Реферат по предмету "Сельское хозяйство"


Програмирование урожайности ярового тритикале

--PAGE_BREAK--
Определение потенциального урожая по приходу солнечной энергии (использование ФАР).
   В процессе фотосинтеза, в результате которого образуется органическое вещество, составляющее 90-95% биомассы растений, используется только часть солнечной радиации,  находящейся в спектральном интервале длин волн от 380 до 710 нм. Эту часть солнечной энергии называют фотосинтетически активной радиацией (ФАР). Установлено, что урожаи, получаемые в производстве, намного ниже тех, которые могут быть обеспечены приходом ФАР и другими климатическими ресурсами.

   Поэтому при программировании урожаев, прежде всего, определяют величину потенциального урожая, который может быть получен в данной климатической зоне при оптимальных почвенных и агротехнических условиях. Она  зависит от величины ФАР и возможностей ее использования культурой (сортом).

   Зная приход ФАР в конкретном районе за вегетационный период, можно поставить задачу усвоения посевами 2-3% или более ФАР и на основании этих показателей с учетом калорийности единицы органической массы урожая определить возможную урожайность культуры (сорта) или нескольких культур, выращиваемых на одном поле. В среднем каждый килограмм сухой органической массы аккумулирует 16750 кДж (4000 ккал)  энергии. Расчет проводят по формуле:

 

Убиол =      EQK
    ,        

                                                                       100q   

Где Убиол – биологический урожай абсолютно сухой растительной массы, т/га; EQ– суммарный приход ФАР за вегетационный период культуры в данной зоне млрд. кДж/га (млрд. ккал/га); К – запланированный коэффициент использования ФАР, %;  q– количество энергии, выделяемое при сжигании 1 кг сухого вещества биомассы (обычно принимают q= 16750 кДж).

   Посевами тритикале запрограммировано усвоить 2% ФАР. За период вегетации в посевы приходится 19,80 млрд. кДж/га. При этих показателях ФАР урожай абсолютно сухой биомассы составит

 

Убиол =  9,913 * 109 *2    =  11,8 т/га абсолютно сухой биомассы;

                             105 * 16750
   Для перехода от урожая абсолютно сухой биомассы к  урожаю зерна  при стандартной влажности пользуются формулой:
У о. пр. = 100 Убиол

                          (100 – В ст.) * а,
Где  Уо.пр.- урожай основной продукции при стандартной влажности, т/га;  Убиол   —  биологический урожай абсолютно сухой растительной массы, т/га; В ст. – влажность основной продукции по ГОСТу, %; а – сумма относительных частей основной и побочной продукции в общем урожае сухой биомассы.

  
У о. пр. = 100 * 11,8          = 5,97т/га.

                                                     (100 –14) * 2,3
   Итак, урожай абсолютно сухой биомассы  по приходу ФАР будет равен 11,8 т/га, а урожай основной продукции 5,97 т/га.
Определение потенциального урожая по биоклиматическим показателям.
   По ограниченной теплообеспеченности величину потенциального урожая можно определить по гидротермическому показателю (ГТП) или величине биоклиматического потенциала  (БКП), которые учитывают и влагообеспеченность. Урожай сухой биомассы по ГТП рассчитывают по формуле А. М. Рябчикова:

Убиол. = 2,2 ГТП – 10.
Здесь ГТП = 0,46 Кувл * Тв,
Кувл. =     2453 * W


                         104   * R         ,
где Убиол. – биологический урожай абсолютно сухой биомассы, т/га; ГТП -  гидротермический показатель (потенциал) продуктивности; Тв – период вегетации культуры, декады; Кувл. – коэффициент увлажнения; 2453 – коэффициент скрытой теплоты испарения, кДж/кг (568 ккал/кг);  W– количество продуктивной влаги за период вегетации, мм; R– суммарный радиационный баланс за этот период, кДж/см2, (ккал/см2).
Кувл. = 2453 * 338    =  1,24

  104 * 67,0
ГТП = 0,46 * 1,24 * 12 = 6,84
Убиол. = 2,2 * 6,84 – 10 = 5,05 т/га.
Урожай зерна будет равен:
Уз. =  100 * 5,05           =  2,55 т/га.

                                                   (100-14) * 2,3
   Итак, урожай сухой биомассы по ГТП будет равен 6,84 т/га, урожай зерна – 2,55 т/га.

Расчет возможного урожая по биоклиматическому потенциалу продуктивности проводят по формуле:
Убиол. = В * БКП,
В свою очередь, БКП = Кувл. Еt
›10 оС,

                                                    1000 оС
где В – коэффициент продуктивности равный 1 т зерна на 1 га при использовании 1% ФАР, 2 и 3 т – соответственно при использовании 2 и 3% ФАР; БКП – биоклиматический потенциал продуктивности; Кувл. – коэффициент увлажнения; Еt›10 оС – сумма среднесуточных температур выше 10 о С за период вегетации культуры; 1000 оС – сумма температур выше 10 о С на северной границе земледелия.

 

                          Убиол. =  1,24  2246   = 2,79   тогда

                             1000
При использовании 1% ФАР – У1 = 2,79 * 1 = 2,79 т/га; при 2% ФАР – У2 = 2,79 * 2 = 5,58, и при 3% ФАР У3 = 2,79 * 3 = 8,37 т/га.
Определение возможного урожая по влагообеспеченности посевов.
Величину возможного урожая рассчитывают по формуле:
Убиол. =   100 * W  ,

                 Кв
где W– суммарное количество продуктивной влаги, мм; Кв – коэффициент водопотребления, мм га/т. Все данные берутся из справочника.
Убиол. =   100 *55  = 12,2 т/га.

