Реферат по предмету "Физика"


Лекции по Метрологии

--PAGE_BREAK--Усилитель напряжения



                                                                              Мультипликативная погрешность
2. Вариация.

Вариация выходного сигнала измерительного преобразователя, (Показаний прибора- разность между значениями информативного параметра выходного сигнала преобразователя (или показания прибора) ), соответствующими данной точке диапазона измерения при различных направлениях медленных измерений информативного параметра входного сигнала в процессе подхода к данной точке диапазона измерений.
Пример:




                                   Действительные значения мультипликативности окажутся

           различными.
Информативный параметр сигнала – это параметр функционально связанный с измеряемым свойством или являющийся самым измеряемым свойством объекта измерения.
3. Чувствительность.

                       

                                   S=dy/dx          S— чувствительность

                                                           y-выходная величина

                                                           x-измеримая
Для эл./мех. приборов S=da/dx=[дел]/[В, А,…]

В зависимости от F(x) меняется шкала прибора.

S=F(x)

Если F(x) постоянна, то шкала равномерная

Если F(x) непостоянна, то шкала неравномерная




 
Величина обратная к чувствительности наз-ся постоянной прибора

C=1/S=[В, А,…/дел]

Порог чувствительности – наименьшее значение, измеряемой величины, способной вызвать заметное изменение выходного сигнала преобразователя или показаний прибора.
4. Время установления выходного сигнала или показания прибора.


(динамическая хар-ка, показывает как реагирует прибор на изменение величины). Хар-ка переходного процесса и определяется готовым к действию СИ.

5. Диапазон измерений.

Область значений измеряемой величины для которой нормированы допускаемые погрешности СИ.
6. Входной импеданс.

Входной импеданс СИ – хар-ка определяющая реакцию входного сигнала на подключение СИ к источнику входного сигнала.
7. Надёжность СИ.

Это способность сохранять заданные хар-ки при определённых условиях работы в течение заданного времени.

l— интенсивность отказов (число отказов в ед. времени).
                                                             1 область – участок приработки.

                                                             2 — участок нормальной работы.

                                                             3 — участок старения.
Лекция N4  01.03.02
Способы выражения и нормирования пределов погрешностей.

Погрешности устанавливаются в виде: абсолютной; относительной; приведённой; в виде числа деления шкалы.

Абсолютная погрешность – это разность между результатом измерения и истинным значением измеряемой величины.

D=X-Xи@X-Xдействительная

Предел допустимой абсолютной погрешности выражается:

D=±a, где a-const;

D=±(a+bx) – линейная зависимость, где aи bconst.

 Нормирование по абсолютной погрешности имеет недостаток в том, что нельзя сравнивать по точности приборы различного назначения.
Относительная погрешность – это отношение абсолютной погрешности к значению измерительной величины

d=D/х*100%  Имеет знак зависящий от знака абсолютной погрешности.

Предел относительной погрешности в процентах выражается:

А)  d=±C, где С в процентах не мультипликативная погрешность.

Б)  d=±[C+d(xk/x-1)], где cи dпостоянные числа (когда есть мультипликативная погрешность)

xk– конечное значение диапазона измерения. В этой форме xkи xберутся без учёта знаков.




Недостатки относительной погрешности:  при x®0 d®¥и сравнения становятся бессмысленными.
Приведённые погрешности – отношение абсолютной погрешности к нормировочному значению

g=D/XN*100%

Нормирующее значение – условно принятое значение, зависящее от вида шкалы прибора. Для СИ у которых нулевая метка находится на краю или вне шкалы нормирующее значение выбирается равным конечному значению диапазона измерений.


Дли СИ, у которых нулевая отметка находится внутри диапазона измерения – нормирующее значение равно арифметической сумме конечных значений диапазона.


Для СИ предназначенных для измерения номинальных значений XNравно этому номинальному значению .

Обобщённой метрологической хар-кой СИ является класс точности, который определяет допускаемые пределы всех погрешностей, а также все другие свойства влияющие на точность СИ.

Для СИ, пределы допускаемых погрешностей, которые выражаются в виде относительных или приведённых погрешностей, установлен ряд чисел для выражения пределов допускаемых погрешностей и  применяемых для обозначения классов точностей.

