Реферат по предмету "Производство"


Расчет гидропривода многоцелевого сверлильно-фрезерно-расточного станка с числовым программным у

--PAGE_BREAK--2. Расчет и выбор элементов гидропривода


2.1 Выбор рабочей жидкости


Жидкость в гидроприводе предназначена для передачи энергии и надежной смазки его подвижных элементов. Жидкость подвергается воздействию в широких пределах давлений, скоростей и температур.

Так как рабочее давление 2,5 МПа и рабочая температура 450С, то рекомендуется применение масел с вязкостью 60-110сСт.

Опираясь на эти данные, выберем из таблицы 2.2 страница 6 («Расчет гидропривода») марку масла:

Индустриальное 20, ГОСТ 1707-51 для которого имеются следующие характеристики:

плотность 890 кг/м3, вязкость при температуре +500 С: 17…23 сСт, температура застывания -200С, температура вспышки 1700С, пределы рабочих температур 0…900С.

Найдем кинематический коэффициент вязкости по формуле:
 (1)
где,   — кинематический коэффициент вязкости см2/c при температуре , ˚С; n – показатель степени, приведенный в таблице 2.1 в зависимости от вязкости, в градусах Энглера, при температуре +50˚С.

Вязкость масла в градусах Энглера:
 (2)
отсюдаn=1,99, следовательно, по формуле 1:



2.2 Определение рабочего давления


Рабочее давление в цилиндре гидродвигателя назначим ориентировочно от величины требуемого полезного усилияF:

так как номинальное усилие 4 кН, то в диапазоне F = 10-20 кН рекомендуется рабочее давление в диапазоне Рр  (25-40)·105 Н/м2.

Выбор величины рабочего давления при проектировании гидропривода производится в соответствии с нормальным рядом давлений, установленным ГОСТом. При выборе, расчете и проектировании гидроприводов необходимо руководствоваться ГОСТ 15445-67 и МН 3610-625.

Из нормального ряда давлений примем рабочее давление Рр= 2,5 МПа, а пробное давление 3,8 МПа.

Рабочее давление определяет возможный длительный рабочий режим гидропривода, а на пробное давление производится его испытание.




3 Расчет основных параметров гидроцилиндров


3.1 Приближенный расчет основных параметров силового гидроцилиндра


Определим внутренний диаметр силового гидроцилиндра по формуле, мм:
, (3)
где F – полезная нагрузка, приведенная к штоку; Рр – рабочее давление в цилиндре, принимаемое в зависимости от F.

По вычисленному диаметру D подберем ближайший нормализованный.

Ближайшим нормализованным размером является 50. Следовательно, примем D =50мм.

Далее определим диаметр штока d в зависимости от величины хода поршня.

Рабочий ход поршня равен S =50мм. Так как S
 (4)
По вычисленному значению диаметра штока примем ближайший больший, согласно ГОСТу 6540-68.

Ближайшим является 16. Значит, примем .


3.2 Уточненный расчет основных параметров силового гидроцилиндра




В процессе работы силового гидроцилиндра часть рабочего давления затрачивается на преодоление сил трения в конструктивных элементах гидроцилиндра, силы противодавления, динамических нагрузок, возникающих при разгоне и торможении поршня гидроцилиндра.

Полезные и дополнительные нагрузки определяют величину усилия, развиваемого гидроцилиндром, Н:
, (5)
где,  – динамическая сила;  – Статическая нагрузка.

Статическая нагрузка определяется при установившемся движении поршня:
, (6)
где F — полезная нагрузка, приведенная к штоку поршня;  – сила трения в конструктивных элементах;  – сила противодавления.

Определим величину каждого элемента, входящего в формулы, т.е. , , .

Сила трения в конструктивных элементах расходуется на преодоление механических сопротивлений – трение в манжетах, поршневых кольцах:

Сила трения уплотнения манжетами равна, Н:
, (7)
где  – коэффициент трения, принимаемый для резиновых манжет

= 0,03…0,032;  – диаметр контактной поверхности (поршня); – длина контактной поверхности, мм; Рр – рабочее давление в гидроцилиндре.

Длина контактной поверхности принимается в зависимости от диаметра поршня или штока по таблице 3.1.(«Расчет гидропривода»):

ширина уплотнения равна 7,5 мм для штока, для поршня равна 10.
,

, (8)
где  – толщина (радиальная) сечения набивки, мм.

Зная, все эти данные мы можем определить силу трения уплотнения манжетами по формуле (7):

Число манжет определим из таблицы 3.2 («Расчет гидропривода»), опираясь на диаметр поршня и давление:

диаметру 50 мм и давлению 2,5 МПа соответствует числу манжет равным 3.

