Реферат по предмету "Производство"


Производство алюминия цветных металлов 2

--PAGE_BREAK--Благодаря высокой коррозионной стойкости и нетоксичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов. Все более широко используется алюминий при изготовлении тары для консервирования и храпения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений. Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.
Алюминий высокой чистоты находит широкое применение в новых областях техники — ядерной энергетике, полупроводниковой электронике, радиолокации, а также для защиты металлических поверхностей от действия различных химических веществ и атмосферной коррозии. Высокая отражающая способность такого алюминия используется для изготовления из пего отражающих поверхностей нагревательных и осветительных рефлекторов и зеркал.
В металлургической промышленности алюминий используют в качестве восстановителя при получении ряда металлов (например, хрома, кальция, марганца) алюмотермическими способами, для раскисления стали, сварки стальных деталей.
Широко применяют алюминий и его сплавы в промышленном и гражданском строительстве для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США— более 20 %.
По масштабам производства и значению в народном хозяйстве алюминий прочно занял первое место среди других цветных металлов.

2. СПЕЦ. ЧАСТЬ
2.1 Виды электродных изделий и требования к ним
Углеродистые электроды и изделия в зависимости от способа их изготовления подразделяют на прессованные обожженные и непрерывные самообжигающиеся.
Блоки анодные обожженные применяют в качестве анодов в алюминиевых электролизерах. Каждый такой анод представляет собой призматический блок, па верхней плоскости которого имеется одно или несколько ниппельных гнезд (углублений). Для подвода тока к аноду служат стальные ниппеля, которые вставляют в ниппельные гнезда и заливают расплавленным чугуном или заделывают углеродистой пастой. Размеры обожженных анодов зависят от размеров электролизеров. Для мощных электролизеров в нашей стране выпускают аноды сечением 1450х700 мм и высотой 600 мм.
Анодные блоки изготавливают из малозольных и малосернистых коксов.
Блоки угольные подовые, служащие для футеровки подины (катода) алюминиевых электролизеров, имеют форму призмы шириной 550 мм, высотой 400 мм ч длиной от 600 до 2400 мм. На одной из плоскостей катодного блока по его длине имеется паз для заливки чугуном или заделки стального стержня, который служит для отвода тока от катода.
Механическая прочность на сжатие подовых блоков должна быть не менее 22,6 МПа, пористость не более 22 %, удельное электросопротивление не более 90.10-6 Ом.м.
Для футеровки подии мощных электролизеров изготавливают углеграфитовые половые блоки. В результате добавки графита значительно уменьшается электросопротивление блоков. Углеграфитовые блоки должны иметь электросопротивление не более 60.10-6 Ом.м и механическую прочность на сжатие не менее 25,6 МПа.
Блоки угольные боковые применяются для внутренней футеровки боковых стенок алюминиевых электролизеров. Эти блоки изготовляют толщиной 200 мм, высотой 550 мм н длиной от 600 до 800 мм. Механическая прочность на сжатие угольных боковых плит должно быть не менее 22,5 МПа.
Анодная масса используется в алюминиевых электролизерах с непрерывными самообжигающимися анодами. Такой анод состоит из металлического кожуха с анодной массой, которую по мере сгорания загружают в кожух. Под действием выделяющегося в электролизере тепла анодная масса обжигается. Выпускается анодная масса в брикетах или в расплавленном состоянии.
Анодная масса не должна содержать посторонних твердых включений и иметь определенную текучесть, характеризуемую коэффициентом текучести. Коэффициент текучести определяют по величине деформации поперечного сечения образца цилиндрической формы после его нагрева до 170°С в течение 30 мин н находят как отношение диаметра нижнего основания деформированного образца к первоначальному его диаметру. Этот коэффициент должен составлять 1,7—2,7.
Подовая угольная масса предназначена для набивки так называемой подушки, на которую устанавливают катодные блоки в алюминиевых электролизерах, а также швов между катодными блоками. В зависимости от исходного сырья готовят подовую массу двух видов: антрацитовую и коксовую.
Обожженные угольные электроды применяют для подпола тока в шихте и дуговых электропечах; электроды имеют форму цилиндра. В зависимости от марки и диаметра удельное электрическое сопротивление обожженных угольных электродов должно быть не более (40—53).10-6 Ом.м и предел механической прочности на сжатие не менее 19,6—24,6 МПа.
