадає з топологією кількості щільноупакованих сфер, причому катіони розміщуються тільки в тетраедричних і октаедричних міжвузлях цієї підрешітки;
потенціали міжатомної взаємодії Uмх, Uхх i Uмм, відповідають нерівності (1)
Uмх>Uхх>Uмм, (1)
де М – метал, Х – неметал
Із простих геометричних уявлень можна одержати сукупність величин, які характеризують тетраедр, октаедр і елементарну комірку г.ц.к. решітки. Ці величини, однозначно зв’язані з радіусом сфер будови, тобто радіусами атомів кристалічної решітки, а відповідно і з параметром решітки (а, с) для сфалериту і в’юрциту показані в таблиці 5.
Таблиця5
Зв’язок величин, які характеризують тетраедр і октаедр в г.ц.к. решітці з радіусом атома і періодом решітки для сфалериту і в’юрциту
Параметр
Позначення
f (R)
Сфалерит
1. Радіус атома
R


2. Період кристалічної решітки
a
a = 2RÖ2
3. Ребро тетраедра
a1
a1 = 2R = 0,71a
4. Висота тетраедра
h
h = 2RÖ2/3 = 0,578a
5. Відстань від центра тетраедра до його основи
z
z = R/Ö6 = 0,41R= 0,145 a
6. Відстань центра тетраедра від вершини
yt
yt=h-z = (3/Ö6)R = 0,433 a--PAGE_BREAK----PAGE_BREAK--
40
W
-24
ZnTe
16
S
+81
ZnS
40
S
+33








Як відомо, різниця в енергіях двох поліморфних модифікацій – в’юрцита і сфалериту, яка б мала вона не була, буде обумовлена різним вкладом іонності, про що свідчить порівняння їх констант Маделунга. Вони є мірою електростатичної взаємодії між іонами решітки, для структурного типу в’юрциту і сфалериту і рівні 1,641;1,638, яка є більшою для решітки в’юрциту [6]. Звідси можна зробити два висновки. По-перше, якщо сполуки А2В6 можуть кристалізуватися в двох модифікаціях, одна з яких метастабільна, то тоді характер зв’язку в гексагональній модифікації повинен бути більш іонним, чим у кубічній. Більший іонний характер структури в’юрциту експериментально доказаний вимірюванням ширини забороненої зони, яка для деяких сполук А2В6 виявилася дещо більшою, ніж ширина забороненої зони тих же сполук, які мають структуру сфалериту [7-9]. По-друге, в ряді сполук А2В6 з збільшенням долі іонності зв’язку (l) повинен спостерігатися перехід від стабільної структури сфалериту S до стабільної структури в’юрциту W (табл.3).
Коли необхідно підкреслити зв’язок атомів в сполуках використовують для одного і того ж атома різні радіуси: ковалентні, іонні, тетраедричн і октаедричні ковалентні радіуси атомів в сполуках. Для атомів халькогенідного ряду цинку і кадмію вони приведені в таблиці 4.
Таблиця4
Радіуси елементів в халькогенідах цинку і кадмію
Елементи, r, Å
Zn
Cd
S
Se
Te
Література
Атомний, ra
1,53
1,71
1,09
1,22
1,42