                                                              450
   Итак, величина возможного урожая по влагообеспеченности посевов равна 12,2 т/га абсолютно сухой массы.
5. Разработка структурной модели высокопродуктивного растения и посева.

 

   Проблема получения максимального количества растениеводческой продукции с минимальными затратами заключается в оптимизации земледельческой отрасли, в первую очередь за счет подбора соответствующих культур и технологии их возделывания.

   Формирование высокопродуктивного посева зерновых требует точного регулирования многочисленных факторов, определяющих высокую биологическую и, особенно, хозяйственную урожайность. Поэтому процесс формирования продуктивности необходимо рассматривать в сочетании с теми факторами, от  которых зависит величина, как общей  биологической продукции, так и основной ее части – урожая зерна.

   При этом только точное знание законов и закономерностей формирования урожайности, учет количественных и качественных дозировок основных факторов среды и агротехники, влияющих на урожай, выбор этапов их наиболее эффективного воздействия на урожай может обеспечить успех в получении высокого урожая.

   Реакция ярового тритикале на почвенно-климатические условия Беларуси.   К почве яровое тритикале менее требовательно, чем другие яровые хлеба. При высоком уровне агротехники он хорошо удается на супесчаных, суглинистых, глинистых и торфяных почвах, что объясняется особенностями корневой системы. Может произрастать при повышенной кислотности (рН 5-6). На известкование кислых почв реагирует положительно.

   На формирование 100 кг зерна и соответствующее количество соломы яровое тритикале потребляет 2,5-2,9 кг азота, 0,7-1,4 кг фосфора и 1,8-3,3 кг калия.  Использование азота и калия растениями тритикале происходит равномерно во все фазы вегетации. В фосфоре он больше всего нуждается в начальный период роста. Благодаря развитой корневой системе и высокой поглотительной способности корней овес эффективно использует последействие удобрений и усваивает питательные вещества из трудно растворимых соединений.

   Фазы роста и развития растений.   Жизненный цикл растений ярового тритикале разделяется на различные фазы, в каждой из которых происходят определенные изменения в развитии. Степень развития органов в каждой фазе, как и время прохождения их, меняется в зависимости от генотипа образца и окружающей среды.

   Прорастание и всходы. Все культурные виды ярового тритикале прорастают быстро и дружно. При прорастании семян развиваются три зародышевых корешка, затем из верхней части зародыша вытягивается почечка. Почечка выходит наружу под прикрытием первичного влагалищного пленчатого листочка – колеоптиле, лишенного пластинки. Этот влагалищный лист быстро прекращает рост, а росток развивается в первый зеленый лист с листовой пластинкой. Всходы обычно появляются на 6-7 день, при пониженных температурах весной на 11-12 день и позднее. Начало всходов отмечают с появлением у растений первого зеленого листа.

   Кущение.После появления первого листа главный стебель временно приостанавливается в росте и начинается процесс кущения, который заключается в том, что на подземных  узлах из листовых пазух развиваются новые побеги. Последние выйдя на поверхность земли, развиваются также как и главный стебель. Эта фаза  начинается обычно через 10-15 дней после появления всходов, в момент развития 3-4-го листа. Число всех стеблей на одно растение обозначается как общая кустистость, а число стеблей с нормально развитой метелкой – как продуктивная. Последняя обычно составляет 2-4 стебля. В разреженных посевах кустистость возрастает. В фазе полного кущения у ярового тритикале  различают следующие формы куста: прямостоячую, распластанную и промежуточную.

   Выход в трубку. Начинается фаза через 10-15 дней после кущения и означает начало образования соломины. На практике можно определить прощупыванием узла на стебле от поверхности почвы. Обычно с этого момента начинается быстрый рост надземных органов и корней, который продолжается до цветения; позднее процессы роста замедляются и постепенно затухают. После выхода в трубку появляются органы полового размножения – цветки, собранные в колоски и соцветие – метелку.

   Выметывание метелки. В полевых условиях эту фазу определяют по появлению первого колоска из влагалища первого листа. У разных видов и сортов срок выметывания различен.

   Цветение и оплодотворение. Цветение  начинается одновременно с выходом метелки из влагалища с растрескиванием пыльников самых верхних ее колосков и концов отдельных веточек. Затем цветение последовательно переходит к основанию веточек и мутовок метелки. В колоске оно начинается с нижнего цветка и идет в восходящем порядке,  поэтому колоски в метелке разновозрастные. По характеру цветения яровое тритикале относят к типу раскрытоцветковых. Во время этого процесса чешуи цветков в той или иной мере расходятся иногда в угол 450 и более, что обусловливается набуханием двух нежных пленочек – лодикул, скрытых внутри чешуи.  Пыльники лопаются и выбрасывают пыльцу, когда еще находятся вблизи рылец, внутри цветка, что и способствует самоопылению. Позднее цветковые пленки в той или иной мере раскрываются, тычиночные нити вытягиваются, пыльники выходят наружу и освобождаются от остатков пыльцы. Интенсивность цветения строго зависит от погодных условий. Наиболее благоприятна для цветения влажная погода с температурой воздуха 20-25 градусов. Массовое обильное цветение наступает в ясную теплую погоду после дождя. Большое влияние на формирование урожая оказывает режим питания или избыток основных элементов минерального питания. Белоколосость возникает также на  кислых торфяных почвах и при механическом повреждении метелки во влагалище листа.