(1, 1.5, 2, 2.5, 4, 5, 6)10n, где n=1, 0, -1, -2, -3, …

Для СИ у которых основную погрешность нормируют в виде предела приведённой погрешности, класс точности численно равен этому пределу.

Если предел допускаемой основной погрешности определяется по двучленной формуле, то в обозначении класса точности вводятся оба числа cи dчерез косую черту.
Пример задачи на экзамене.  

Вольтметр, класс точности 0,5. С какой точностью измерено 100 вольт?


V=100,0±1,5 в                           0.5=D/300*100         

g=D/XN*100%                            D=1,5 в
Правильность результата: погрешность не более 2-х значимых цифр. Последний разряд погрешности и последний разряд результата должны соответствовать друг другу.

Пример для цифрового вольтметра:

                                  

                                   xk=Uk=30в

                                    x=U=100в

                                   d=±[0,1+0,05*2]=0.2%
Погрешности измерений и обработка результатов измерений.

Погрешности измерений могут быть абсолютными и относительными.

Погрешность измерения считается положительной, если результат превышает действительное значение.

Различают: систематическую, случайную и грубую (промах) погрешности.

Грубая погрешность или промах – это погрешность существенно превышающая ожидаемый результат. Такой результат должен быть отброшен.

Различают следующие систематические погрешности:

а) методические (теоретические) – погрешности являющиеся следствием недостатка теоретической обоснованности или следствие применение приближённых формул.

б) инструментальные погрешности, погрешности СИ.

в) погрешность установки. Возникает из-за неправильного положения СИ.

г) личные погрешности. Погрешности вызываемые дефектами наблюдателя.

Лекция N5
Систематические погрешности могут быть исключены устранением самих источников погрешностей (правильным расположением средств измерения, можно вводить поправки).

Случайные погрешности обнаруживаются при многократном измерении искомой величины, когда повторное измерение проводятся одинаково тщательно и при одних и тех же условиях. Случайные погрешности нельзя устранить опытным путём, но их влияние на результат можно уменьшить путём обработки результатов методами теоретической вероятности. Результат измерения всегда содержит как систематические, так и случайные погрешности, поэтому в общем случае погрешности результата рассматриваются как случайные величины.
Вероятностные оценки ряда наблюдений.

При выполнении повторных измерений (наблюдений) одни и те же величины результата отдельных наблюдений отличаются друг от друга из-за наличия случайных погрешностей. Полным описанием случайной величины являются законы распределения вероятностей случайной величины. Закон распределения – соотношение устанавливающее связь между возможными значениями величины и соответствующими (или вероятностными).

Нормальный закон распределения (Гаусса). Он основан на двух аксиомах Гаусса: 1) при большом числе измерений погрешности одинаковые по величине и различные по знаку встречаются одинаково часто. 2) Малые погрешности встречаются чаще чем большие.

Закон распределения Гаусса через плотность распределения.






                                                                                                                     

                                              

                                                  s— средне квадратическое отклонение(СКО)

                                                  mx-мат. ожидание.

                                                           s1
Равномерный закон





                                               Все значения равновероятны.
Основными характеристиками законов распределения являются математическое ожидание и дисперсия. Математическое ожидание ряда наблюдений – это величина относительно которой рассеиваются результаты отдельных наблюдений, если систематическая погрешность отсутствует, а разброс обусловлен только случайной погрешностью, то мат. ожиданием будет истинное значение измеряемой величины. Мат. ожидание непрерывной величины обозначается:




Бесконечные пределы соответственно требуют бесконечность измерений, что невозможно.

Дисперсия – характеризует степень разброса (рассеивания) результатов наблюдения вокруг мат. ожидания. Чем меньше дисперсия, тем  меньше разброс и тем точнее измерение. Дисперсия определяется как мат. ожидание квадрата центрированной величины.
Выражение в квадрате измеряемой величины (А2, В2, Ом2)

Поэтому непосредственно её используют в качестве оценки точности. Поэтому в качестве хар-ки точности используют корень (+)
Обработка результатов измерений.

