Задание
Разработать электроприводмеханизма передвижения мостового крана.
Механизм включает двигательпостоянного тока, торможение включением сопротивления в цепь якоря. Вращениеротора двигателя передаётся через редуктор ходовым колесом, имеющем диаметр D=0.4м и цапф Dц=0,008м.Тележка перемещает кран с грузом mг=28 т нарасстоянии перемещения L=18 м, скоростьпередвижения v=19 м/мин, а вес самой тележки mт=6 т,К.П.Д. передач механизма n=0,65.
Кроме того, при расчётеэлектропривода задаются продолжительностью включения ПВ=34% и приведённым квалу двигателя моментом энерции механизма I1=25% от момента инерции ротора электродвигателя.
Цикл работы тележки включаетперемещение груза на расстояние и возвращение назад без груза. Разработатьсхему управления, которая должна обеспечивать ступенчатый пуск, электрическоеторможение, снижение скорости перед остановкой до (20-30)% от номинальной,фиксацию механизма электромеханическим тормозом при отключении двигателя отсети.
Срок сдачи проекта
Дата выдачи задания
Содержание
с
Введение 4
1.Расчёт статистических нагрузоки мощности ДПТ 6
2.Расчёт и построениеэлектромеханических характеристик.
Расчёт регулировочных сопротивлений. 7
3.Расчёт переходных процессовпри пуске и торможении
электропривода. 9
4.Построение уточнённойнагрузкой диаграммы двигателя и
проверка его по нагреву 14
5.Составление схемырелейно-контакторного управления 17
электроприводом.
Литература 19
Введение
Эффективность средств производства, которыми располагаетчеловеческое общество, в значительнойстепени определяется совершенством способов получения энергии, необходимой длявыполнения механической работы в производственных процессах. Производственные механизмы,без которых нельзя в настоящее время представить себе ни одно производство прошлидлительный путь своего развития, прежде чем приняли вид современногоавтоматизированного электропривода, приводящего в движение бесчисленное множество рабочихмашин и механизмов в промышленности, транспорте, в сельском хозяйстве и вбытовой технике и автоматически управляющего их технологическими процессами.
Пределы использования по мощности современного электроприводавесьма велики — от десятков тысяч киловатт в единичном двигателе до долейватта.
Современный автоматизированный электропривод представляетсобой сложную электромеханическую систему, предназначенную для приведения вдвижение рабочего органа машины и управления её технологическим процессом. Онсостоит из трёх частей: электрического двигателя, осуществляющегоэлектромеханическое преобразование энергии, механической части, передающеймеханическую энергию рабочему органу машины, и системы управления,обеспечивающей оптимальное по тем или иным критериям управление технологическимпроцессом. Диапазон изменения номинальных частот вращения электропривода имеетвесьма широкие пределы. Использование средств дискретной техники в системахуправления приводами постоянно тока расширяет диапазон регулирования скоростидо (1000-1500:1 и выше. Нельзя представить себе ни одного современногопроизводственного механизма, в любой области техники, который не приводился быв действие автоматизированным электроприводом. В электроприводе основнымэлементом, непосредственно преобразующим электрическую энергию в механическуюявляется электрический двигатель, который чаще всего управляется при помощисоответствующих преобразовательных и управляющих устройств с целью формированиястатистических и динамических характеристик электропривода, отвечающихтребованиям производственных механизмов.
Речь идёт об обеспечении с помощью автоматизированногоэлектропривода оптимального режима работы машин, при котором достигаетсянаибольшая производительность при высокой точности.
Многообразие производственных процессов обуславливаетразличные виды и характеры движения рабочих органов машины, а следовательно, иэлектроприводов. По виду движения электроприводы могут обеспечить: вращательноеоднонаправленное движение, вращательное реверсивное и поступательноереверсивное движение. Характеристики двигателяи возможности системы управления определяют производительность механизма,точность выполнения технологических операций.