   Созревание зерна. После оплодотворения начинается приток питательных веществ к завязи и формирование зерна. При наступлении молочной спелости зерно содержит до 50% воды. Зародыш в этот период способен прорастать. Вегетативные органы в основном еще зеленые, но начинается пожелтение нижних листьев с верхушки по направлению к листовому влагалищу и затем их отмирание. Приток питательных веществ к зерну из листьев и других частей растения увеличивается, лишняя влага в зерне испаряется, доходя до 25-30%, после чего наступает желтая, или восковая спелость. Зерно в это время имеет консистенцию воска, желтеет и легко режется ногтем. С наступлением восковой спелости листья отмирают, стебли становятся желтыми, за исключением самого верхнего междоузлия; узлы соломины, начиная с нижних, постепенно сморщиваются. В дальнейшем приток питательных веществ прекращается, зерно высыхает до влажности 10-14% и переходит в состояние полной спелости, становясь твердым. Соломина в это время полностью желтеет. Зерна, образовавшиеся в соцветии раньше, обычно крупнее и тяжелее тех, которые сформировались позднее.

   Полевая всхожесть семян.  Оптимальная густота растений – одно из важнейших условий, определяющих продуктивность посевов. Изреженный стеблестой исключает возможность получения высоких урожаев, ухудшает перезимовку растений; излишне густой – вызывает снижение продуктивности отдельных колосьев и качества зерна, увеличивает опасность поражения растений болезнями. Полевая всхожесть оказывает существенное влияние на формирование густоты растений, сохраняемость их к уборке и густоты продуктивного стеблестоя. Как правило, она значительно ниже лабораторной и зависит от взаимодействия агротехнических, почвенных, метеорологических условий и качества семян. Чем выше культура земледелия, тем более значительно полевая всхожесть приближается к уровню лабораторной всхожести семян. Основными причинами снижения всхожести в полевых условиях являются  поражение проростков болезнями, недостаток или избыток влаги в почве, глубокая или мелкая заделка семян при севе.

   Доказано, что полевая всхожесть семян снижается при увеличении нормы высева семян и заглублении их в почву. В значительной мере зависит от метеорологических условий в период сев-всходы и в первую очередь от влажности почвы и температуры воздуха и почвы.

   Общая и продуктивная кустистость.  Для получения высоких и стабильных урожаев недостаточно создать оптимумы влагообеспеченности и содержания элементов минерального питания в почве, важно сформировать соответствующие морфоструктуры растений  и продуктивный агрофитоценоз, которые бы позволили эффективно использовать эти факторы для накопления урожая.

   В современных интенсивных системах возделывания зерновых культур формирование оптимальной плотности продуктивного стеблестоя является одним из ключевых моментов. По данным К.А.Касаевой (1986)  уровень урожайности на 50% зависит от плотности продуктивного стеблестоя, на 15% — от числа зерен в колосе и на 25% — от массы 1000 семян.

   Густота растений и коэффициент продуктивного кущения обусловливают плотность продуктивного стеблестоя.

   Установлено, что увеличение нормы высева семян ярового тритикале  и, следовательно, загущенности посевов, вызывает снижение как общей, так и продуктивной кустистости. Внесение азотных удобрений способствует кущению растений до определенного предела, после чего повышение доз удобрений незначительно изменяет кустистость, либо снижает ее при полегании посевов.

   Сохраняемость и общая выживаемость растений ярового тритикале.  Одной из важнейших особенностей сорта интенсивного типа, определяющей высокую урожайность, является способность сохранять к уборке оптимальную густоту растений.

   Под сохраняемостью понимают процентное соотношение числа сохранившихся к уборке растений на единице площади к числу взошедших. Общая выживаемость растений определяется как соотношение количества сохранившихся к уборке растений к числу высеянных на единицу площади всхожих семян, выраженное в процентах.

   Выпадение растений происходит на разных этапах их роста и развития и зависит от множества факторов, необходимых для формирования урожая, основными из которых являются метеорологические условия и уровень агротехники.

   У тритикале наибольшая гибель растений происходит в период от сева до всходов (15-20%). Значительные выпады растений вызывают вредители и болезни.

   Глубина заделки семян предопределяет морфологическую структуру проростка и способность базальной зоны злаков к побегообразованию. При заделки семян на глубину 2-3 см формируется растение с мощным узлом кущения и высокой интенсивностью процесса побега — и корнеобразования. При более глубокой заделке семян, если проросток и достигает поверхности почвы, о его способность к побегообразованию снижена и закладывается малопродуктивная жизненная форма.

   Доказано, что сохраняемость и общая выживаемость растений при увеличении нормы  высева снижается. Внесение азотных удобрений и применение средств защиты несколько способствует сохраняемости и выживаемости растений. Выживаемость растений и сохраняемость их в ценозе до уборки обуславливаются в основном уровнем полевой всхожести семян и перезимовке растений.