В алюминиевой промышленности применяются также графитированные электроды, которые отличаются от угольных повышенной химической и термической стойкостью, а также низким удельным электросопротивлением. Удельное электрическое сопротивление графитированных электродов в зависимости от их марки и диаметра должно быть не ниже (7,5÷12).10-6 Ом.м, а предел механической прочности при разрыве не ниже 2,9—3,4 МПа.
2.2 Производство анодной массы и др. электродов
Технологическая схема производства электродных изделий показана на рис. 2 — стр. 37 Анодную и подовую массу обычно получают непосредственно на алюминиевыx заводах, а прессованные обожженные изделия—как на алюминиевых заводах, так и на специализированных (электродных) заводах.
Поступающие на завод углеродистые материалы хранят раздельно по видам.
Твердые углеродистые материалы дробят, а затем прокаливают при высокой температуре для удаления летучих веществ из углеродистого материала до усадки. Это необходимо сделать до обжига, чтобы избежать появления третий и готовых изделиях. Кроме того, и результате прокаливания понижается реакционная способность углеродистого материала к кислороду воздуха, повышается его электропроводность и механическая прочность. Содержание летучих веществ в прокаленном материале не должно превышать 0,15-0,2 %.
Для прокаливания твердых углеродистых материалов применяют трубчатые вращающиеся и ретортные печи. В трубчатых вращающихся печах топочные газы ч прокаливаемый материал соприкасаются.
Необходимое для прокаливания тепло выделяется в основном при сгорании летучих веществ частично — при сжигании мазута или газообразного топлива. Прокаленный материал из печи поступает в барабанный холодильник, где охлаждается до температуры не выше 100 °С. Трубчатые вращающиеся печи просты по устройству и в эксплуатации; основной их недостаток — большие потери материала при ею прокаливании за счет угара и пылеуноса, которые возрастают с повышением содержания мелочи в сыром коксе.
В ретортных печах материал нагревается через стенки реторт без доступа воздуха. Материал поступает в вертикальные реторты сверху и, перемещаясь вниз, проходит зоны подогрева, прокалки и охлаждения. В качестве топлива используются выделяющиеся при прокалке летучие, которые сжигаются в горелке. Для достижения необходимой температуры к летучим подмешивают газообразное топливо извне.
В ретортных печах возможно получение равномерно прокаленного углеродистого материала при небольшом его угаре.
Однако ретортные печи имеют малую производительность и характеризуются большими трудовыми затратами при обслуживании, поэтому имеют ограниченное применение.
Трубчатые вращающие и ретортные печи обеспечивают прокалку материала при 1250—1300 °С. Прокаленный при этой температуре пековый кокс при изготовлении анодной массы имеет истинную плотность 1,99—2,03 г/см3 и удельное электросопротивление в порошке не более 650.10-6 Ом.м. При необходимости достижения более высокой температуры прокалки применяют электрокальцинаторы.
Прокаленные твердые углеродистые материалы измельчают и классифицируют по крупности на несколько фракций. Применение углеродистых частиц различной крупности позволяет получать электроды с необходимыми пористостью и механической прочностью. Для каждого вида электродных изделий оптимальный гранулометрический состав находят опытным путем.
Вид твердых углеродистых материалов, используемых для получения электродных изделий, зависит от назначения этих изделий. Анодную массу изготовляют из прокаленных искового и нефтяного коксов или из их смеси. Сухую шихту для прошивных катодных блоков и боковых плит составляют из термоантрацита или антрацита, графита, угольного боя и литейного кокса. Для изготовления подовой антрацитовой массы используют термоантрацит или антрацит, литейный кокс и графит.
Прокаленный материал измельчают в несколько приемов Для дробления его дo крупности 25 мм обычно применяют валковые, молотковые и конусные дробилки, дня тонкою измельчения — шаровые мельницы сухого помола. Измельченный углеродистый материал рассеивают на вибрационных грохотах на фракции нужной крупности, которые поступают в сортовые бункера и далее—на дозировку и смешение в соответствии с принятым гранулометрическим составом.
Поступающий на завод каменноугольный пек хранят в пекоплавителях, где он нагревается до нужной температуры и обезвоживается
Цель смешения твердых углеродистых материалов со связующим — получение тестообразной углеродистой массы, в которой каждое твердое зерно покрыто тонкой пленкой связующего. Для смешения применяют смесильные машины периодического и непрерывного действия.