Необходимо из полученного ряда найти оценку мат. ожидания и дисперсии. Оценкой мат. ожидания является среднее арифметическое результатов отдельных наблюдений.

Отклонение между каждым из отдельных значений и средним арифметическим называется случайным отклонением или статичной погрешностью.

ρ=Аср-ai,  Sρi=0

 *-оценка

Аср®M[x]      S2®D[x]
Действительное значение (Аср) как результат обработки отдельных наблюдений, содержащих случайные погрешности, само по себе неизбежно содержит случайную погрешность. Степень близости действительного и истинного значений оценивается с помощью доверительного интервала. Доверительный интервал – интервал погрешностей, в котором погрешность измерений находится с заданной вероятностью.

В общем случае доверительный интервал может быть установлен, если известен закон распределения погрешности с основными его характеристиками.

Доверительный интервал выбирают при конкретных условиях измерения. Например: при нормальном законе часто используют ±36, РД=0.9973. Это означает, что из 370 случайных погрешностей только одна погрешность будет больше 36, т. к. на практике число отдельных наблюдений 20-30.

Из теоремы вероятностей известно,  что дисперсия среднего арифметического в nраз меньше дисперсии ряда наблюдений.

 ,   Для нахождения доверительного интервала необходимо найти закон распределения доверительной величины.

   при известной дисперсии.



Теорема вероятностей доказывает, что для нормального закона распределения случайная погрешность Zесть случайная величина распределения по нормальному закону, at– случайная величина распределения по закону Стьюдента.

При n³30 закон Стьюдента совпадает с нормальным законом. Зная Zили tможно записать результат:

Аист=Аср±ZdАср  или Аист=Аср±tSАср=


Лекция N6    22.03.02
Общие сведения об электромеханических приборах.

Это приборы, в которых электрическая энергия преобразуется в механическую энергию перемещения подвижной части. Это приборы прямого преобразования и непосредственной оценки.

Состоят из 3 узлов:

1.      Измерительная цепь (ИЦ)

2.      Измерительный механизм (ИМ)

3.     
Отсчётное устройство (ОУ)

ИЦ – служит для преобразования измеряемой величины в другую, непосредственно воздействующую на измерительный механизм (это количественные преобразования или качественные)

В ИМ – электрическая энергия преобразуется в механическую.

Большинство приборов использует угловое перемещение Þпри анализе рассматриваются моменты, действующие на подвижную часть.

Моменты, действующие в ИМ, делятся на: статические и динамические.

Статический – действует в механизме всегда при наличии измеряемой величины.

Динамические – действуют на подвижную часть только во время её движения.

  Статические:

1.      Вращающий момент.

2.      Противодействующий

       Вращающий – возникающий в ИМ под действием измеряемой величины, поворачивающий подвижную часть в сторону возрастающих показаний.

M=F(x,a), где a— угол отклонения, x– измеряемая величина,  F– функция от xи a.

M=dWэ/da, где Wэ– электрокинетическая энергия. (обобщённое выражение вращающего момента)

Если бы повороту подвижной части ничто не препятствовало бы, то при любом изменении измеряемой величины, отличном от нуля, подвижная часть отклонилась бы до упора.

Для того чтобы угол отклонения aзависел от измеряемой величины в механизме создаётся противодействующий момент, зависящий от a-Mпр=F(a)

По способу создания противодействующего момента (Мпр) приборы делятся на 2 вида:

           А) С механическим противодействием

           Б) С электрическим.

Для создания мех. противодействия момента используются упругие элементы 3 видов:

1)      Спиральные пружины

    Середина укрепляется, как и  

    второй конец.
2)      Растяжки




На 2-х упругих нитях (более чувствительно)
3)      Подвес




                        Одна нить (ещё более чувствительно)

                       
Во всех случаях Мпр пропорционален a: Мпр=-Wa,   W– удельный противодействующий момент.  «-» — так как в другую сторону.

В приборах с электрическим противодействующим моментом он создаётся также, как и вращающий:  M=dWэ/da

При равенстве моментов М и Мпр – динамическое равновесие, так что:

М+Мпр=0

Во время движения подвижной части действуют два динамических момента:

1.      Момент сил инерции (МY)

2.      Момент успокоения (Мр)

 (условие ускорения)

(т. к. подвижная часть имеет массу)

          р – коэффициент успокоения (трение о среду, или эл.-индукционное торможение)

(угловая скорость) 
Уравнение движения подвижной части.