   Густота продуктивного стеблестоя.  В основе формирования высоких урожаев колосовых лежат два важных показателя: большое количество стеблей (колосьев) на единице площади и хорошее развитие каждого стебля (колоса). Характерным признаком высокопродуктивных ценозов хлебных злаков является выравненность растений при оптимальном стеблестое. Добиваться высокой выравненности растений следует начинать с посева.

   Выход на параметры оптимального стеблестоя может быть осуществлен двумя путями: 1) снижением продуктивной кустистости и увеличением количества растений на единице площади и 2) меньшим количеством растений и более высоким коэффициентом кущения. Во втором случае экономятся семена, более полно реализуется биологический потенциал растений и формируется наиболее высокий урожай зерна.

   Густота продуктивного стеблестоя является производным показателем от норм высева, полевой всхожести семян, продуктивной кустистости растений и их сохраняемости. Поэтому количество продуктивных стеблей на единице площади перед уборкой не является постоянной величиной и меняется в зависимости,  как от метеорологических условий, так и от агротехнических факторов.

   Доказано, что  формирование оптимальной густоты продуктивного стеблестоя зависит, в основном, от нормы высева семян, уровня минерального питания и средств химической защиты. С увеличением нормы высева возрастают густота растений и густота продуктивного стеблестоя. Однако чрезмерные нормы высева и повышенные дозы азотных удобрений, при хорошем водообеспечении  могут вызвать полегание посевов, снизить выживаемость растений и вследствие этого густоту растений и густоту продуктивного стеблестоя.

   Формирование элементов продуктивности колоса.  Формирование зерен в колосе происходит после перехода растений от вегетативного развития к генеративному. Продолжительность отдельных этапов развития колоса, его величина и число колосков зависят от генотипа растений и внешних условий. Наибольшее влияние оказывают температура воздуха, продолжительность дня и интенсивность освещения. Более низкая температура удлиняет период развития, в результате чего образуется более длинный колос. При интенсивном освещении и низкой температуре образуется наибольшее число колосков. Высокие температуры в период формирования колоса уменьшают число закладывающихся колосков, а при дефиците влаги вызывают отмирание уже заложенных зачатков колоса. Длинный день ускоряет развитие колоса, а короткий задерживает закладку колосков и цветков.

   Своевременная подкормка азотом удлиняет сроки прохождения решающих этапов органогенеза. Если ее проводят перед наступлением второго этапа, увеличивается число колосков, цветков и зерен в колосе.

   Закладка и развитие цветков происходит на 5-6 этапах органогенеза. К концу 7 этапа число колосков и цветков в колосе снижается: происходит или засыхание заложенных или образование бесплодных цветков. Низкие положительные, а также повышенные температуры воздуха, низкая интенсивность освещения, дефицит или избыток влаги снижают фертильность пыльцы, задерживают цветение, сокращают число фертильных цветков и число зерен в колосе.

   Максимальному завязыванию зерна благоприятствует невысокая температура и высокая интенсивность освещения, обуславливающие медленный рост и высокую интенсивность фотосинтеза. Недостаток азота также сказывается на завязывании зерен в верхних цветках. Отмечено, что применение азотной подкормки в фазе 4 листа  способствует усилению степени кущения,  в фазе 6-го листа – улучшению формирования колоса, в фазе начала выхода в трубку – снижению уровня редукции числа побегов, в фазе второго узла  — уменьшению редукции продуктивных органов колоса, в фазе колошения-начало цветения – улучшению налива зерна и увеличению содержания в нем белка.

   Некоторые авторы отмечают, что недостаток продуктивных побегов в процессе развития растений может быть компенсирован за счет большего числа фертильных колосков в колосе, а меньшее число фертильных колосков в колосе – за счет большего числа развитых зерен в колоске, малое количество образовавшихся зерен – за счет повышенной массы 1000 зерен.

   Таким образом, окончательное число зерен в колосе, их масса определяются рядом агротехнических факторов: нормой высева семян, уровнем минерального питания, густотой продуктивного стеблестоя и особое влияние оказывают сложившиеся конкретные метеорологические условия в период формирования генеративных органов.

   Установлено, что на формирование элементов продуктивности колоса оказывают влияние норма высева семян, уровень минерального питания, средства химической защиты и метеорологические условия в течение вегетации.

   Масса 1000 зерен – наименее изменчивый элемент в структуре продуктивности тритикале. Повысить этот показатель можно  продлением жизни верхних листьев, предотвратить с помощью фунгицидов их поражение грибными болезнями. Чем меньше завязывается зерен в колосе, тем лучше они развиваются и имеют большую массу. 
    продолжение
--PAGE_BREAK--
   Фотосинтетическая деятельность посевов ярового тритикале. После появления всходов дальнейший ход формирования генеративных органов и накопления вегетативной массы обуславливается фотосинтетической активностью растений. Эффективность большинства мероприятий, осуществляемых с целью повышения урожайности, зависит от того, насколько они создают условия для образования фотосинтетического аппарата и его активности.

   При нормальной динамике роста и развития и оптимальной плотности посевы могут поглощать за период фактической вегетации до 50-60% приходящей энергии света. Поглощенная энергия может быть использована на фотосинтез современными сортами культур с коэффициентом полезного действия 4-5,  в лучшем случае 8-10%. Однако в абсолютном большинстве КПД использования приходящей за время вегетации фотосинтетически активной радиации (ФАР) составляет около 0,5-1%.