Смесильная машина периодическою действия состоит из стальной чаши с крышкой и паровой рубашкой внутри смесителя имеются две Z-образные лопасти, вращающиеся в противоположные стороны. Твердые углеродистые материалы загружают в предварительно нагретый смеситель и перемешивают. Затем в смеситель подают связующее в расплавленном состоянии, и сухую шихту перемешивают со связующим до получения однородной массы.
В смесителе непрерывного действия сухая шихта с расплавленным связующим перемешивается одновременно перемещается с помощью вращающихся снеков, находящихся внутри металлического кожуха с паровой рубашкой. Перемешанная масса непрерывно выгружается из смесителя через фильеру. Перед смещением со связующим сухая шихта перемешивается и подогревается в электрическом смесителе-подогревателе до температуры не ниже 80 °С. Применяются также смесильные установки, нагрев электродной массы в которых осуществляется с помощью высокотемпературного органического теплоносителя.
Необходимое количество связующего зависит от вида твердых углеродистых материалов, их гранулометрического состава, а также от назначения углеродистой массы. В углеродистую массу, предназначенную для изготовления прессованных изделии, вводят примерно 20—22 % связующего, в анодную массу 27—31 %.
Готовые анодную и подовую массы формуют в брикеты или транспортируют в электролизный цех в специальных кабелях в расплавленном состоянии.
Углеродистая масса, предназначенная для изготовления изделий, поступает на прессование.
Прессованные электроды получают различными способами штамповкой в глухую матрицу на гидравлических анодных прессах, прошивкой на прошивных гидравлических прессах и прессованием с одновременной вибрацией на вибропрессах. По первому способу углеродистую массу прессуют при помощи поршня, входящего в замкнутую матрицу. Спрессованный электрод выталкивается из матрицы другим поршнем. По способу прошивки массу продавливают через мундштук, имеющий форму и размеры поперечного сечения электродного изделия. Мундштук для прессования катодных блоков имеет специальною насадку, что позволяет получать блоки с готовым пазом. Основным конструктивным элементом виброустановки является вибростол, установленный на пружинах.
На столе смонтирована пресс форма, в которую загружают углеродистую массу Необходимое давление на массу создается пуансоном, который свободно перемещается в вертикальном направлении. Затем столу сообщаются колебательные движения (вибрация) в результате вращения закрепленных на столе валов с дебалансами. По окончании вибрации поднимают пуансон и выталкивают электрод Вибропрессовые остановки по сравнению с гидравлическими прессами имеют меньший вес и позволяют получать аноды высокого качества.
При прессовании массы из нее удаляется воздух, твердые углеродистые частицы сближаются и пустоты между ними заполняются связующим Масса приобретает большую плотность, которая сохраняется и после прекращения давления Удельное давление при прессовании не должно превышать значении при которых происходит разрушение твердых зерен углеродистых материалов и обычно составляет 20—40 МПа.
Прессованные, но не обожженные электроды, называют “зелеными”. Их выдерживают не менее 24 ч па воздухе, что необходимо для снятия внутренних напряжении, возникающих в электродах в процессе прессования
Обжиг “зеленых” электродов состоит в их постепенном нагреве без доступа воздуха до 1300—C, выдержке при этой температуре и медленном охлаждении.
При обжиге происходит удаление летучих веществ и коксование связующего Образующийся кокс прочно связывает зерна твердых углеродистых материалов Электрод становится механически прочным, возрастают его электропроводность и истинная плотность.
Большая скорость подъема температуры при обжиге может вызывать образование трещин в электроде и его деформацию. Особенно медленным должен быть подъем температуры при нагреве изделий до 800º когда происходит удаление летучих веществ из связующего и его коксование. Охлаждение обожженных электродов должно быть также достаточно медленным, чтобы не произошло растрескивание электродов вследствие уменьшения их объема. Общая продолжительность обжига, включая нагрев и охлаждение электродов, составляет от 15 до 30 сут. Она зависит прежде всею от размеров обжигаемых изделий и для каждого вида изделии находится опытным путем.
Обжиг осуществляют в кольцевых многокамерных печах — закрытых или открытых, аналогичных печам для обжига огнеупорного кирпича Чисто камер в закрытой печи в зависимости от ее производительности составляет от 20 до 60. Каждая камера разделена вертикальными перегородками на пять кассет, в которые загружают обжигаемые электроды. Сверху камеры закрываются съемными сводами. Электроды нагреваются теплом топочных газов, которые движутся по каналам в перегородках и боковых стенках камер. В качестве топлива применяется природный газ и мазут.