 Дифференциальное уравнение второго порядка с постоянными коэффициентами и правой частью.

Преобразуем в уравнение операторной формы: введём оператор p:



Найдем передаточную функцию измерительного механизма: (выход — a, вход -  М)

  Заменив P®(jω) получим АЧХ:



q=ω/ω, где ω – круговая частота вращаемого момента (измеряемой величины).
  — круговая частота собственных колебаний подвижной части.


, b— степень успокоения подвижной части.

Почти для всех приборов b

В настоящее время – 6 типов ИМ – 6 типов эл.-мех. приборов:

1.      Магнитоэлектрические                         (постоянный магнит и катушка с током )                                               (взаимодействуют поля)

2.      Электромагнитные:

Катушка с током и сердечник из ферромагнетика
3.      Электродинамические:

Взаимодействие 2-х катушек с током                ;                   (две подвижных).




4.      Ферродинамические:

(как и динамические, но имеет сердечник:                                        )
5.      Электростатические:

(заряженные пластины)
6.      Индукционные: (счётчик)
Магнитоэлектрические приборы:

Существует два типа:

1.      С подвижной катушкой

2.      С подвижным магнитом

Основными узлами магнитоэлектрического измерительного механизма является магнитная система и подвижная часть

                                               1 – постоянный магнит

                                               2 – магнито-провод

3 – полюсные наконечники с цилиндрической                                       расточкой.

4 – цилиндрический сердечник.
Магнит – источник магнитного поля и выполняется из жёсткомагнитного материала (Более широкий диапазон Н у петли гистерезиса)

2, 3, 4 –из мягкомагнитного материала (более узкая петля)
Расстояние между сердечником и полюсным наконечником по R1-2 мм.

Катушка из меди (иногда алюминиевая) провод: 0.03-0.2мм.

Они бывают каркасными (из алюминия) и бескаркасными катушками. Используется магнитоиндукционное успокоение, но без специальных успокоителей. Оно создаётся за счёт возникновения вихревых токов при Dy.

Для увеличения успокоения на катушку наматывается короткозамкнутые витки, не участвующие в создании вращающего момента.

Цилиндрическая расточка полюсных наконечников и цилиндрический сердечник позволяет получать в рабочем зазоре равномерное радиальное поле, так, что индукция в зазоре B=const, не зависящая от a.

Вращающий момент ÞM=dωэ/da.

В нашем случае энергия – это:Wэ=Wмагнита+Wкатушки+Wвзаим. полей

Wвз=yi, y-потокосцепление (поток сцепляется с катушкой) зависит от a.

y=Fv,  v— число витков.

y=vBSaÞM=vBSi, i-ток.

В – индукция в зазоре.

S– площадь катушки.

Если i– переменная; i=ImSin(ωt), то мгновенное значение вращающего момента

Mt=BSvImSin(ωt).

    продолжение
--PAGE_BREAK--Лекция №7



У обыкновенных Измерительных механизмов собственная частота равна ω0=6,28рад/с (f=1Гц).

На частоте f=50Гц коэффициент передачи будет равен нулю – работать не будет. Эти приборы работают только на постоянном токе (т. к. после 10Гц отклонений уже не видно, т. к. стрелка не может колебаться так быстро)

На постоянном токе:
M=BSvI
Mпр=Wa

Þ            S– площадь катушки

                                 v— ветки в катушке.

                               W– удельный против. момент.

Выводы: 1. Прибор работает только на постоянном токе Þнеобходимо соблюдать полярность.

2. Шкала – равномерная

  — чувствительность току.

Достоинства и недостатки:

Д.: 1. Относятся к наиболее точным приборам, вплоть до класса 0.1 (приведённая погрешность не более 0.1%). Разность объясняется равномерной шкалой.

2. Малые влияния внешних магнитных полей, т. к. сильно собственное поле – несколько десятых тесла (а в природе не бывает 2.1 тесла); кожух- экран, магнитопровод- экран.

3. Возможная высокая чувствительность.