Силу трения для поршневых колец можно подсчитать по формуле, Н:
, (9)
где  – коэффициент трения кольца о стенку цилиндра (примем равным 0,07 т.е. для быстрого движения); b – ширина поршневого кольца;Рр– рабочее давление в цилиндре; Рк – среднее удельное давление на поверхности цилиндра, создаваемое упругими силами (Рк = 0,6·105 Па);i – число поршневых колец. Ширину поршневого кольца выберем из таблицы 3.3 («Расчет гидропривода»):

Так как диаметр поршня порядка 50 мм, то примем b = 2,8мм, глубина канавки равна 2,7 мм.

Число колец найдем по таблице 3.4 в зависимости от величины давления:

для диаметра 50 мм и давления 2,5 МПа число поршневых колец равно 2.

Зная все эти данные, найдем силу трения для поршневых колец с использование формулы (9):




Определим суммарное усилие трения цилиндра, Н:
 (10)
Определим силы противодавления, Н/м2:

Примем .

Сила противодавления определится, Н:
, (11)
где  – площадь сечения поршня.

Следовательно, решение формулы (11):



Подставляя данные в уравнение (6), определим статическую нагрузку:
 (5.1),
Динамическая сила, Н:
, (12)
где,  – приведенная к поршню силового цилиндра масса, кг;  – время ускорения или замедления движения, с;  – изменение скорости, м/c.
 (13)
где  – плотность стали, L=0,03.

Подставляя данные в формулу (13), найдем приведенную массу, кг:


,

, (14)
где  – рабочий ход, м;  – время рабочего хода, с.

Подставляя найденные значения в выражение (12), получим:
 (12.1)


Зная все эти данные, определим величину усилия, развиваемого гидроцилиндром (формула (12)), использовав данные выражений (5.1) и (12.1):

Далее по вычисленному усилию Т и принятому рабочему давлению уточняем диаметр силового гидроцилиндра, м:
 (15)



Следовательно, решение формулы (15):




Примем D = 50 мм.

Определим толщину стенок корпуса тонкостенного гидроцилиндра изготовленного из вязкого материала (латунь), мм:
, (16)
где σ – допустимое напряжение материала на растяжение, Рп – пробное давление, .

При давлении рабочей жидкости ниже 10 МПа можно использовать алюминиевые трубы или литье из серого чугуна с  МПа.



Наш цилиндр тонкостенный, так как DH/D

Рассчитаем толщину донышка, причем донышко примем плоское, мм:
 (17)
Итог формулы (17):




3.3 Расчёт гидроцилиндра на устойчивост
ь
Допускаемая нагрузка из условий устойчивости, Н:
, (18)
где, К — коэффициент, учитывающий возможное повышение давления в гидросистеме К = 1,15; nц – запас устойчивости, принимаемый в зависимости от материала и назначения цилиндра, для чугуна 4…5, примем К = 4,5.

Критическую силу определим по формуле Эйлера, Н:




, (19)
где Е — модуль упругости материала, Е = 22·104МПа; l – полная длина цилиндра с выдвинутым штоком, l = 110 мм; С- коэффициент учета заделки концов цилиндра и штока, С = 2.

Момент инерции цилиндра:
, (20)
где DH – наружний диаметр цилиндра; D -внутренний диаметр цилиндра. Итог формул (20), (19) и (18):
,

,

.
Из условия устойчивости гидроцилиндра определим допустимое давление жидкости в цилиндре, МПа:
, (21)


Цилиндр является устойчивым, так как рабочее давление меньше допускаемого, т.е. 1·107


4 Подбор гидромотора


Аксиально-поршневой гидромотор Г15-24

1.      Рабочий объем, 68,4;

2.      Номинальное давление, 5;

3.      Номинальный крутящий момент, 50;

4.      Скорость вращения, 1000;

5.      Механический КПД, 0,895;

6.      Объемный КПД, 0,95;

7.      Полный КПД, 0,85.




5. Подбор трубопроводов


Функциональная связь гидроагрегатов в системе гидропривода осуществляется с помощью трубопроводов различной конструкции. Несмотря на относительную простоту этих элементов, от их правильного выбора зависит надежность работы гидропривода. Большая часть трубопроводов и присоединительной арматуры нормализованы.

Соединительный трубопровод гидропривода разделяют на 3 части: всасывающий и напорный трубопроводы, сливная магистраль. Всасывающим трубопроводом принято называть участок трубопровода гидропривода соединяющий насос с баком. Участок трубопровода, по которому жидкость от насоса поступает в гидравлический двигатель, называется напорным или нагнетательным; участок трубопровода, по которому жидкость отводится из рабочей полости гидродвигателя в резервуар, называется сливным.