Свойства электромеханической системы оказывают решающеевлияние на важнейшие показатели рабочей машины и в значительной мере определяюткачество и экономическую эффективность технологических процессов. Развитиеавтоматизированного электропривода ведёт к совершенствованию конструкций машин,к коренным изменениям технологических процессов, к дальнейшему прогрессу вовсех отраслях народного хозяйства, поэтому теория электропривода- техническаянаука, изучающая общие свойства электромеханических систем, законы управленияих движением и способы синтеза таких систем по заданным показателям имеетважнейшее практическое значение.
Системы автоматического управления электроприводамипостоянного и переменного тока, в которых используются все достиженияполупроводниковой техники, а так же возможности электронной вычислительнойтехники, позволяют существенно упростить конструкции производственныхмеханизмов, повысить их точность и поднять производительность, т.е. способствоватьтехническому прогрессу. Широкая автоматизация механизмов на базе следящихсистем электроприводов, систем с цифровым программным управлением и средствкомплексной автоматизации – обширная и весьма важная развивающаяся областьавтоматизированного электропривода.
1.Расчёт статистических нагрузок имощности ДТП
1.1Статистическая нагрузка при движении тележки с грузом
Рс1=кg(mт+mг) (мDц/2+f)v/nD/2
где к-коэффициент, учитывающий трение
(к=1,2 1,3).Принимаем к=1,25
g-ускорение свободного падения, Н*м2;
mт-масса тележки, кг;
mг-масса груза, кг;
f-коэффициент трения качения.Принимаем в зависимости от диаметра колеса. принимаем f=0.0005
м-коэффициэнт трения;
Dц-диаметр цапфа;
V-скорость передвижной тележки, м/с;
D-диаметр колёс, м;
n-номинальный КПД передачи механизма.
Рс1=1,25*9,81(6000+28000)(0,25*0,08/2+0,0005)*0,32/0,65*0,4/2=10776Вт=10,78кВт
1.2 Мощностьдвигателя при движении тележки без груза определяется аналогично, с учётом что mг=0
Рс2=кgmт(мDц/2+f)V/n*D/2
Рс2=1,25*9,81*6000(0,25*0,08/2+0,0005)*0,32/0,65*0,4/2=1902Вт=1,9кВт
1.3 Время работы с грузом и без груза
tp1=tp2=L/V,
где L-расстояние перемещения, м
tp1=tp2=18/0.32=56.8c
Время цикла призаданной продолжительности включения
tц=(tp1+tp2)*100% / ПВ%?
где ПВ% заданнаяпродолжительность включения
tц=(56,8+56,8)*100% /34%=334 c
Время пауз
tп1=tп2=(tц-(tp1+tp2))/2
tп1=tп2=(334-(56,8+56,8))/2=110,2с
Так как время цикла меньше 10 минут, то режим работыповторно-кратковременный
1.4 Эквивалентнаясреднеквадратичная мощность за время работы
Рэ= (Р2с1*tp1+P2c2*tp2)/(tp1+tp2)
Рэ= (10,782*56,8+1,92*56,8)/(56,8+56,8) =7,74кВт
1.5 Эквивалентнаямощность, приведённая к стандартной ПВ%
Pэк=Кз*Рэ* ПВ/ПВст ,
где Кз-коффициэнт запаса (Кз=1,1 1,3). Принимаем Кз=1,2;
ПВст-стандартная продолжительность включения, ПВст=40%
Рэк=1,2*7,74 34/40 =8,56 кВт
1.6 Выбордвигателя постоянного тока (ДПТ)
Согласно [4] номинальная мощность выбираемого двигателя должна быть эквивалентноймощности,
Рэк >Рэн. Выбираем D32
Рном=12кВт; nном=800 мин-1; Uном=220В; Кa =0.28 Ом;
Iном=57А; Iв=1,85А; Р при ПВ=40%=9,5кВт; Iдв=0,425кг*м2
Номинальная угловаяскорость
wн=2пn/60,
где n-номинальная частота вращения,
wн=2*3.14*800/60=83.37
1.7 Передаточноеотношение редуктора
ip=(wн*D/2)/V*60
ip=(83.37*0.4/2)/0.32*60=0.87
2.Расчёт и построение эл./механическиххарактеристик
2.1 Построение соответственных электромеханическиххарактеристик.