   Основная причина низкой продуктивности площадей, занятых культурными растениями, заключается в том, что значительная часть приходящей ФАР обесценивается как фактор фотосинтеза неблагоприятным соотношением приходящей солнечной радиации с другими факторами продуктивности – теплом, влажностью почвы, обеспеченностью минеральным питанием.

   Агротехнику сельскохозяйственных растений следует совершенствовать таким образом, чтобы приходы энергии радиации, биологические особенности сортов, степень обеспеченности растений влагой и элементами питания составляли систему мероприятий, способную обеспечить наивысшие в данных условиях коэффициенты использования солнечной энергии и урожай.

   Важнейшей причиной затухающего действия возрастающих доз удобрений при высокой обеспеченности посевов и растений влагой является ухудшение оптических свойств посевов, ограничивающих продуктивность современных сортов. Зачастую удобрения и посевы не могут дать наилучшего результата при изреженных посевах, когда площадь листьев не достигает оптимальных размеров, а также при излишней первоначальной загущенности посевов, когда площадь листьев будет превышать оптимальную.

   По мере увеличения площади листьев в посевах до 30-40 тыс. м2/га процент поглощаемой энергии сильно повышается и достигает 85-90% приходящей на него ФАР при листовой поверхности в 40-60 тыс. м2/га. Дальнейшее возрастание площади листьев практически не увеличивает процент поглощения фотосинтетически активной радиации.

   Большое значение для получения высокого урожая тритикале имеет динамика формирования ассимиляционной поверхности растений, ее интегральные и дифференцированные характеристики.

   Оптимальным с хозяйственной точки зрения, считается такой ход формирования площади листьев в посевах,  при которой происходит быстрое наращивание и достижение максимальной ее величины и в то же время длительный период сохраняется высокая активность листьев.

   Величина площади листовой поверхности у растений значительно меняется под влиянием различных факторов среды: условий погоды, уровня минерального питания, водообеспеченности.

   Установлено, что в начале вегетации площадь листьев у растений увеличивается примерно в одинаковой степени как под влиянием азотного, так и фосфорного питания. В последующем усиленный рост площади листьев имеет место у растений, удобренных азотом, тогда как на фоне фосфорного питания рост листьев относительно замедляется. Многие исследователи считают, что в большинстве случаев оптимальные размеры площади листьев составляют 40-50 тыс. м2/га.

  Величина фотосинтетического потенциала (ФП) за весь период вегетации колеблется в зависимости от сорта, погодных условий года, агротехники и других факторов и бывает в пределах от 820-970 до 1560-1975 тыс.м2 дней/га. В образовании ФП всего растения максимальное участие принимают листья, междоузлия средней части стебля (3-6), значительно меньше – второго и седьмого междоузлий. В образовании урожая зерна доля листьев составляет 63,1-70,3%, стеблей и влагалищных оберток – 22,0-26,0; колосьев 106-11,3%.

   Многочисленные исследователи указывают на то, что в течение вегетации величина чистой продуктивности фотосинтеза (ЧПФ) изменяется в широком диапазоне, как под влиянием внешних условий, так и в результате эндогенных причин, обусловленных онтогенетическими сдвигами в развитии растений причем, с возрастанием оптической плотности и площади листьев  посевов при прочих равных условиях наблюдалось прямолинейное уменьшение величин чистой продуктивности фотосинтеза.

   Необходимо отметить, что суммарное накопление органических веществ зависит от величин чистой продуктивности фотосинтеза и фотосинтетического потенциала. Поэтому формирование оптимальной структуры посева с достаточно высоким фотосинтетическим потенциалом и чистой продуктивностью фотосинтеза обеспечит наибольшее накопление сухих веществ растениями.

   Таким образом, за вегетационный период роста формируется 40-45% величины фотосинтетического потенциала и 55-60% приходится на репродуктивный период. Именно в этот период, идет формирование и налив зерновки и поэтому более высокая чистая продуктивность фотосинтеза и высокий ФП  в репродуктивный период позволяют растениям и посевам ячменя больше накапливать сухих веществ, что положительно сказывается на наливе зерна, соотношении между зерном и соломой и на конечной величине урожая.

  
  
6. Разработка технологии возделывания озимого ячменя для получения запрограммированного урожая.

   Место в севообороте.  Лучшие предшественники для возделывания ярового тритикале – пропашные и бобовые культуры. Допустимые – зерновые колосовые, гречиха, злаковые травы.

   Почвенные условия. Наиболее пригодными для ярового тритикале являются дерново-подзолистые суглинистые и супесчаные почвы, подстилаемые моренным суглинком. Допустимо возделывание на дерново-подзолистых суглинистых и супесчаных почвах, подстилаемых песками, а при достаточном обеспечении влагой успешно произрастает и на песчаных почвах, уступая в этом отношении только ржи. Тритикале по сравнению с яровой пшеницей и ячменем лучше переносит повышенную кислотность почвы. Его можно возделывать при рН 5,0-5,5, однако высокие и устойчивые урожаи он дает при рН- 5,6-6,0.

   Обработка почвы. Обработка почвы осуществляется в соответствии с требованиями научно-обоснованных систем земледелия. В качестве первого приема применяют послеуборочное лущение стерни после зерновых предшественников: на почвах, чистых от корневищных и корнеотпрысковых сорняков – на глубину 5-7 см, на засоренных почвах – на глубину 10-12 см. Используют тяжелые дисковые бороны БДТ-7, дискаторы АПН-3, АПН-4, АПО-3 и чизельные культиваторы КЧ-5,1,  КЧН-5,4,  АКЧ-5,4,  АПМ-6.