Основной характеристикой трубопровода является его условный проход (номинальный внутренний диаметр). Исходными параметрами для определения номинальных внутренних диаметров трубопроводов являются: рабочее давление, расход гидродвигателя,скорость движения рабочей жидкости в данной части трубопровода.
5.1 Определение расхода

При подаче жидкости в бесштоковую полость гидроцилиндра расход , определяется по формуле:
, (22)
где  – диаметр гидроцилиндра, ;

 – рабочий ход поршня, ;

 – время, необходимое для совершения рабочего хода, .

Подставляя числа в выражение (22), получим:

Подача насоса должна быть больше расхода, обеспечивающего требуемую скорость рабочего органа гидродвигателя, на величину потерь расхода и приближенно принимается равной:
 (23)
Подставив численные значения, получим:

В дальнейших расчетах нам придется применять значение расхода в литрах в минуту. Переведем расход,:

Переведем подачу,:

5.2 Допустимые скорости движения жидкости в трубопроводах




В трубопроводах гидропривода рекомендуются следующие величины допустимых скоростей:

-        всасывающего трубопровода ;

-        нагнетательного трубопровода ;

-        сливного трубопровода .
5.3 Условный проход трубопроводов

При известном расходе и допустимой для соответствующего трубопровода скорости движения жидкости, условные проходы определяются по формуле:
 (24)
Подставляя соответствующие значения допустимых скоростей, получим условные проходы:

Для всасывающего трубопровода, :

Для нагнетательного трубопровода, :

Для сливного трубопровода, :

Полученные значения диаметров округляются до ближайшего большего значения по ГОСТ 16516-70. Примем следующие значения диаметров трубопроводов, : , ,

После принятия окончательного значения диаметров трубопроводов, рассчитаем реальные скорости движения жидкости в них, ::
 (25)
Подставляя соответствующие значения диаметров, получим скорости:

Для всасывающего трубопровода:




Для нагнетательного трубопровода:



Для сливного трубопровода:



При величинах условного прохода менее 30 мм, применяются стальные, бесшовные, холоднотянутые и холоднокатаные трубы (ГОСТ8734-58). Примем материал для изготовления труб: Сталь 20.

Вычислим толщину стенки трубы по формуле:
, (26)
где  – предел прочности при растяжении (сопротивление на разрыв), для выбранного материала,  (принимается по таблице 5.1 [1]):

Подставляя в формулу значения диаметров трубопроводов, получим толщину их стенок, :
,

,


    продолжение
--PAGE_BREAK--5.4 Соединение трубопроводов


Трубопроводы, из которых монтируют гидролинии в гидроприводах, по конструкции можно разделить на жесткие и гибкие.

Жесткие трубопроводы в основном изготовляют из стальных бесшовных холоднотянутых труб или из труб цветных металлов: медь или алюминий.

В гидроприводах применяют следующие типы соединений:

а) пайка (сварка) — в машиностроении применяется редко, только для трубопроводов, не подлежащих демонтажу;

б) соединение с развальцовкой используют для труб диаметром . Соединение отличается простотой, но может применяться при давлении не более  и имеет ограниченное число повторных демонтажей вследствие затвердения материала и порчи развальцованной части трубы;

в) соединение трубопроводов по внутреннему конусу применяется для гидросистем с рабочим давлением до  при необходимости частого демонтажа гидролинии. Этот тип соединения наиболее широко применяется в гидросистемах тракторов, дорожных и строительных машин;

г)соединение трубопроводов с врезающим кольцом распространено в гидросистемах, работающих при высоких давлениях. Соединение простое по конструкции и обеспечивает надежную герметизацию при давлениях до ;

д) фланцевое соединение трубопроводов применяется для стальных труб, диаметром свыше .

Типы и размеры арматуры соединительных частей трубопроводов указаны в ГОСТ 16039-70 16078-70, ГОСТ 15063-70  15804-70, ГОСТ 4233-67.

Гибкие трубопроводы применяют для соединения элементов гидропривода, которые расположены на подвижных частях и могут перемещаться относительно друг друга.

В качестве гибкого трубопровода в основном применяют резинотканевые шланги, называемые рукавами высокого давления (РВД). В зависимости от количества металлических оплеток рукава высокого давления делятся на три типа: 1 тип – с одной металлической оплеткой, рассчитанный на давление до ; 2 тип – с двойной оплеткой, рассчитанный на давление до ; 3 тип – с тройной оплеткой, применяется при внутреннем диаметре до . Основные размеры РВД даны в ГОСТ 6286-73.