Механические характеристики для ДТП с параллельнымвозбуждением представляют собой прямые линии, поэтомудля их построения достаточно определить координаты 2-х точек:номинального режима и холостого хода
Номинальный момент
Мн=Рн/wн,
где Рн-номинальнаямощность двигателя, кВт
Мн=12000/83,73=133,46Н*м
Для холостого хода момент принимается равным нулю, М0=0.
Скорость находится из выражения
w0=Uн/КФ,
где КФ=(Uн-Iн*Ra )/wн,
где Uн-номинальное напряжение при ПВ%ст, В;
Iн-номинальный ток, А;
Ra -суммарное сопротивление якоря, Ом.
КФ=(220-57*0,28)/83,73=2,44
w0=220/2.44=90.16
Эти характеристикипредставлены на рисунке 4.
2.2 Статистические моменты сопротивления двигателя придвижении тележки с грузом и без груза
Мс1=Рс1/wн
Мс1=10,78/83,37=128,7Н*м
Мс2=Рс2/wн
Мс2=1,9/83,73=22,71Н*м
Строим их каквертикальные линии в 1 и 3 квадранте.
2.3 Для построения пусковых реостатных характеристик задаемсямоментами переключения
М1=(2 3)Мн
М1=(2 3)*133,6=226,92 340,38 Н*м
М2>(1.1 1.2)Мн
М2>(1,1 1,2)*133,46>124,81 156,12 Н*м
П =М1/Мн
П=(226,92 34,38)/133,46=2 3
Rном=Uном/Iном
Rном=220/57=3.86 Ом
Ra=Ra /Rном=0,28/3,86=0,0725
Принимаем П =3.Задаёмся числом ступеней z=2
М2= Пz Ra*П
М2=32 0,0725*3=1,39
М2=М2*Мн
М2=1,39*133,46=158,74
Выбранные значения П и zсоответствуют выполнению условия М2>(1,1 1,2)Мн
2.4 Построение тормозной характеристики для ДТП
При типе торможения Встроим тормозные характеристики, проводя прямые через точку w0и пересечение линии Мс и точкой 0,2wн
2.5 Расчёт пусковых и тормозных резисторов
R1=Rном*bc/af=3.86*8/92=0.34
R2=Rном*cd/af=3.86*16/92=0.67
Rт1=Rном*de/af=3.86*32/92=1.34
Rт2=Rном*de/af=3.8*275/92=11.54
3.Расчет переходных процессов при пуске и торможенииэлектропривода
3.1 Расчёт переходных процессов при движениитележки с грузом
Тм=Iw0/Mкз=I w/ M
Iг=Iдв+(I1/100%)Iдв+mг(V/wдв)2
где Iдв-момент инерции двигателя, кг*м2
I1-момент инерции механизмов, приведённой к валу, %
mг-масса тележки с грузом, кг
V-скорость движения тележки, м/с
wдв-частота вращения двигателя, об/мин
Iг=0,425+(25/100)*0,425+34000(0,32/800)2=0,54
Рассматриваем переходный процесс при движении тележки сгрузом по участкам
участок 1-2