   Наиболее важным элементом системы основной обработки является зяблевая вспашка.  Она проводится через 2-3 недели после лущения при появлении всходов сорняков. Большое значение имеют сроки зяблевой вспашки. По опытным данным лаборатории тритикале, при вспашке 15 августа получена урожайность сорта Полонез 39,5 ц\га, а при вспашке 15 октября – 39,5 ц\га.  На вспашке применяют плуги ППО-4-40, ППО-5-40, LemkenVari-Titan. На почвах, чистых от многолетних сорняков проводят чизелевание в два следа с разрывом времени: первый – на глубину 10-12 см, второй – на глубину пахотного слоя. Чизельная обработка почвы значительно ускоряет сроки ее подготовки без снижения урожайности тритикале, а также способствует увеличению производительности и экономии топлива.

   При традиционной весенней обработке почвы первую почвообрабатывающую операцию проводят при возможности выхода техники в поле: на легких почвах – тяжелыми зубовыми боронами БЗТС-1 в сцепке СП-11 в два ряда; на почвах тяжелого механического состава – культиваторами КШП-8, КПЗ-9, КПМ-8 на глубину 5-7 см. Культивация для заделки минеральных удобрений проводится теми же культиваторами на глубину 5-8 см.

    Для предпосевной обработки применяют комбинированные агрегаты ФКШ-6, АКШ-7,2. Глубина обработки – 4-5 см. С целью сокращения сроков на обработку почвы и посев целесообразно использовать комбинированные почвообрабатывающие посевные агрегаты, позволяющие сократить затраты труда в 2,5 раза, а также сэкономить до 40% ГСМ.  В зависимости от типа применяют следующие машины:

— с пассивными рабочими органами: RAPID, HORSPRONTO, СПП-3,6, СЗС-400. Наиболее целесообразны на почвах легкого гранулометрического состава, а также на связных, свободных от многолетних сорняков и завалуненных почвах.

— с активными рабочими органами: Amazone,  Rabe,  Lemken, Ука-6. Рекомендуется использовать на тяжелых, а также средне- и легкосуглинистых почах.

    Удобрения.  Одним из важнейших элементов технологии возделывания ярового тритикале является система питания. Доля этого фактора в формировании урожая составляет 35-40%.

   В условиях республики под тритикале фосфорные удобрения вносят из расчета 50-60 кг\га д.в., калийные – 80-120 кг/га д.в. При определении доз азотных удобрений под посев необходимо учитывать механический состав почвы, предшественники и биологические особенности сорта. Оптимальная доза азота для ярового тритикале является 60-90 кг\га д.в.  Дробное внесение азотных удобрений не эффективно.

  

    

Определение возможного урожая по бонитету почвы и количеству применяемых удобрений.
   Программирование урожая по этому методу, разработанному в Белорусском НИИ почвоведения и агрохимии, основано на обеспечении растений питательными веществами за счет почвенных запасов и удобрений. Зная бальную оценку пашни и окупаемость удобрений единицей продукции, можно рассчитать урожай по следующей формуле:
У = (Бп * Цб * К) + (ДNPK
* ONPK),

100

У – программируемый урожай, ц/га;  ДNPK– доза минеральных удобрений, кг/га;  ONPK– окупаемость 1 кгNPK, кг продукции; Бп – бонитет почвы, балл; Цб – цена балла пашни, кг; К – поправочный коэффициент к цене балла на агрохимические свойства почвы; 100 – коэффициент перевода кг в ц.
У = (34 * 55 * 0,94) + (245 * 6,5)      = 33,5 ц/га.

                                                               100

   Итак, возможный урожай по бонитету почвы составит 33,5 ц/га.

Расчет доз удобрений на запрограммированный урожай по выносу питательных веществ с учетом эффективного плодородия почвы и использования их из удобрения.
Таблица 2. Расчет доз минеральных удобрений на программируемый урожай 40 ц/га ярового тритикале.



Показатели

N

Р2О5

К2О

Выносится со 100 кг зерна и соответствующим количеством соломы, кг

2,95

1,31

2,58

Общий вынос на заданный урожай кг/га

118

53

103

Содержится в пахотном слое почвы                            мг/100гр                        

                                                                                          кг/га

1,9

57

17

510

19

570

Коэффициент использования NPKиз почвы, %

0,3

0,1

0,12

Будет использовано питательных веществ из почвы, кг/га

17,1

51

68,4

Требуется внести питательных веществ с минеральными удобрениями, кг/га

100,9

2,0

34,6

Коэффициент использования питательных веществ из удобрения, %

60

25

65

Необходимо внести питательных веществ на планируемый урожай с учетом использования их из удобрений, кг/га

168

8

120

Содержится питательных элементов в минеральных удобрениях, %

34

19

40

Требуется внести минеральных удобрений, кг/га

494

42

300



   Итак, под программируемый урожай 40 ц/га необходимо внести: азота –494; фосфора –42; калия –300кг/га.

 
Расчет доз удобрений на планируемую прибавку урожая.
   Для расчета используют формулу:
Дпр. =   100 * Впр.