Для заданных условий работы гидросистемы гибкие трубопроводы могут быть выбраны из специальной литературы [8,10].
5.5 Выбор гидроаппаратуры


Тип и марку отдельных элементов гидроаппаратуры, выбирают (таблица 6.4 [1]) по давлению на их входе и фактическому расходу, проходящему через них.

В технических характеристиках гидроаппаратов приводится потеря давления  при определенном (номинальном) расходе . Как правило, не удается подобрать гидроаппарат, у которого фактический расход  соответствует , а значит и потери давления фактические  будут отличаться от .

Фактические потери давления рассчитываются простым суммированием потерь давления в каждом гидравлическом устройстве. Эти данные берутся из таблицы 6.4 [1]. Но так как не все выбранные гидроаппараты имеют номинальный расход, соответствующий требуемому, то и фактические потери давления будут отличаться от номинальных.

Определить фактические потери можно по формуле:
 (27)
Перед определением потерь, необходимо выбрать тип и марку гидроаппаратуры на данном участке гидропривода. Выбирают их по расходу (таблице 6.4 [1]).

На данном участке находится следующая гидроаппаратура:

1. Напорный золотник с обратным клапаном Г56-23;

2. Реверсивный золотник Г72, Г73-12;

3. Золотник с ручным управлением Г 74-12;

4. Фильтр 0,08 Г 41-13




6. Определение потерь давления и объемных потерь в системе гидропривода


6.1 Определение потерь давления


При движении жидкости по трубопроводам гидропривода, при прохождении жидкости через контрольно-регулирующую и распределительную аппаратуру возникают потери давления. Поэтому давление выбранного насоса должно быть достаточным для обеспечения необходимого усилия или крутящего момента гидродвигателя и преодоления потерь давления, возникающих в трубопроводах, клапанах, дросселях и т. д.

Суммарные потери давления в гидросистеме гидропривода определяются по зависимости:
,         (28)
где  – потери давления при трении движущейся рабочей жидкости в трубопроводах;

 – потери давления в местных сопротивлениях трубопроводов;

 – потери давления в гидроаппаратуре.

Потери давления на трение жидкости в трубопроводах складываются из потерь на отдельных участках трубопровода:
, (29)
где  – потери давления в трубопроводе нагнетания;

 – потери давления в трубопроводе всасывания;

 – потери давления в трубопроводе слива.

Потери давления на отдельных участках трубопроводов рассчитываются по формуле:
, (30)
где  – коэффициент сопротивления жидкости;

 – длина участка трубопровода, ;

 – внутренний диаметр трубопровода, ;

 – плотность рабочей жидкости, для выбранной жидкости (см. пункт 2.2) ;

 – скорость жидкости на рассматриваемом участке трубопровода, .

Для определения коэффициента сопротивления трения предварительно определяется число Рейнольдса:
, (31)
где  – коэффициент кинематической вязкости жидкости, . Для выбранного масла:  

Подставив значения внутренних диаметров и скоростей жидкости в формулу (31), получим числа Рейнольдса для отдельных участков трубопровода:

Для всасывающего трубопровода:


Для нагнетательного трубопровода:

Для сливного трубопровода:

Как видим, значения числа Рейнольдса для всех участков трубопровода превышают критическое значение , значит, режим движения в них является турбулентным и коэффициент сопротивления для стальных труб рассчитывают по формуле Блазиуса:
 (32)
Абсолютная шероховатость ∆ определяется по таблице 6.2[1]. Примем ∆=0,04, для стальных горячекатаных труб ГОСТ 8732-70.

Для всасывающего трубопровода:

Для нагнетательного трубопровода:

Для сливного трубопровода:

Подставляя все полученные значения в формулу (30), получим: ,,

Суммируя полученные результаты по формуле (29), получим результирующие потери на трение, :

Потери давления в отдельных местных сопротивлениях трубопровода получаются путем сложения потерь в отдельных местных сопротивлениях, которые определяются по формуле:
, (33)
где  – коэффициент местного сопротивления (по таблице 6.3 [1]), ;

 – поправочный коэффициент, зависящий от числа Рейнольдса и определяемый по рисунку 6.1 [1].

Из исходных данных известно, что в магистрали встречаются 4 плавных поворота и 2 резких.

