Реферат по предмету "Физика"


Дизельные двигатели 2

Федеральное агентство по образованию

Федеральное государственное образовательное учреждение

среднего профессионального образования

Сарапульский техникум машиностроения и

информационных технологий>>
Специальность Техническая эксплуатация и обслуживание электрического и электромеханического оборудования
Антропогенные загрязнения атмосферы, гидросферы и литосферы
Реферат

По дисциплине «Физика»
Выполнил

Студент группы МЭ-11 К. В. Ажимов

«___»_________2010 г.
Проверил

преподаватель В. П. Хасминский

«___»_________2010 г.

2010
Содержание.


Введение.

Я расскажу в своём реферате о истории дизельного двигателя, как Рудольф Дизель развил теорию «экономичного термического двигателя». Принцип работы четырехтактного и двухтактного. Варианты конструкции, реверсивные двигатели. Преимущества и недостатки дизеля. Сферы применения дизельного двигателя, и мифы о дизельных двигателях.

История дизельного двигателя.
В 1890 году Рудольф Дизель развил теорию «экономичного термического двигателя», который благодаря сильному сжатию в цилиндрах значительно улучшает свою эффективность. Он получил патент на свой двигатель 23 февраля 1893. Первый функционирующий образец, названый «Дизель-мотором», был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан.
Интересно, что в написанной им книге в качестве идеального топлива предлагалась каменноугольная пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также наблюдались большие проблемы с подачей пыли в цилиндры. Зато была открыта дорога к использованию в качестве топлива тяжелых нефтяных фракций. Хотя Дизель и был первым, кто запатентовал двигатель с воспламенением от сжатия, инженер по имени Экройд Стюарт ранее высказывал похожие идеи. Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя емкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи.
Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, т. е. он не обратил внимания на самое большое преимущество — топливную эффективность.
В 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», т.е. дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении двигателей постройки «Дизель-мотора» и «Тринклер-мотора», русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, была гораздо более совершенной и перспективной. «Тринклер-моторы» не имели воздушного компрессора, а подвод тепла в них был более постепенным и растянутым по времени по сравнению с двигателем Дизеля. Российская конструкция оказалось проще, надежнее и перспективнее немецкой.
В 1947 г. состоялось расширенное заседание Парижской академии наук, где постановили: 1. Закрепить приоритет за Россией в создании бескомпрессорного двигателя с воспламенением от сжатия (цикл Тринклера). 2. Сохранить для всех двигателей, работающих с воспламенением от сжатия название «Дизель-мотор», чтобы отметить научный и технический вклад Рудольфа Дизеля в энергетическое машиностроение.
В настоящее время используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», т. к. теория Рудольфа Дизеля стала основой для создания современных двигателей с воспламенением от сжатия. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива не позволяли применять дизели в высоко-оборотистых агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.
В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным дальнейшее увеличение скорости вращения. Востребованный в таком виде высокооборотный дизель стал пользоваться все большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу двигателей с электрическим зажиганием (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях, В 50 — 60-е годы дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо, на него обращают серьёзное внимание мировые производители недорогих маленьк.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилях, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время предлагают как минимум по одной модели с дизельным двигателемих пассажирских автомобилей.
Принцип работы.
Четырёхтактный цикл

1й Такт. Впуск. клапан впуска открывается, воздух поступает в цилиндр и клапан сразу закрывается.

2й Такт. Сжатие. поршень, дойдя до Вмт(верхняя мертвая точка далее), сжимает воздух в 20 раз, после чего в горячей среде распыляется топливо через форсунку.

3й Такт. Расширение. После распыления топлива в горячем воздухе, оно сгорает, двигая поршень вниз.

4й Такт. Выпуск и продувка. Поршень идёт вверх, клапан выпуска открывается, происходит выпуск и продувка, дойдя до вмт, клапаны закрываются.
Далее повторяются все 4 такта.
В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

Дизель с неразделённой камерой («дизель с непосредственным впрыском»): камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум. В настоящее время ведутся интенсивные работы по устранению указанного недостатка.

Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался. Это способствует хорошему перемешиванию впрыскиваемых топлива и воздуха и самовоспламенению смеси. Такая схема считалась оптимальной и широко использовалась. Однако, вследствие худшей экономичности последние два десятилетия идёт активное вытеснение таких дизелей двигателями с непосредственным впрыском топлива.

Двухтактный цикл


Кроме вышеописанного четырёхтактного цикла, возможно использование двухтактного цикла. Поршень идёт вниз, открывая впускное и выпускное окно. Воздух поступает в цилиндр и в это же время выходят отработавшие газы. Когда поршень идёт вверх — все окна закрываются. Происходит сжатие — это первый такт. Через форсунки распыляется топливо и оно загорается. Происходит такт расширения — поршень идёт вниз и снова открывает все окна и т.д. и т.п.
Для осуществления продувки в нижней части цилиндра устраиваются продувочные окна. Когда поршень находится внизу, окна открыты. Когда поршень поднимается, он перекрывает окна.
Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой. Существует также клапанно-щелевая продувка, когда отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха. Есть ещё двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня (оппозитная схема); каждый поршень управляет своими окнами — один впускными, другой выпускными (такая система использовалась на тепловозах ТЭ3 и ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Юнкерс).
Поскольку в двухтактном цикле рабочие ходы происходят вдвое чаще, то можно ожидать двукратного повышения мощности по сравнению с четырёхтактным циклом. На практике же это не удаётся реализовать, и двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6 — 1,7 раз.
В настоящее время двухтактные дизели широко применяются только на больших морских судах с непосредственным (безредукторным) приводом гребного винта. При невозможности повышения частоты вращения двухтактный цикл оказывается выгодным; такие тихоходные дизели имеют мощность до 100.000 л.с.
В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.
Варианты конструкции