          Ку * С
где  Дпр. – доза минеральных удобрения, кг/га; Впр. – вынос питательного элемента с прибавкой урожая, кг/га; Ку – коэффициент использования питательного вещества из удобрения, %;  С – содержание действующего вещества в минеральном удобрении, %.
   Расчет дозы удобрения для азота:
Дпр. =   100 * 1918    =  94,02 кг/га.

                                                      60 * 34

  

   Расчет дозы удобрения для фосфора:

Дпр. =   100 * 851    =  179,2 кг/га.

                                                      25 * 19
   Расчет дозы удобрения для калия:
Дпр. =   100 * 1677    =  64,5 кг/га.

                                                        65* 40
   Итак, на планируемую прибавку урожая необходимо внести: азота –94,02; фосфора –179,2; калия –64,5 кг/га
   Микроэлементы играют важную роль в получении высокой урожайности зерна ярового тритикале  хорошего качества.

  Особенно сильно потребность в микроэлементах у тритикале возрастает при внесении повышенных доз фосфора и калия. Это связано с тем, что при внесении высоких доз фосфора уменьшается доступность растениям тритикале цинка, высоких доз калия – бора. Известкование затрудняет доступность большинства микроэлементов для растений овса.

   Способы применения и дозы внесения микроэлементов определяют с учетом обеспеченности ими почв.

   При низкой обеспеченности микроэлементы вносят в почву. Чаще всего не хватает меди, которую вносят в дозе 0,5-1,0 кг д.в./га.

   На среднеобеспеченных микроэлементами почвах рекомендуется обработка семян и некорневая подкормка, на высокообеспеченных почвах микроэлементы, как правило, не вносят.

   Бор и цинк (при необходимости) вносят путем обработки семян микроэлементами одновременно с протравливанием. Для этих целей можно использовать борную кислоту в дозе 250-400 г/т. семян и сульфат цинка в дозе 800-1000г/т семян.

   Медь лучше вносить в некорневую подкормку в дозе 25-50г/га д.в. или 100-200г/га медного купороса  фазу начало выхода в трубку озимого овса. Предварительно купорос растворяют в небольшом количестве теплой воды и затем смешивают с гектарной нормой воды (200-300 л/га).

   Протравливать семена лучше за 1-2 недели до посева. Семена на семенные цели протравливать обязательно. Препараты для протравливания семян: Байтан-универсал, с.п. — 2кг/т, Беномил, 50% с.п. –2-3 кг/т,  Витавакс, 200 ФФ, 34 в.с.к., –2,5-3 л/т.

   В последние годы в республике все шире применяется предпосевная обработка семян стимуляторами роста и микроудобрениями (Агат-25К, Сейбит-П. Симбионт-1 и др.) для повышения всхожести семян, общей и продуктивной кустистости, устойчивости к неблагоприятным факторам, в том числе и к болезням. Однако следует помнить, что на развитие пыльной головни такие препараты практически никакого угнетающего влияния не оказывают.

    Подготовка семян и посев.  Тритикале – культура раннего сева. Оптимальные сроки сева – при наступлении физической спелости почвы. Опаздывание с севом на 6 дней снижает урожай на 3 ц\га,  а на 12 дней (после оптимального срока) – 9,6-11,3 ц\га.

   Норма высева – 5,5-6,0 млн. всхожих зерен\га. Глубина заделки семян: на тяжелых суглинистых почвах 2-3 см, на суглинистых 3-4 см и супесчаных – 4-5 см. способ сева: сплошной рядовой или узкорядный, используя сеялки СЗУ-3,6, СЗ-3,6, СПУ-6.

   Семена заблаговременно протравливают против корневой гнили и ржавчины   следующими препаратами: витавакс 200 ФФ, 34% в.с.к. – 2,5 л\т;  витарос, ВСК – 2,5 л\т; дивиденд стар, КС – 1л\т и другими включенными в каталог пестицидов и удобрений протравителями, разрешенными для применения на тритикале в республике. Одновременно с протравливанием положительный эффект дает обработка микроэлементами. При этом необходимо учитывать, что в растворе должно быть не более двух микроэлементов, общее содержание их на 1 тонну семян не должно превышать 1 кг д.в. Недопустимо совместное использование прилипателя  Nа КМЦ и медьсодержащих препаратов для исключения их коагуляции. На 1 тонну семян требуется 10 л воды 0,2 кгNа КМЦ, микроэлементы, протравитель. Прибавка урожайности зерна от протравливания семян составляет от 3,0 до 6,0 ц\га.

    Уход за посевами.  Борьба с сорняками: агротехнические методы:довсходовое боронование проводят, когда проросшие сорняки находятся в стадии белых нитей, а проростки тритикале еще не достигли размера семени. Эффективно боронование в фазу 3-4 листьев. Боронуют поперек или по диагонали к направлению рядков боронами БЗСС-1, ЗБП-0.6А со сцепкой. Скорость движения агрегата 5-6 км/час. При наличии в посевах более 33 сорняков\м2 в фазу кущения для борьбы с сорной растительностью применяют гербициды: осот полевой, бодяг полевой и ромашку обрабатывают в фазу 3-4 листьев   следующими препаратами: гранстар, 75% с.т.с. – 0,0025; кортес, СП – 0,008; агрон, ВР – 0,16-0,2. В дальнейшем технология возделывания овса предусматривает комплекс приемов химической защиты по вегетирующим растениям. При высокой численности шведской мухи, тли, пьявицы и трипсов в фазах 2-3х листьев и кущения посевы обрабатывают инсектицидами: децис-экстра, КЭ – 0,05; каратэ, КЭ – 0,15; суми-альфа, 5% КЭ – 0,15.