На первоначальной стадии нагрева происходит размягчение электродов, что может привести к их деформации под действием собственного веса. Для предотвращения деформации обжиг проводят в пересыпке, состоящей из прока пенного кокса крупностью 1—5 мм. Пересыпку засыпают на подину камер, в пространство между электродами и стенками кассет, а также сверху на электроды.
В ряде случаев применяют графитированные электроды, например в качестве катодов в электролизерах для электролитического рафинирования алюминия.
Такие электроды получают из угольных электродов путем их нагрева до температуры порядка 2500 °С. При нагреве до такой температуры так называемый “аморфный” углерод превращается в кристаллический графит. Присутствующие в электроде минеральные примеси образуют карбиды, которые при высокой температуре диссоциируют, при этом кремнии, железо и другие металлы удаляются в парообразном состоянии.
В результате графитирования в 4—5 раз снижается электрическое сопротивление электродов, в 8—10 раз уменьшается содержание в них золы, возрастает пористость и истинная плотность н уменьшается механическая прочность
Графитирование осуществляют в электрических печах сопротивления, в которых рабочим сопротивлением являются сами графитированные электроды. Cилу тока при графитировании изменяют от нескольких тысяч ампер в начале процесса до 20 000 А и даже выше в конце графитации. Полная продолжительность графитирования, включая процессы загрузки и разгрузки, составляет примерно 180 ч.

3. КПВО (карта пошагового выполнения операции)
3.1 Отчерпывание электролита из электролизера в урны
Как известно, образующийся в процессе электролиза алюминий скапливается в шахте ванны под слоем электролита. Для поддержания нормального технологического режима и превращения алюминия в товарную продукцию его периодически извлекают (выливают) из электролизера. Современные электролизеры средней мощности нарабатывают в сутки 550—700 кг алюминия, а большой мощности—до 1200кг. В зависимости от принятой технологии и с учетом трудовых затрат выливку алюминия из ванн осуществлять по различным графикам. В отечественной промышленности наибольшее распространение получил график, предусматривающий выливку из ванн алюминия через двое суток; в отдельных случаях выливку ведут ежедневно.
    продолжение
--PAGE_BREAK--Выливку металла из ванн осуществляют под разрежением специальными вакуумными ковшами, которые транспортируются при помощи электромостовых кранов или специальными самоходными машинами. К стальному корпусу вакуумного ковша, футерованному огнеупорным кирпичом, при помощи фланцевых соединений монтируются съемная заборная труба из чугуна.
На верхней крышке ковша имеется герметизированный люк для извлечения застывшего расплава при чистке ковша. С противоположной от заборной трубы стороны в корпусе ковша предусмотрено смотровое отверстие для наблюдения за ходом наполнения вакуум-ковша.
После монтажа футеровки вакуум-ковш тщательно просушивают, а перед началом выливки прогревают.
Для создания в ковше разрежения принимают различные схемы. Наибольшее распространение получили схемы централизованного создания вакуума в специально оборудованных высокопроизводительными вакуум-насосами отделениях электролизного цеха. В этом случае от вакуумных станций во все корпуса проводят трубопроводы, называемые вакуум-линиями. При помощи гибкого шланга вакуум-ковш подключают к такой линии и в него засасывается металл. Существуют схемы создания разрежения установленными на каждом ковше вихревыми насосами. Для этого применяют линии сжатого воздуха, имеющиеся в корпусах, а на вакуум-ковше устанавливают эжектор.
Выливку металла из электролизера осуществляют через пробиваемое в корке электролита отверстие — “летку”; место для выливки металла для каждого электролизера строго постоянно.
В этом месте форму настыли поддерживают в состоянии, позволяющем беспрепятственно выливать металл. Для уменьшения вероятности заплавления конца заборной трубы вакуум-ковша подину ванны в районе “летки” перед выливкой очищают от осадка.
Операции выливки металла выполняют в следующей последовательности:
К подготовленному для выливки электролизеру подвозят полностью смонтированный вакуум-ковш и его заборную трубу опускают под слой электролита на глубину не менее 100 мм. При этом внимательно следят, чтобы конец трубы не коснулся подины ванны. Затем уплотняют смотровое отверстие и одновременно подключают ковш к системе, создающей внутри него разрежение. За счет созданного в ковше разрежения металл всасывается в ковш. За поступлением в ковш металла следят через смотровое отверстие.