Двигатели могут быть тронковыми (когда шатун непосредственно присоединяется к поршню) и крейцкопфными (когда верхняя часть шатуна присоединяется к крейцкопфу — специальной скользящей конструкции, которая соединяется с поршнем штоком). Крейцкопфные двигатели позволяют снизить износ цилиндра и поршня, поскольку они освобождены от боковых усилий; зато тронковые двигатели намного меньше по размеру и весу. В настоящее время крейцкопфные двигатели используются только на больших морских судах.
Крейцкопфные двигатели могут быть двойного действия, когда рабочие полости устраиваются с обеих сторон поршня или 2 поршня движутся навстречу. Из-за сложности конструкции двигатели двойного действия почти не используют.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.
Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).
Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.
Преимущества и недостатки.

Бензиновый двигатель является довольно неэффективным и способен преобразовывать всего лишь около 20-30 % энергии топлива в полезную работу. Стандартный дизельный двигатель, однако, обычно имеет коэффициент полезного действия в 30-40 %, дизели с турбонаддувом и промежуточным охлаждением свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[2] Дизельный двигатель из-за использования впрыска высокого давления не предъявляет требований к летучести топлива, что позволяет использовать в нём низкосортные тяжелые масла.
Дизельный двигатель не может развивать высокие обороты — смесь не успевает догореть в цилиндрах. Это приводит к снижению удельной мощности двигателя на 1 л объёма, а значит, и к снижению удельной мощности на 1 кг массы двигателя. Это послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Юнкерс, а также советский тяжелый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальной эксплуатационной мощности смесь в дизеле не догорает, приводя к выбросу облаков сажи («тепловоз дает медведя»).
Дизельный двигатель не имеет дроссельной заслонки, регулирование мощности осуществляется регулированием количества впрыскиваемого топлива. Это приводит к отсутствию снижения давления в цилиндрах на низких оборотах. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя.
По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН), оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Они могут привести к астме и раку лёгких. Больше всего загрязняют атмосферу дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.
Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и также способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта, в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности (мощности, снимаемой с единицы массы мотора), а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата.

Конечно, существуют и недостатки, среди которых характерный стук дизельного двигателя при его работе и маслянистость топлива. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартера большой мощности, помутнение и застывание летнего дизельного топлива при низких температурах, сложность в ремонте топливной аппаратуры, так как насосы высокого давления являются устройствами, изготовленными с высокой точностью. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Такие загрязнения очень быстро выводят топливную аппаратуру из строя. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным крутящим моментом в своём рабочем диапазоне. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов («катализатор» в просторечии), работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой «Common-rail» системы. В данном типе дизелей впрыск топлива осуществляется электрически управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров сложности и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар, то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра». «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим очистки «сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и так называемого «интеркулера» — то есть устройства, охлаждающего сжатый турбонагнетателем воздух. Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля обычно тяжелее и более устойчивы к высокому давлениям сжатия, имеющим место у дизеля. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и часто (но не всегда) рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Во многих случаях головки поршней содержат в себе камеру сгорания.
Мифы о дизельных двигателях.

Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом двигателя. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

Дизельный двигатель слишком громко работает.

Правильно настроенный дизель лишь немного «громче» бензинового, что заметно лишь на холостых оборотах. В рабочих режимах разницы практически нет[источник не указан 59 дней]. Громко работающий двигатель свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле старые дизели с механическим впрыском действительно отличаются весьма жесткой работой. Только с появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счет разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

Дизельный двигатель гораздо экономичнее.

Времена, когда дизельное топливо стоило в три раза дешевле бензина, давно прошли. Сейчас разница составляет лишь порядка 10-30 % по цене топлива. Несмотря на то, что удельная теплота сгорания дизельного топлива (42,7 МДж/кг) меньше чем у бензина (44-47 МДж/кг)[3], основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[4]. Срок службы дизельного двигателя действительно гораздо больше бензинового и может достигать 400—600 тысяч километров.[источник не указан 435 дней] Запчасти для дизельных двигателей также несколько дороже, как и стоимость ремонта. Несмотря на все вышеперечисленные причины, затраты на эксплуатацию дизельного двигателя при правильной эксплуатации будут не намного меньше, чем у бензинового.[источник не указан 435 дней]

Дизельный двигатель плохо заводится в мороз.

При правильной эксплуатации и подготовке к зиме проблем с двигателем не возникнет[источник не указан 59 дней]. Например дизельный двигатель VW-Audi 1,9 TDI (77 кВт/105 л.с.) оснащён системой быстрого запуска: нагрев свечей накаливания до 1000 градусов осуществляется за 2 с. Система позволяет заводить двигатель в любых климатических условиях без предпускового разогрева.

Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешевого газа.

Первыми примерами работы дизельных двигателей на более дешевом топливе — газе порадовали ещё в 2005 году итальянские тюнинговые фирмы, которые использовали в качестве топлива метан. В настоящее время успешно зарекомендовали себя варианты применения газодизелей на пропане, а также — кардинальные решения по переоборудованию дизеля в газовый двигатель, который имеет преимущество перед аналогичным мотором, переоборудованным из бензинового, за счет изначально более высокой степени сжатия.
Сферы применения.

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Заключение.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.