При наличии корончатой ржавчины, красно-бурой пятнистости в период появления флаг – листа – выметывания – цветения растения опрыскивают фунгицидами: байлетон, СП – 0,5; бампер, 25% к.э. – 0,5; фоликур, КЭ – 1.

   Уборка. Резервом увеличения валовых сборов тритикале, наряду с повышением ее урожайности, является снижение потерь при уборке. При уборке должны быть решены задачи:


 1.своевременная уборка в сжатые сроки во избежание потерь зерна и снижения его качества;

 2.быстрая уборка соломы и половы с полей или равномерное ее распределение после измельчения на поле, чтобы создать условия для обработки почвы;

 3.незамедлительная доработка поступающего на ток зерна, его очистка, сушка, сортировка.

   Прямое комбайнирование семеноводческих посевов можно начинать при влажности зерна 16-18%. В этом случае сформирован максимальный урожай зерна. Перестой спелого хлеба на корню снижает урожайность на 5-6 ц/га за счет осыпания  и резко ухудшает качество зерна.

   Необходимо помнить, что при хранении зерна в насыпи  влажное зерно начинает согреваться уже через несколько часов.

 Предварительно подработанный ворох влажностью 18-20% в насыпи может храниться не более 3-4 суток, влажностью 22-25% — не более суток. Это обусловлено тем, что при хранении семенной фракции влажностью 22-24% насыпью уже на второй день происходит снижение всхожести, а влажностью 25% и более – в первые сутки.

   В последние годы участились случаи выпадения повышенного количества осадков в период уборочных работ, что приводит к полеганию посевов. Поэтому для того, чтобы сохранить выращенный урожай, важно знать особенности уборки полегших посевов:

1.                Все комбайны  должны быть оборудованы стеблеподъемниками, поскольку количество полегших и поникших стеблей резко возрастает, что приводит к увеличению потерь колосьев за жаткой.

2.                В первую очередь следует обмолачивать те участки, где качество хлебостоя хорошее, но угроза прорастания на корню велика.

3.                Поскольку полегший хлебостой подсыхает медленно, то для повышения дневной выработки – утром (с 9 до 11 часов) и вечером (после 17 часов) следует убирать не полеглые хлеба, а в «сухое время» дня – полеглые участки.

4.                Убирать сильно полеглые хлеба нужно против или перпендикулярно направлению полегания, с обязательным использованием стеблеподъемника, что позволит сократить потери зерна на 8-10%. Если хлеба покручены и поросли травой, то такие участки следует  убирать вкруговую.

5.                На полеглых и засоренных посевах через каждый час работы необходимо осматривать и очищать подбарабанье, соломотряс, скатную доску грохота.

6.                В особо критических случаях проводить предуборочное подсушивание гербицидами глифосатной группы. На обработанных участках уборка полегших хлебов будет проводиться с меньшими потерями, а время возможного обмолота продлится на два часа. В итоге, как правило, дополнительные затраты на химическую обработку компенсируются прибавкой зерном. Если зерно в дальнейшем будет использоваться на фуражные цели, то доза гербицида, например раундапа может достигать до 4 л/га, если же на семенные цели – 1 л/га, поскольку снижается всхожесть и энергия прорастания.

   Сорта.  В Государственный реестр сортов РБ включены следующие сорта ярового тритикале:

ИНЕССА. Включен в Государственный реестр по Гомельской области с 1997 г. Вегетационный период 102-127 дней. Зернофуражного использования. Устойчив к полеганию. Содержание сырого протеина 14,2-15,5%. Пригоден для использования в качестве поддерживающей культуры для возделывания в смеси с полегающими зернобобовыми культурами.

ЛАНА. В Государственном реестре находится с 1998 г. и допущен на территории всей республики. Вегетационный период 90-109 дней. Устойчив к полеганию. Средняя урожайность за годы испытания составила 47,2 ц/га, максимальная – 71,1 ц/га. Содержание белка в зерне 13,6-16,5%, крахмала – 59,1-61,8%. Зернофуражного использования. Пригоден для использования в спиртовой промышленности.

КАРГО. Включен в Госреестр с 2001 г. по республике, за исключением Гомельской области. За годы испытания средняя урожайность составила 47,4 ц/га. Максимальная урожайность 82,2 ц/га получена на Щучинском ГСУ в 1997 году. Вегетационный период на 3-5 дней короче, чем у стандарта Лана. Растения средней высоты, достаточно устойчивы к полеганию. Содержание белка 12,1-16,7%. Сорт зернофуражного использования.

ВАНАД. Включен в Государственный реестр в 2004 г. Среднепоздний, вегетационный период в среднем на 1-2 дня короче, чем у стандарта Лана. Максимальная урожайность 81,6 была получена на Гродненском ГСУ в 2003 г. Сорт устойчив к полеганию, относительно устойчив к грибным болезням. Масса 1000 семян – 36,2-47,0 г. Содержание белка 15,8%. Сорт отличается выровненным стеблестоем и равномерным созреванием.

    Таким образом, разумное использование элементов технологии при выращивании ярового тритикале позволяет получать высококачественное зерно продовольственного назначения для народного хозяйства республики Беларусь.    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.