Ковалентний, rk
1,25
1,48
1,02
1,16
1,36


Іонний, ri
0,83
0,99
1,82
1,93
2,11


Тетраедричний, rt
1,31
1,48
1,04
1,14
1,32
[2]
Октаедричний, ro
1,20
1,38
1,35
1,45
1,64
[10]
3. Домішково-дефектна підсистема сфалеритної структури у легованих хлором кристалах телуриду кадмію
3.1. Домішка хлору у телуриді кадмію
Одним із найбільш перспективних матеріалів для виготовлення високочутливих неохолоджуючих детекторів іонізуючого випромінювання є компенсований хлором телурид кадмію [1].
CdTe відноситься до широкозонних напівпровідників АIIВVI для яких характерне явище самокомпенсації. Суть явища самокомпенсації полягає у нейтралізації дії введених домішок донорного чи акцепторного типу утворенням власних дефектів з протилежною дією. Це є енергетично вигідним процесом для кристала. Крім того, власні дефекти, взаємодіючи з домішками, за певних умов, можуть утворювати різного типу електрично активні і неактивні комплекси [2, 3].
Вирощений методом напрямленої кристалізації і компенсований хлором СdТе (NCl~ 1018см-3) звичайно має р-тип провідності з питомим опором ρ > 107Ом см, концентрацією дірок р ~ 108см-3 та холлівською рухливістю дірок µh~ 50см2-В-1с-1. Після відпалу в атмосфері насиченої пари кадмію при температурах 500 — 900 °С протягом кількох годин кристал стає низькоомним з n-типом провідності. У цьому випадку компенсація
/>
Рис. 1. Залежність n(pCd) у разі відпалу напівізолюючих зразків CdTe у парі кадмію при температурі 700 °С на протязі 3 год.
практично зникає, і концентрація вільних електронів може досягати п~2І017|см-3. Згідно з фундаментальними роботами [9, 10] такий відпал приводить не тільки до збільшення п, але і до зменшення концентрації вакансій кадмію. В результаті порушуються умови компенсації. На рис. 1 наведено залежність значення nвід тиску пари кадмію рСd, при якому проводився відпал [11]. На основі проведених в роботі [11] досліджень зразків
n-CdTe отримано значення />/>~9,6·1016см-3, яке добре узгоджується з величиною п. У цьому випадку атом хлору, замішуючи атом телуру, поводить себе як точковий дефект, донорного типу. На рис. 2наведено залежність пвід концентрації введеного хлору [СІ], характер якої, як вказано в [12],практично не змінюється для різних значень рСd
Це означає, що за концентрацію електронів в зоні провідності відповідає домішка хлору, а не власні дефекти у гратці кадмію. Аналогічні результати отримано і для СdTe:Iп [13] (атом індію замішує атом кадмію). Слід вимітити, що енергія Іонізації ЕD, залежить від концентрації введеної донорної домішки та ступеня компенсації (ЕD= ЕD(N, К = NA/ ND)) і зв'язана з енергією іонізації ізольованих донорів Eемпіричним співвідношенням [14].
ЕD= Е– α(/>)1/3, (1)
α=2,5·10-8 eВ·см. (Співвідношення (1) уточнене врахуванням крупномасштабних флуктуацій потенціалу для низьких і високих температур порівняно з шириною домішкової зони [15]). Знайдене з (1) значення Е0становить 0,014 еВ [І3] і є близьким до значення, отриманого на основі воднеподібної моделі.    продолжение
--PAGE_BREAK--

/>
Рис.2. Залежність n([Cl])
Встановлено також наявність у компенсованих монокристалах СdТе: СІ
мілких акцепторних рівнів. У роботі [16] досліджували спектри поглинання (рис. 3) та фотопровідності (рис. 4) таких зразків. Різке зростання коефіцієнта поглинання α в області Е > 1,55 еВ (рис. З, криві 2і 3)пов'язується з іонізацією акцепторів, розташованих па рівнях Ev+ 0,04 eВ. У цій же області енергій спостерігалась інтенсивна смуга в спектрі фотопровідності (рис. 4).
/>
Рис.3. Спектри поглинання при 77 К: 1 – нелегований зразок; 2 – легований зразок хлором, NCl ~ 1018cm-3; 3 – NCl ~ 1019cm-3; 4 – зразок, легований хлором після термообробки у вакуумі при 500 °С; 5 – при 700°С
/>
Рис. 4.Спектри фотопровідності: 1 – зразок, легований хлором, NCl ~1018cm-3, Т = 77 К; 2 – той самий зразок після термообробки у вакуумі при 500 С; 3 – зразок легований хлором, Т = 4,2 К
Високотемпературний відпал кристалів у вакуумі протягом 24 год приводить до суттєвих змін у спектрах поглинання і фотопровідності, а саме мас місце інтенсивне поглинання в області 1,46 — 1,47 еВ з максимумом близько 1,53 eВ (рис. З, крива 4), що відповідас переходам електронів з рівнів Ev+ 0,06 еВ та Ev+ 0,12 сВ у зону провідності. Концентрація цих акцепторних центрів становить приблизно 2 1015– 2 І016см-3, а їх природа однозначно не з’ясована, хоча певні міркування про їх походження висловлювались влітературі |І6|.
Аналогічні висновки про енергетичне положення рівнів, що належать даним акцепторним центрам, зробили автори роботи [17], досліджуючи крайову люмінесценцію (рис. 5) нелегованих (крива 1), легованих високоомних (крива 2) та легованих низькоомних (крива 3) кристалів. Для легованих зразків спостерігається люмінесценція в області 1,55 ев.
/>
Рис.5. Спектри крайової люмінесценції кристалів CdTe при 4,2 К: 1 – нелегований зразок, n = 1015cм-3; 2, 3 – зразки, леговані хлором (2 – р = 108см-3, 3 – р=1013см-3)
Характер зміни положень максимумів кривих 2 і 3із збільшенням температури відповідає переходам всередині донорно-акцепторної пари, а при Т = 25 ÷ З0 К домінує смуга, що відповідає переходам зона — акцептор (Е~ 1,56 ев). Енергетичне положення цього акцепторного рівня Ev+ 0,047 узгоджується з даними, отриманими в результаті аналізу спектрів поглинання та фотопровідності. У спектрах спеціально нелегованих та легованих хлором кристалів спостерігається смуга люмінесценції з максимумом 1,53 еВ, яку пов'язують з рівнем Ev+ 0,069 ев, що належить першому зарядовому стану вакансій кадмію.
3.2. Кристалічна модель дефектів CdTe:Cl
/>Кристалічна гратка для сфалериту показана на рис. 1. В’юрцитну модифікацію CdTe у чистому вигляді не одержали [3]. Сфалеритна структура характеризується міжвузловими порожнини з тетраедричним і октаедричним оточенням, центри яких позначаються Т і О. Гратка кристалів телуриду кадмію складається із двох підграток утворених атомами металу і халькогену (на рис.1 вони показані відповідно чорними і світлими кружечками). В такій гратці виникає вже два види тетраедричних Т1 і Т2 і два види октаедричних порожнин О1 і О2, які відрізняються типом оточуючих атомів. При чому октапорожнини незаповнені, а тетра – наполовину заповнені.
На рис. 2 показано можливе розміщення точкових дефектів у кристалічній гратці телуриду кадмію при легуванні його хлором з наступним відпалом в парах кадмію і телуру. Дефектна підсистема в     продолжение
--PAGE_BREAK--