w=(wнас-wуст)e-t/Tм+wуст
М=(Мнас-Муст)е-t/Тм+Муст
Для определения переходного процесса, необходимо знать:
Тм1=Iг*w2/(V1-V2)
wнач=0 ; wуст=w7=54
Мнач=320; Муст=128,7
Тм1=0,54*47/(320-158,7)=0,16
w=(0-54)e-t/0.16+54
M=(320-128.7)e-t/0.16+128.7
Результаты вычислений сводим в таблицу
1 этапразгона
t
0
0,1
0,2
0,3
w
0
25,1
38,5
47
M
320
231,1
183,5
158,7
участок 3-4
wнач=w2=47; wуст=w8=73
Mнач=320=M1; Mуст=Mc1=128.7
Tм2=I(w4-w2)/(M1-M2)
Tм2=0.54(70-47)/(320-158.7)=0.08
w=(w2-w8)e-t/Tм2++w8
w=(47-73)e-t/0.08+73
М=(М1-Мс1)е-t/0,08+Мс1
М=(320-128,7)е-t/0.08+128.7
Результаты расчёта сводим в таблицу
11 этап разгона
t
0
0,1
0,2
w
47
65,5
70
M
320
183,5
158,7
участок 5-6
wнач=w4=70; wуст=w6=83
Mнач=M1=320; Mуст=Mc1=128.7
Tм3=Iг(w6-w4)/(M1-Mc1)
Tм3=0.54(83-70)/(320-128.7)=0.04
w=(w4-w6)e-t/Tм3+w6
w=(70-83)e-t/0.04+83
M=(M1-Mc1)e-t/Tм3+Mc1
M=(320-128.7)e-t/0.04+128.7
Результаты расчета сводим в таблицу
участок 3`-4`
wнач=w2=-47; wуст=w8`=-88
Mнач=-M1=-320; Mуст=-Mc2=-22,7
Tм2`=I/(w4`-w2`)/(-M1+M2)
Tм2`=0.53(-47)/(-320+158,7)=0.15
w=(wнач-w7)e-t/Tм1+w7
w=84e-t/0.15-84
M=(-M1+Mc2)e-t/Tм1-Mc2
M=(-320+22,7)e-t/0.15-22,7
Результаты вычислений сводим в таблицу
Выход на естественную характеристику
t
0
0,1
0,2
w
70
82
83
M
320
144,4
128,8
участок 9-10
wнач=w9=83; wуст=w10=17
Mнач=M9=14; Mуст=Mc1=128.7
Tм4=Iг(w10-w9)/(M9-Mc1)
Tм4=0.54(17-83)/(14-128.7)=0.34
w=(w9-w10)e-t/Tм4+w10
w=(88-17)e-t/0.34+17
M=(M9-Mc1)e-t/Tм4+Mc1
M=(14-128.7)e-t/0.34+128.7
Результаты вычислений сводим в таблицу
этапторможения
t
0
1
2
w
83
20,5
17,2
M
14
122,6
128,4
3.2 Расчёт переходных процессов при движении тележки безгруза
I=Iдв+(I1/100%)Iдв+m(V/wдв)2
где I-момент инерции электропривода, кг*м2
m-масса тележки с грузом, кг
I=0,425+(25/100)*0,425+6000(0,32/800)2=0,53
Рассмотрим переходный процесс при движении тележки без грузапо участкам
участок 1`-2`
wнач=0; wуст=w7=-84
Mнач=-M1=14; Mуст=-Mc2=-22,7
Tм1=Iw2/(-M1+M2)
Tм1=0.53*(-47)/(-320+158,7)=0.15
w=(wнач-w7)e-t/Tм1+w7
w=84e-t/0.15-84
M=(-M1+Mc2)e-t/Tм1-Mc2
M=(-320+22,7)e-t/0.15-22,7
Результаты вычислений сводим в таблицу
1 этап разгона
t
0
0,1
0,2
w
0
-40,8
-47
M
-320
-175,3
-158,7
участок 3`-4`