Например: по току 108-1010дел/А- очень малая величина.

4. Малое собственное потребление мощности (энергии).

5. Не влияют электрические поля.
Недостатки: 1. Малая перегрузочная способность (после зашкаливания прибор сразу сгорает – сгорают подводы: пружины, растяжки; но если их делать толще – чувствительность теряется).

2. Возможность применения только в цепях постоянного тока.

3. Относительно сложная и дорогая конструкция.
Магнитоэлектрические амперметры и вольтметры.

 В амперметрах измерительный механизм включается непосредственно в цепь или с помощью шунта.
а) Включение катушки в цепь.

I£30мА

                       
б) с шунтом: I>30мА
Пример:

           
Шунт потому, что при возрастающем токе токоподводы будут нагреваться и изменять свои характеристики ®для этого и шунт – чтобы избежать этого.

 

                                              

Если: I=10A, Ik=0.03A, Iω=9.97A.

Шунт всегда из манганина – сплав. Его особенность: 1. Нулевой температурный коэффициент. 2. Высокое удельное сопротивление: при заданном сопротивлении шунта – размер его меньше.

Основная погрешность этих приборов – температурная погрешность.
Влияние температуры на магнитоэлектрические измерительного механизма.

1.      При повышении температуры, пружина создающая противодействующий момент, стремится раскрутиться. Для компенсации этого устанавливают две пружины с разным направлением витков.

2.      Пружины ослабевают на 0.2-0,4% на каждые10оС.

3.      Магнитный поток постоянного магнита уменьшается: 0,2-0,4% на 10оС.
Явления 2 и 3 друг друга компенсируют:

4.      Изменяется электрическое сопротивление катушки (из меди): температурный коэффициент меди = 4,26*10-3 1/град или 4% на 10оС.
Для схемы а) эта погрешность отсутствует, т. к. при изменении сопртивления прибор покажет и изменение тока в цепи (это не погрешность – просто новый результат);

В схеме б) (с шунтом) при изменении температуры происходит перераспределение тока, т. к. шунт не зависит от температуры, а катушка зависит: если I=10A, Ik=0.027 (было 0,03), Im=9.973 (9.97)

А стрелка отклоняется по Ik

 
Показывает меньше или больше, поэтому у шунта должна быть температурная компенсация.
Для этого:






                                               rmи rg– из манганина Þ(rk+rg)®имеет меньший                                              температурный коэффициент.
Такие схемы – в приборах относительно низкого класса точности, т. к. для высокого нужно большое rgÞтеряем чувствительность. В высоком классе используют п/п резисторы:

           
rпп– может иметь отрицательный и очень                                                                          большой температурный коэффициент.
Потери меньше, чем при rg, т. к. сопротивление rпп

r– для регуляции общего сопротивления.

(r+rпп) – для лучшей компенсации.
В магнитоэлектрических Вольтметрах катушка включается последовательно с добавочным резистором.

 
                                               rg –из манганина.
                                              
Чем больше rgÞвыше предел измерения Þменьше температурная погрешность.

Для 150-100В – может быть класс точности 0.1.

На 3-10 В – не лучше, чем 0,5, т. к. rg— маленькоеÞне полная температурная компенсация.
Магнитоэлектрические омметры.

Можно построить по 2-м схемам:


а) Последовательная схема включения механизма и измеряемого сопротивления.


б) Параллельная:

В любом случае: (a=SII)

Для а):

Для б):

a— функция от rx=F(rx)

В обоих схемах шкалы – неравномерные (т. к. зависимость не пропорциональная)

У омметра а) нуль шкалы совмещён с максимальным углом поворота; у б) нуль слева.

Омметры с последовательной схемой более пригодны для измерения больших сопротивления, а б) для малых.

Выполняются в виде переносных приборов класса 1,5; 2,5 и питание осуществляется батарейками.

Нужно поддерживать U=const. Можно регулировать:

 
Есть способ измерять индукцию в зазоре:

SIU=const,   ,  BU=const.

Для изменения Bиспользуется магнитный шунт:




                                               Через МШ часть поля проходит.