Для плавных поворотов коэффициент местного сопротивления, :

Для резких поворотов коэффициент местного сопротивления, :

Тогда общий коэффициент местного сопротивления, :

Теперь можно вычислить местные потери в нагнетательном и сливном трубопроводах, :
,

,


Тогда суммарные потери в местных сопротивлениях (), найдем по формуле:
 (34)
Подставив числовые значения, получим:

Суммарные потери в гидроаппаратуре () с учетом формулы (27) будут равны:





Зная все нужные значения, подставим их в выражение (28), получим общие потери давления в гидросистеме, :

6.2 Определение объемных потерь в системе гидропривода

Объемные потери в гидроприводе происходят вследствие утечек жидкости через зазоры в элементах гидропривода. Примером объемных потерь может служить утечка жидкости в рабочем цилиндре между стенками цилиндра и поршнем, утечка жидкости в золотнике.

Общие потери в гидроприводе складываются из потерь в насосе , гидродвигателе , которые в зависимости от типа гидродвигателя, являются потерями в гидроцилиндре , потерь в золотниковом распределителе .
 (35)
Приближенное значение перечисленных потерь можно выразить через удельную утечку, являющуюся потерей расхода приходящейся на один  давления.
, (36)
где  – удельная утечка жидкости в насосе, см3/мин МПа;

 – удельная утечка жидкости в гидроцилиндресм3/мин МПа;

 – удельная утечка жидкости в золотниковом распределителе,см3/мин МПа;

 – давление, развиваемое насосомПа;

 – давление в гидроцилиндре принимается равным рабочему давлению , Па;

 – давление в золотниковом распределителе принимается равным рабочему давлению , Па.

Давление, развиваемое насосом:
, (37)
где  – потери давления;

 – рабочее давление.

Подставив численные значения, получим:

Подставляя числа в формулу (36), получим объемные потери в гидросистеме, : .




7. Выбор насоса


Объемный насос, применяемый в гидроприводе, предназначен для преобразования энергии привода в энергию жидкости в виде давления и подачи жидкости в гидродвигатель, создавая усилие (крутящий момент) на рабочем органе и обеспечивая скорость его движения.

Выбор насоса производят по давлению,  (см. пункт 6.2):
,
и расходу, :
,         (38)
где  – потери расхода;

 – расход жидкости, поступающей в гидроцилиндр (см. пункт 5.1).

Подставляя числа, получим:

По таблице 7.1 [1] выберем шестеренный насос НШ-10 с номинальным давлением – , подачей –  и скоростью вращения – . Для дальнейших расчетов, запишем его КПД: объемный – , механический – , полный – .




8. Расчет параметров пневмогидроаккумулятора


Расчет параметров пневмогидроаккумулятора проводят на основе уравнения политропы, охватывающего все возможные состояния газа:
 (39)
Обозначим общий объем аккумулятора , объем газа , в конце зарядки при давлении , объем  в конце разрядки аккумулятора при давлении . Здесь  – полезный объем, аккумулятора; определяемый по формуле:
, (40)
где  – подача насоса;

 – время зарядки, равное 10-15 с.

Подставим численные значения и получим, м3:

Объем газа, м3:
 (41)
Показатель политропы п зависит от условий работы аккумулятора (теплообмен, продолжительность разрядки) и в качестве средних значений его можно принять 1,1 — 1,3. Минимальное давление газа:


, (42)
где  – рабочее давление (в гидроцилиндре).Отношение давлений , принимают равным 0,5 — 0,7.
,


Подставим численные значения в формулу (41) и получим:

Для обеспечения надежной работы гидросистемы необходимо иметь количество жидкости в аккумуляторе несколько больше полезного объема.
, (42)
где  – коэффициент, равный 1,2 — 1,5.



Полный объем аккумулятора, м3:
, (43)






    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат V. V. Rybak About local government
Реферат Теории и гипотезы о Луне
Реферат Варяжская женщина на Востоке: жена, рабыня или «валькирия»
Реферат Is Racial Prejudice A Thing Of The
Реферат Особенности реабилитации в гериатрии
Реферат Ларионов М.Ф.
Реферат Boston Massacre Essay Research Paper The Boston
Реферат Разработка и создание СКС на базе сетей Ethernet при подключении пользователей жилого дома к глобальной сети
Реферат Реализация федеральной программы развития транспортного комплекса в Тюменской области
Реферат Теория множеств с парадоксами
Реферат Монголія, Французький Індокитай, Бірма та Індонезія на початку новітніх часів
Реферат Семантика ритма и поэтический мир Анны Ахматовой
Реферат Taxing The Internet Essay Research Paper With
Реферат Прокурорский надзор за исполнением закона в ходе досудебного производства, при производстве предварительного следствия и дознания
Реферат Genetic Engineering Essay Research Paper What