Міжвузловий телур у будь-якому стані (нейтральний атом, іон) не може бути розміщений ні в тетраедричних, ні в октаедричних порожнинах підгратки металу із-за значного перевищення власних розмірів над розмірами відповідних порожнин. Більш імовірним є заміщення телуром кадмію з утворенням анти структурного дефекту />, так як їх тетраедричні ковалентні радіуси спів розмірні (rCdк(т) = 1,48 Å, rTeк(т) = 1,34 Å). Геометричні співвідношення також сприяють хлору (rClк(т) = 1,06 Å) зайняти тетравузли телуру. Можливим є і утворення комплексу />так як відстані між центрами вакансій кадмію і заміщеним телуру хлором у тетрапозиції кристалічної гратки складають всього 2,80 Å [3].
3.3. Кристалоквазіхімічні рівняння утворення дефектів


Незважаючи на проведені фундаментальні дослідження монокристалів CdTe:Cl [2, 4-6], квазіхімічного моделювання дефектної підсистеми при їх відпалі у парах кадмію і телуру, залишається невирішеною проблема визначення розміщення дефектів у кристалічній гратці. Кристалоквазіхімія, як новий науковий напрям, дає більш розширену характеристику утворення дефектів. У квазіхімії немає необхідності знати кристалічну природу дефектів [6-10]. Кристалоквазіхімія розглядає дефекти у відповідності з кристалічною будовою речовини і дає нову інформацію про їх властивості, яка відсутня в окремо взятих кристалохімії і квазіхімії [10].
В основу методу покладено суперпозицію кристалоквазіхімічної формули досліджуваної матриці />із кристалоквазіхімічним складом (кластером). Кристалоквазіхімічний склад формується шляхом накладання антиструктури телуриду кадмію />, яку утворюють двократно іонізовані негативні та позитивні вакансії кадмію і телуру з кристалохімічним складом доданої речовини. Заряди дефектів у кристалоквазіхімії позначають таким чином: х – нейтральні, × – позитивні, ¢ – негативні, кількість цих знаків відповідає кратності іонізації, e' – концентрація електронів, h· – концентрація дірок.
Згідно уявлень кристалоквазіхімії [5] нестехіометричний телурид кадмію з надлишком кадмію описується такими рівняннями:
/>
/>(1)
При надлишку халькогену відповідно:
/>
/>(2)
Де, />і />– відхилення від стехіометрії. При аналізі рівнянь (1), (2) видно, що електронний тип провідності телуриду кадмію пов’язаний із вакансіями телуру />, які утворюються за рахунок надстехіометричного кадмію, а дірковий – із вакансіями кадмію />, при надлишку телуру.
Тепер розглянемо кристалоквазіхімічний кластер легуючої домішки CdCl2. Згідно попереднього представлення він запишеться як:
/>(3)
При суперпозиції матриці CdTe n-типу (1) з кластером (3) одержимо:
/>(4)
Утворений матеріал (4) характеризується переважаючою електронною провідністю, яка обумовлена вакансіями />у підгратці халькогену.
Суперпозиція матеріалу CdTe р-типу (2) з (3) приводить до:
/>(5)
Дірковий тип провідності матеріалу (5) зберігається за рахунок центрації вакансій />у підгратці металу.
При відпалі CdTe:Cl у парі кадмію надлишковий, відносно стехіометричного складу, кадмій може утворювати вакансії телуру />, або вкорінюватися у міжвузля гратки />[4]. Тому вплив надлишкового кадмію на матеріал (5) проводили за механізмом заміщення і вкорінення.
Для механізму входження кадмію у свої ж вакансії одержуємо кластер:
/>(6)
У випадку CdTe р-типу провідності накладання матриці (5) на кластер (6) приводить до утворення матеріалу з переважаючою електронною провідністю згідно одержаного матеріалу (7).
/>(7)
При вкорінені кадмію у міжвузля кластер запишеться:
/>(8)
Суперпозиція матриці (5) з кластером (8) дає наступний результат (9) :
/>(9)
При аналізі одержаних рівнянь (7) і (9) видно, що вони характеризуються переважаючою електронною провідністю, яка обумовлена появою вакансій телуру для (7) та міжвузловим кадмієм в аніонній підгратці для матриці (9).
Використанні позначення грецькими буквами: /> /> /> /> />у методі кристалоквазіхімії означають відхилення від стехіометрії або мольні частки тієї речовини, яку додають у процесі дослідження.
При відпалі р-CdTe:Cl при низьких тисках пари кадмію, а саме у парі телуру, одержують матеріал з високою концентрацією електронів за рахунок утворення антиструктурного дефекту />за рівнянням: />Кристалоквазіхімічне рівняння дефектоутворення для такого процесу приведено нижче:
/>(10)
Суперпозиція матриці (5) з кластером (10) дає:
/>(11)