                                               При U=max, шунт ближе, когда Uуменьшается – шунт отодвигается.
Необходимость ручной регулировки – недостаток. От него свободны омметрыс с логометром (прибор, противодействующий момент создаётся как и вращающий).

                                   Ставят 2 жестко скрепленные катушки.
От aзависит только В:


                                              

Сердечник элипсообразный + 2 катушки.







                                              

(Не зависит от U)

Уровень токов: токи должны преодолеть моменты трения в опорах (нижняя граница); верхняя граница – техника безопасности.

  


    продолжение
--PAGE_BREAK--Лекция №8


Выпрямительные приборы.

(Магнитоэлектрические преобразователи переменного тока в постоянный)

Существуют ещё и термоэлектрические и электронные приборы.

Выпрямительный прибор – соединение магнитоэлектрического измерительного механизма с одним или несколькими полупроводниковыми выпрямителями.

Используют германиевые и кремниевые выпрямители. У них различные ВАХ в зависимости от полярности приложенного напряжения.

 Имеют разное сопротивление: одно – прямое, другое – обратное.


(коэффициент выпрямления)

У GeKB~5000              С повышением температуры прямое и обратное сопро-

     SiKB~105-106          тивления уменьшаются.

Зависят также от частоты.
Схемы выпрямительных приборов делятся:

1.      Схемы с однопериодным выпрямлением.

2.      Двухполупериодным выпрямлением.
1.Þ

3.     
Þ(мостовая схема)

Мгновенное значение вращающего момента: Mt=BSvi, где i=iим, i– мгновенное значение переменного тока в течение полупериода, прошедшего в одном направлении.  В следствие инерции подвижной части её отклонение будет пропорционально среднему значению вращающего момента.

  (однополупериодное)

  (двухполупериодное) (среднее значение выпрямленного тока)


(т. е. стрелка не успевает колебаться при >>1 Гц) Þсреднее значение.

Угол отклонения пропорционален среднему значению тока.

Кф=Iдейств/Iср

Для синусойды: Кф=1,11

Для сигнала (дискретного): Кф=1

Þ  При изменении формы импульса (отличие от sin)Þпогрешность: погрешность от формы кривой.

Если Кф – известен, то действительное значение тока не синусоидальной формы, измеренное прибором градуированным по синусоидальному току, определяется по формуле:

, где Iп– показание прибора.

Шкала выпрямительного прибора в начальной части сжата (т. к. при малых напряжениях выпрямитель ещё не работает (ВАХ)).

Существуют выпрямительные амперметры и вольтметры.
Вольтметры.

В схемах необходима температурная и частотная компенсации.






                                   rg– манганин
На малые пределы измерения:




                                               r1– из меди

                                               r2– из манганина
Кроме изменения сопротивления при изменении температуры среды в выпрямительном приборе действует также изменение КВ (уменьшается при возрастании температуры)

Для вольтметров с большим пределом измерения больше влияет изменение КВ:

Þ






                                               rg, r2– манганин

                                               r1– медь

                                               C, L– частотная компенсация.

                                               (хотя полной компенсации найти не удастся)
Достоинства приборов:

1.      Высокая чувствительность

2.      Малое собственное потребление

3.      Возможность работать на повышенных частотах (до 50 КГц)

Недостатки:

1.      Относительно не высокая точность

2.      Зависимость показаний от формы сигнала.
Электромагнитные приборы.

Принцип: взаимодействие катушки с током и ферромагнитного сердечника.

2 типа: с плоской катушкой и с круглой катушкой.
(Большая перегрузочная способность)

Катушка медная. Сердечник – высокая mи узкая петля гистерезиса.

От mзависит вращающий момент, а ширина петли определяет погрешность гистерезиса. В щитовых приборах (электротехническая сталь).

Узкая петля – пермоллой.

При наличии тока в катушке она намагничивается и сердечник втягивается в зазор.
При изменении направления тока сердечник перемагничивается, но втягивается как при + так и при -, т. к. собственное поле (ширина гистерезиса) мало.

Существенный недостаток – сильное влияние внешних магнитных полей.
Для защиты:

1.      Экранирование

2.      Астазирование


При астазировании используются 2 катушки и 2 сердечника, укреплённых на 1-й оси:



    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.