wнач=w2`=-47; wуст=w8`=-88
Mнач=-M1=-320; Mуст=-Mc2=-22,7
Tм2`=I/(w4`-w2`)/(-M1+M2)
Tм2`=0.53(-47)/(-320+158,7)=0.15
w=(w2-w8)e-t/Tм`+w8
w=(-47+88)e-t/0.15-88
M=(-M1+Mc2)e-t/Tм2`-Mc2
M=(-320+22,7)e-t/0.075-22,7
Результаты вычислений сводим в таблицу
11 этапразгона
t
0
0,1
0,06
w
-47
-77,2
-70
M
-320
-101,1
-158,6
участок 5`-6`
wнач=w4`=-70; wуст=w6`=-90
Mнач=-M1=-320; Mуст=-Mc2=-22,7
Tм3`=I/(w6`-w4`)/(-M1+Mc2)
Tм3`=0.53(-90+70)/(-320+22.7)=0.035
w=(w4`-w6`)e-t/Tм3`+w6`
w=(-70+90)e-t/0.035-90
M=(-M1+Mc2)e-t/0.035-Mc2
M=(-320+22,7)e-t/0.035-22,7
Результаты вычислений сводим в таблицу
Выход на естественную характеристику
t
0
0,1
0,2
w
-70
-89,3
-90
M
-320
-33,3
-22,7
участок 5`-6`
wнач=w9`=-90; wуст=w10`=-17
Mнач=M9`=-2; Mуст=-Mc2=-22,7
Tм4`=I/(w9`-w10`)/(-Mc2+M9`)
Tм4`=0.53(-90+17)/(-22.7+2)=1.8
w=(w9`-w10`)e-t/Tм4`+w10`
w=(-90+17)e-t/1.8-17
M=(M9`+Mc2)e-t/Tм4-Mc2
M=(-2+22,7)e-t/1.8-22,7
Результаты вычислений сводим в таблицу
этапторможения
t
0
1
2
3
4
5
6
7
w
-90
-58,9
-41,03
-30,8
-25
-21,5
-19,8
-17,1
M
-2
-10,8
-15,9
-18,8
-20,5
-21,4
-22
-22,7
4.Строим нагрузочные диаграммы для проверки двигателя понагреву
Движения тележки с грузом
SOAB=1/2AB*OB
SOAB=1/2*(110/60)*0.7=0.64рад
Lпуск=SОАВ*D/2*ip
где D-диаметр ходовых колёс, м
ip-передаточное отношение редуктора
Lпуск=0,64*0,4/2*0,87=0,15 м
SCFGD=SCKE+SEFGD
SCKE=1/2CE*EK
SEFGD=ED*DG
SEFGD=(16/60)*3+0.8рад
SCFGD=0.56+0.8=1.36рад
Lтормг=SCFGD*D/2*ip
Lторм г=1.36*0.4/2*0.87=0.31 м
Lуст.г=L-(Lпуск.г+Lторм г)
Lуст.г=18-(0.15+0.31)=17.54 м
Определяем установившееся время работы при движении тележкис грузом
tуст.г=Lуст.г/V
tуст.г=17.54/0.32=54.8 с
Движение тележки без груза
SOAB=1/2AB*OB
SOAB=1/2(110/60)0.4=0.37рад
Lпуск.б/г=SOAB*D2*ip
где Lпуск-расстояние, на которое перемещается тележка
во время пуска, м
Lпуск б/г=0,37*0,4/2*0,87=0,08 м
SCDEF=SKDG+SCKFE
SKDG=1/2KD*CE
SKDG=1/2(73/60)*3.6=2.19рад
SCKFE=CK*CE
SCKFE=(17/60)*7=1.98рад
SCDEF=2.19+1.98=4.17рад
Lтормг=SCDFE*D/2*ip
Lторм г=4.17*0.4/2*0.87=0.96 м
Lуст.г=L-(Lпуск.б/г+Lторм б/г)
Lуст.г=18-(0.08+0.96)=16,96
Определяем установившееся время работы при движении тележкибез груза
tуст.г=Lуст.б/г/V