3.4 Аналіз результатів дослідження


Експериментальні результати [4-6], які визначають залежність типу провідності легованих CdCl2 кристалів телуриду кадмію від значення парціальних тисків компонентів, із врахуванням кристалохімічної (рис. 1, 2) і кристалоквазіхімічної (1) – (11) моделей можна пояснити наступними чином.
Початково синтезовані кристали CdTe, які мають р-тип ровідності [4], характеризуються згідно (2) переважанням вакансій кадмію – тетраедричні порожнини в оточенні телуру (рис. 2 –дефект типу А). При легуванні цього матеріалу CdCl2 акцепторний тип кристалів зберігається за рахунок утворення додаткових вакансій у катіонній підгратці згідно (5): />(рис. 2 – дефект типу А).
Відпал кристалів у парах телуру (область низьких значень парціального тиску кадмію) згідно (11) веде до утворення антиструктурних дефектів />(рис. 2 – дефект M). Це пов’язано із тим, що при високих концентраціях телуру, займаючи тетраедричне міжвузля у кристалічній гратці, він має високу зовнішню релаксацію і буде притягуватися до областей, де напруги можуть бути усунені. Ці області локалізовані у місцях значної концентрації вакансій кадмію />, у яких відбувається релаксація і зсув сусідніх атомів. Із-за утворення при цьому значної кількості електронів />/>(11), відпалений CdTe: Сl у парах телуру має значну ефективну електронну провідність.
Відпал легованих хлором кристалів CdTe при високих парціальних тисках парів кадмію знову ж таки приведе до синтезу кристалів із переважаючою електронною провідністю. Але механізм донорної дії тут буде зовсім інший ніж у попередньому випадку. Так, при механізмі заміщення (7) надлишкові електрони у кристалічній гратці CdTe появляються за рахунок „заліковування” вакансій кадмію:/>/>При механізмі вкорінення (9) ці ж електрони провідності утворюються вже у прцесі іонізації міжвузлових атомів кадмію (рис. 2 –дефект D).
Для області середніх парціальних тисків пари кадмію переважаючими дефектами є вакансії у катіонній підгратці згідно (2) (рис. 2 – дефект А), що і обумовлює р-тип провідності матеріалу.
Окремим цікавим питанням є утворення комплексів (асоціатів) за рахунок взаємодії між собою різнойменно заряджених власних атомних дефектів із домішковими дефектами. У нашому випадку згідно кристалоквазіхімічних рівнянь (4), (5), (7), (9) і (11) може утворюватися заряджений центр типу />(рис.2 – дефект К). Він окремо виділений у (5). Крім того, в останній час [2], пропонується ідеї про утворення нейтральних центрів типу />/>. В усіх випадках утворення центрів, як заряджених, так і нейтральних, має місце зв’язування електронів у кристалічній гратці.    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.