По мере уменьшения алюминия в электролизере на нем возрастает напряжение вследствие роста сопротивления увеличивающегося междуполюсного зазора. Поэтому одновременно с выливкой опускают анод с таким расчетом, чтобы напряжение все время не превышало нормального значения более чем на 0,2 В. Во время выливки внимательно следят за тем, чтобы анод опускался равномерно по всей шахте ванны. Не допускается зависание анода на корке электролита и касание его заборной трубы во избежание ее прогорания.
Количество вылитого металла из ванны определяют через смотровое окно по заполнению ковша, объем которого известен. Для более точного определения вылитого металла применяют специальные устройства, позволяющие взвешивать ковш по время выливки.
После окончания выливки “летку” и обрушившиеся места корки электролита заделывают глиноземом, на электролизере устанавливают нормальное рабочее напряжение. Вакуум-ковш с металлом транспортируют либо к месту переливки металла в литейные ковши открытого типа, либо в приемную печь литейного отделения.

4. ЭКОНОМИЧЕСКАЯ ЧАСТЬ
4.1 Разработка производственной программы
В условиях становления и развития рыночных отношений Комитетом Российской Федерации по металлургии, разработана концепция акционирования и приватизации предприятий металлургической промышленности, которая в качестве основы приватизации выдвинула решение следующих важнейших задач:
1. Сохранение оптимальных технологических связей, позволяющих эффективно использовать имеющийся в металлургическом комплексе производственный потенциал;
2. Создание и развитие конкурентной среды;
3. Привлечение финансовых средств для технического перевооружения предприятий.
В процессе реализации этих задач все предприятия металлургической промышленности (вне зависимости от масштабов производства и численности персонала должны быть отнесены к федеральной собственности и преобразованы в акционерные общества как объекты федеральной собственности. Закрепленные в собственность федеральных органов пакеты акций будут использованы для проведения единой государственной политики, направленной на формирование сбалансированности рыночного металлургического комплекса, на стабилизацию производства и создание условий для ускоренной интеграции в мировую экономику.
Обязательное государственное регулирование и непосредственное участие государства в деятельности металлургической промышленности подтверждается опытом развитых промышленных стран, где третья часть выпускаемой в этих странах стали производится компаниями, находящимися в государственной собственности.
Создание межгосударственных компаний в металлургической промышленности должно способствовать выходу из кризиса и, помимо разрешения имеющихся проблем, позволит обеспечить общий внутренний рынок отдельными дефицитными видами металлопродукции и сократить импорт их из третьих стран, а также успешно конкурировать на внешних рынках металлопродукции.
Промышленный рост, начавшийся в России в последние годы, а также более четко сформулированная правительственная политика, направленная на восстановление потенциала в ряде отраслей, в том числе и в высокотехнологичных, производящих продукцию военно-промышленного комплекса, способны дать предприятиям цветной металлургии еще один толчок к бурному росту. Активно растущие отрасли, такие как автомобильная, строительная индустрия потребляют все больше проката цветных металлов. Например, для автомобильной промышленности применение норм экологического контроля, принятого в странах Запада, приведет к ряду структурных изменений. Помимо отказа от использования карбюраторных двигателей, в будущем возможно использование и более современных двигателей, радиаторов, контактов и т.п. Не случайно УГМК включила недавно в свою структуру ШААЗ и Оренбургский радиатор, сделав ставку на будущий спрос со стороны автостроителей. У строительных организаций схожая картина: повсеместная замена небезопасных алюминиевых кабелей на более качественные медные, более активное применение медной кровли и труб также стимулируют рост производства медного проката и катанки.
В целом, рассматривая долгосрочные перспективы развития отрасли, стоит отметить следующие ключевые направления:
• Быстрый рост производства полуфабрикатов, потребляемых автомобильной промышленностью (прецизионные медные и латунные ленты для радиаторов, латунные прутки повышенной точности для обработки резанием, бронзовые полосы для подшипников).
• Расширение производства медных труб для систем водоснабжения и кондиционирования, в том числе со сложным профилем (внутреннее оребрение, с полимерным и пластиковым покрытием). В данном сегменте темпы роста могут достигать десятки процентов в год.
• Быстрый рост потребления тонких лент из бронз и медно-никелевых сплавов, используемых при производстве продукции электроники (компьютеры, телефаксы, копировальная техника, сотовые и радиотелефоны).
• В то же время ожидается и значительное сокращение сегмента медных проводов и лент из медных сплавов в продукции электроники из-за миниатюризации аппаратуры, применения многоканальных систем (до 96 каналов связи по одному проводу), обострения конкуренции со стороны стекловолоконных проводников.
• Уменьшение удельного расхода медных полуфабрикатов в машино- и станкостроении из-за снижения массы оборудования и применения материалов-заменителей (алюминий, нержавеющие стали, пластмассы, композиты).
• Расширение применения конденсаторных труб из медно-никелевых сплавов взамен латунных труб для тепловых и атомных электростанций в связи с повышенными требованиями к коррозионной стойкости охлаждающих элементов.
Таким образом, непростое состояние промышленности по обработке цветных металлов является прямым следствием происходящих в стране и мире трансформаций. Идя в ногу со временем, предприятия цветной металлургии пытаются применять новые технологии производства и маркетинга, однако главный ограничивающий их рост фактор — отсутствие адекватного спроса потребителей. Решить проблему обрабатывающих цветные металлы предприятий в одночасье не удастся. Тем не менее задекларированный правительством вектор развития, предусматривающий рост производства в потребляющих секторах, способен оказать благотворное влияние и на развитие отрасли по обработке цветных металлов. Остается надеяться, что этот рост произойдет уже в ближайшей перспективе, поскольку запас прочности работающих в отрасли предприятий постоянно снижается.

5. ТЕХНИКА БЕЗОПАСНОСТИ
Право на безопасный труд является одним из основных прав рабочих, которое гарантируется Конституцией Российской Федерации. Под охраной труда в соответствии с “Основами законодательства РФ об охране труда” понимается “система обеспечения безопасности жизни и здоровья работников в процессе трудовой деятельности, включающая правовые, социально — экономические, организационно — технические, лечебно — профилактические, реабилитационные и иные мероприятия”. Рассмотрим основные положения по организации этой работы.
5.1 Санитарно-гигиенические характеристики условий труда
Выделяющиеся в атмосферу корпуса газообразные вещества воздействуют на обслуживающий персонал и создают возможность профессионального заболевания. Поэтому содержание таких соединений в атмосфере рабочей зоны строго лимитировано, а их предельно допустимые концентрации приведены ниже:
Существенное влияние на условия труда в корпусах оказывает выделение тепла от электролизеров, в результате чего в летний период температура на рабочих местах, особенно в одноэтажных корпусах и при многорядном расположении ванн, не редко превышает 50 0С, а зимой практически не отличается от наружной температуры вследствие большого воздухообмена.
Влажность воздуха на рабочих местах определяется влажностью наружного воздуха.
Отдельные технологические и ремонтные операции, проводимые в цехе, сопровождаются значительным шумом, который воздействует на органы слуха и на организм в целом.
Выполнение некоторых операций (работа на самоходных машинах по обслуживанию ванн, при использовании переносных машин по забивке штырей на ваннах с БТ, пневмоинструмента и пр.) связана с воздействием вибрации на рабочего. Эти факторы не являются постоянно действующими и при нормальном состоянии техники и технологии не превышают допустимых норм.
Характерная особенность электролитического производства алюминия — термическое воздействие и, как следствие, ожогов тела человека. Ожоги возможны при расплескивании расплава из ванны под воздействием выделяющихся газов, при работе по выливке и переливке жидкого металла, при соприкосновении с раскаленными частями технологического оборудования и инструмента и пр.
Использование значительных количеств различных химических веществ не исключает возможность отравления организма работающих и получения профессионального заболевания.
Перемещение большого количества сырья, инструмента, готовой продукции и отходов производства, выполняемого с помощью различных подъемных и транспортных устройств, связано с потенциальной опасностью непреднамеренного наезда на человека, опрокидывания, обрыва и падения груза, что также представляет опасность для здоровья.
Наиболее опасным производственным фактором в корпусе является возможность поражения человека электрическим током, так как практически все части электролизера имеют значительный потенциал (до 850 В) по отношению к земле или заземленным предметам. Кроме технологической электроэнергии в корпусе имеются линии переменного тока, от которых питаются различные транспортные машины (краны, МНП), а также сети, обслуживающие электродвигатели, установленные на электролизерах. Поэтому при нарушениях правил электробезопасности всегда имеется возможность поражения человека электрическим током. Кроме того, в цехе эксплуатируются большое количество трубопроводов, находящихся под давлением, применяются баллоны со сжиженными газами, что также может стать источником травматизма.
Несмотря на применяемые меры по улучшению условий труда у работников электролизных цехов, в отдельных случаях возникают профессиональные заболевания, и основным из них является флюороз, который вызывается отложением солей фтора в костях. Наиболее часто флюороз выражается в поражении суставов, желудочно-кишечного тракта, зубов и печени. У рабочих, длительно контактирующих с пеком, могут возникнуть различные кожные заболевания. Постоянное совершенствование техники и технологии производства алюминия приводит к снижению риска профессионального заболевания.
5.2 Электробезопасность
Рассмотрим основные вопросы электробезопасности в цехах электролиза. Как уже было сказано выше, эдектролизы соединяются последовательно в большие группы — (серии) и и подключаются к кремниевой преобразовательной подстанции (КПП). Число ванн на серии зависит от конструкции электролизера и величины напряжения, которое может обеспечить КПП, и достигает 200 шт. Все конструктивные инструменты электролизеров надежно изолированы от земли и заземленных конструкций. Но проведение технологических операций по обслуживанию ванн приводит к полным или частичным замыканиям ванн на землю и возникновению токов утечки, которые могут достигать значительных величин. Точки утечки проходят по подземным сооружениям (трубопроводы, железобетонные конструкции, оболочки кабелей и пр.), их выход во влажный грунт сопровождается электрохимической коррозией, которая разрушает вышеуказанные сооружения и способствует возникновению аварий. Нарушение изоляции электролизеров приводит к тому, что одновременное прикосновение к конструкциям, находящимся под протеканием электрического тока через тело человека. Сила тока выше 0,1 А является смертельной для человека, и поэтому безопасным считается напряжение не более 36 В, а в некоторых случаях (работа внутри металлических сосудов и пр.) допускается применением напряжения не более 12 В.
Лица не электротехнических специальностей могут обслуживать электрифицированные устройства (станки, переносные приборы и инструменты и пр.) только после производственного инструктажа, в том числе по электробезопасности.
Для защиты персонала от поражения электрическим током, протекающим по электролизерам, предусматриваются различные мероприятия.
Электрическая изоляция. Электролизные корпуса представляю собой сложные инженерные сооружения, и необходимость защиты людей от поражения электрическим током предопределяет необходимость разработки множества изоляционных узлов. Сложность заключается в том, что приходится изолировать от земли многотонные строительные конструкции.
Особую опасность представляет появление потенциалов земли на конструкциях шинного канала в одноэтажных корпусах при выполнении таких операций, как чистка каналов от пыли, сварочные работы при капитальном и текущем ремонтах катодных кожухов и ошиновки.
Стальные вентиляционные решетки, которые располагаются вдоль корпусов, укладываются на изоляционные прокладки. Катодные кожухи и ошиновка устанавливаются на конструкции с прокладками из электроизоляционного материала — чаще всего асбоцемента. Электролизеры от стен устанавливают на расстоянии не менее 4 м, а между рядами электролизеров расстояние должно быть не менее 7 м. Металлические перекрытия шинных каналов (рифленки) крепят одним концом к катодному кожуху, и поэтому они находятся под потенциалом ванны. Трубопроводы и газоходы устанавливают в корпусе на высоте более 3,5 м, и все трубопроводы и газоходы должны иметь электроизоляционные вставки через каждые 40 м, а газоходы каждой ванны соединяются с общим газоходом через электроизоляционную вставку.
Разделительные трансформаторы. Питание электродвигателей, установленных на конструкциях электролизера (механизмы подъема анодов, анодных рам и штор), осуществляется через разделительные трансформаторы, у которых вторичная обмотка не заземлена. Это позволяет исключить попадание постоянного тока в сеть переменного тока, что могло бы привести к тяжелым авариям в питающих трансформаторах. Поэтому такие разделительные трансформаторы устанавливаются на две ступени: обеспечивающие потребителей в корпусе напряжением 380/220 В, а трансформаторы второй ступени — непосредственно в корпусе и к ним подключаются 4-8 электролизеров. При необходимости проведения ремонтных работ на электролизерах сварочные трансформаторы и другой электрифицированный инструмент подключается через эти же разделительные трансформаторы. В системах АСУТП смонтированы устройства, позволяющие фиксировать ухудшение электроизоляции между обмоткой двигателя и сетью постоянного тока.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.