Реферат по предмету "Производство"


Проектирование и исследование механизмов аллигаторных ножниц

--PAGE_BREAK--2. Определение закона движения механизма
2.1 Определение размеров механизма
По заданным в исходных данных геометрическим размерам “челюсти” и расстоянию между осями вращения кривошипа и коромысла построим треугольники, условно изображающие механизм в крайних положениях (рис 2) и выпишем известные величины:

φ3max=16°

β=50°

lBO3=1.0 м

lDO3=0.9 м

lO1O3=1.05 м


Рис.2
По теореме косинусов определим
lO1A+lABи lO1A-lAB:




Откуда получаем необходимые значения звеньев механизма:



Далее определим положение центра масс шатуна, используя исходные данные и полученные значения длин звеньев:



Теперь определим масштаб построения механизма и с учетом масштаба длины звеньев механизма:



Механизм в данном масштабе с рассчитанными длинами звеньев вычерчен на листе №1 формата А1.
2.2 Построение графика силы сопротивления
Механическая характеристика, т.е. зависимость силы сопротивления от перемещения верхнего ножа аллигаторных ножниц строится по диаграмме усилия реза, представленной на рис.1б:

сначала по заданной координате находится положение разрезаемого металла (точка К) и в масштабе вычерчивается его сечение -b*b.Далее в зависимости от поворота кривошипа определяется перемещение точки К в метрах (SK) и откладывается как дуговая координата. По максимальному перемещению определяется масштаб перемещений точки, который будет равен:

 ,

далее проводятся лучи из центра О3 через верхнюю точку середины изображенного сечения металла, через точку, равную 0.25b, а также точку, равную 0.5b.Затем на луче, проведенном через точку 0.25b, от начала координат, полученного пересечением дуговой координаты с первым лучом откладывается произвольно отрезок, равный Ррmaxи определяется масштаб силы сопротивления:

.

Беря значения с диаграммы усилий реза на соответствующих лучах в масштабе, достраивается механическая характеристика, изображенная на листе №1 формата А1.Значения перемещения и силы сопротивления приведены в таблице 2.1:
Таблица 2.1

Перемещение SK, м

Сила сопротивления Fc, Кн

0.0616



0.0702

666.6

0.0783

1000

0.0867

666.6



2.3 Построение графиков передаточных функций механизма
Для определения значений передаточных функций механизма воспользуемся программой Diadaи в качестве входных параметров используем известные геометрические параметры механизма. Сведем в таблицу 2.2 полученные значения передаточных функций для 12 положений механизма:




Таблица 2.2



0

1

2

3

4

5

6

7

8

9

10

11

12

VqK

-0.014

0.008

0.029

0.046

0.054

0.048

0.027

-0.007

-0.042

-0.059

-0.054

-0.036

-0.014

VqS2

0.087

0.082

0.10

0.123

0.135

0.127

0.10

0.08

0.104

0.134

0.135

0.112

0.087

U2-1

0.22

0.24

0.20

0.11

0.01

-0.09

-0.19

-0.24

-0.23

-0.15



0.14

0.22

U3-1

-0.03

0.02

0.07

0.11

0.13

0.12

0.07

-0.02

-0.1

-0.15

-0.13

-0.09

-0.03



Определим масштабы передаточных функций:


2.4 Построение графиков приведенных моментов
Для упрощения определения закона движения реальный механизм заменяют динамической моделью, под которой понимается отдельно взятое звено приведения, условно снабженное переменным моментом инерции IΣпри вращающееся под действием момента MΣпр. Величину этого момента определяют по формуле:
,
где Мi,Fj-моменты и силы, приложенные к механизму в различных его точках, а Vqи ωq(или U)-передаточные функции скоростей. Для нашего механизма эта формула будет иметь вид:




,
здесь можно пренебречь моментами сил тяжести т.к. они не оказывают сколько-нибудь существенного влияния на величину суммарного приведенного момента. В этой формуле мы можем найти величину момента силы сопротивления, который равен произведению FcVqK.Для этого необходимо умножить силу сопротивления на аналог скорости точки К в положениях механизма, которые соответствуют резу металла. Значения момента сопротивления приведены в таблице 2.3
Таблица 2.3

φ, град

132

136

148

155

VqK,м

0.054

0.04

0.05

0.046

Fc, Кн

0

666.6

1000

666.6

Мс, Кн*м

0

26.53

50

30.93



Масштаб графика момента сопротивления:

Напрямую определить движущий момент, приложенный к кривошипу, мы не можем, так как неизвестны характеристики электродвигателя. Поэтому поступают следующим образом: графически интегрируют график момента сопротивления и находят работу силы сопротивления. Последовательность графического интегрирования подробно приведена в [3] и поэтому в настоящей записке не приводится. Имея график работы момент сопротивления, строим график работы движущего момента и график движущего момента (рис 3) в нулевом приближении, представляющий собой константу на интервале поворота кривошипа от 0 до 2π. Её значение равно:


Рис 3
Для получения искомой зависимости суммарного приведенного момента нужно просуммировать значения моментов в соответствующих положениях. Значения суммарного приведенного момента приведены в таблице 2.4 и рассчитаны только для четырех положений, для которых был вычислен момент сопротивления. Для всех же остальных положений величина суммарного приведенного момента равна величине момента движущего.
Таблица 2.4

φ, град

132

136

148

155

Мс, Кн*м

0

26.53

50

30.93

МΣпр, Кн*м

2.33

24.20

47.67

28.6

YМΣ, мм

6.1

62.9

123.9

74.4



2.5 Построение графика суммарной работы
Cуммарная работа определяется формулой:







При определении суммарного приведенного момента сил в результате графического интегрирования были получены графики работы силы сопротивления и работы движущего момента. Определив масштаб этих графиков:

можно составить таблицу 2.5 суммируемых отрезков работ.
Таблица 2.5

φ1 град

0

90

180

270

360

Дополнительно

132

136

148

155

YAc мм

0

0

-20

-20

-20



0

-2.9

-13.3

-19.5

YAд мм

0

4.9

10

15

20



7.2

7.5

8

8.4

YAΣмм

0

4.9

-10

-5

0



7.2

4.6

-5.3

-11.1



2.6 Построение графика суммарного приведенного момента инерцииII

группы звеньев
Моменты инерции для второй группы звеньев, куда входят шатун, и коромысло, определяются по формулам:
 ,  ,  ,

 






Суммарный приведенный момент определяется их суммой. В таблице 2.6 приведены значения моментов инерции для 12 положений механизма:
Таблица 2.6

φ1, град

0

30

60

90

120

150

180

210

240

270

300

330

360

I3пр, кг*м2

0.18

0.08

1.11

2.67

3.68

2.91

0.98

0.02

2.25

4.05

3.85

1.64

0.18

I2впр, кг*м2

0.15

0.18

0.12

0.04



0.04

0.14

0.19

0.11

0.01

0.03

0.07

0.15

I2ппр, кг*м2

2.27

2.02

3

4.54

5.47

4.84

2.95

1.92

3.52

5.65

5

3.02

2.27

IΣпр, кг*м2

2.6

2.28

4.43

7.25

9.15

7.77

4.1

2.15

5.74

10.04

9.32

5.16

2.6



Масштаб графиков моментов инерции равен:

2.7 Построение графиков кинетической энергии и угловой скорости механизма
Кинетическая энергия механизма равна сумме кинетических энергий всех его звеньев. Учитывая разделение звеньев на группы, можно записать:
, где .
Тогда чтобы найти полную кинетическую энергию механизма нужно перенести ось абсцисс графика полной работы вниз на ординату Тн. Однако конкретное значение Тн пока неизвестно, поэтому новое положение оси абсцисс покажем на графике условно (рис.4):






Рис.4
Кинетическая энергия IIгруппы звеньев может быть выражена через IIIпр :

Закон изменения ω1 еще пока неизвестен, поэтому для определения ТIIвоспользуемся приближенным равенством, впервые предложенным Н. И. Мерцаловым, поскольку коэффициент неравномерности δ мал. Тогда:

Так как ω1ср =const, то TIIможно считать пропорциональной IIIпр, а кривую суммарного момента инерции второй группы звеньев можно принять за приближенную кривую TII(φ1), вычислив масштаб графика энергии по формуле, определив значение ω1ср =0.105*nK=7.88 1/c:





Теперь из первого уравнения выразим кинетическую энергию Iгруппы звеньев. Она равна :TI=T-TII, следовательно, при построении кривой TI(φ1*) необходимо из ординат кривой T(φ1*) в каждом положении механизма вычесть отрезки, изображающие TII.Длины вычитаемых отрезков в миллиметрах равны:
,
где   — ордината с графика TII(φ1), а и  соответственно масштабы графиков полной работы и моментов инерции IIгруппы звеньев. Составим таблицу вычитаемых отрезков (таблица 2.7):
Таблица 2.7

φ1, град



30

60

90

120

150

180

210

240

270

300

330

360

YTII

12.6

11.2

20.5

35.3

44.4

37.7

19.9

10.4

27.8

48.7

45.2

26.5

12.6

YTII μA/ μTII

0.1

0.09

0.2

0.3

0.4

0.3

0.2

0.08

0.2

0.4

0.4

0.2

0.1

YT



1.62

3.25

4.87

6.5

-9.3

-9.7

-8.1

-6.5

-4.86

-3.24

-1.61



YTI

-0.1

1.5

3.1

4.6

6.1

-9.6

-9.9

-8.2

-6.7

-5.3

-3.6

-1.8

-0.1


Построение графика кинетической энергии Iгруппы звеньев показано на Листе №1 А1.Построив эту кривую, найдем точки, соответствующие TImaxи TImin.

Далее определим максимальное изменение кинетической энергии Iгруппы звеньев за цикл:
,




необходимый момент инерции маховика IIпр определяется по формуле:

И его значение равно:

Чтобы найти угловую скорость начального звена по уравнению:

необходимо знать начальные условия, которые для установившегося движения заранее неизвестны. Поэтому воспользуемся тем, что при малых значениях коэффициента неравномерности δ верхняя часть графика TI(φ1*), изображающая изменение кинетической энергии Iгруппы звеньев, приближенно изображает также изменение угловой скорости. При TImaxи TIminугловая скорость имеет соответственно максимальное и минимальное значения. Масштаб графика угловой скорости:

Чтобы перейти от изменения угловой скорости к ее полному значению, нужно определить положение оси абсцисс φ1 ** графика ω1(φ1 **).Для этого через середину отрезка, изображающего разность (ω1max— ω1min)проводят горизонтальную штриховую линию, которая является средней линией угловой скорости ω1ср.Расстояние от линии ω1ср до оси абсцисс φ1 ** определяется по формуле:





Теперь можно построить зависимость МД(ω1) от ω1.Для этого продолжаем штриховую линию, изображающую ω1ср и пересекаем ее линией, изображающей величину МДср. Через точку пересечения под выбранным углом к оси ординат проводим прямую линию. Она и будет характеризовать нужную зависимость. Далее перестраиваем зависимость МД(φ) с помощью полученной прямой и получаем график МД(φ) в первом приближении. В таблице 2.8 приведены значения движущего момента для 14 точек.
Таблица 2.8

φ1, град

0

30

60

90

120

150

180

210

240

270

300

330

360

130

160

Мд, Кн

1.97

1.8

1.64

1.48

1.32

2.94

2.97

2.79

2.65

2.50

2.32

2.14

1.97

1.27

3.08






    продолжение
--PAGE_BREAK--3. Силовой расчет механизма
3.1 Определение скоростей
Силовой расчет механизма проводится для одного положения, задаваемого числовым значением угловой координаты начального звена: , сила, действующая на коромысло в точке К в этом положении:  Кн, угловое ускорение:

,

угловая скорость:

.

Данные необходимые для расчёта:

.

На листе вычерчивается схема механизма в масштабе

.

Строим скорость точки А, которая равна

,

затем определим масштаб плана скоростей:

.

Далее проводим определение оставшихся скоростей точек механизма. В результате этих расчетов получаем следующие значения скоростей:


3.2 Определение ускорений
Получив значения скоростей точек, можно определить и их ускорения. Ускорение точки А будет складываться из двух составляющих:
,
где  -нормальное ускорение точки А, которое определяется
,
а -тангенциальное ускорение, равное
.
Методом построения плана ускорений определяются все остальные необходимые ускорения, при этом масштаб плана ускорений:
,
тогда величины ускорений будут:





3.3 Определение главных векторов и главных моментов сил инерции
Силы инерции:
 
Знак «минус» в формулах указывает направление сил инерции, т.е. в сторону противоположную направлению ускорений.

Моменты сил инерции:
 
Знак «минус» в формулах указывает направление моментов сил инерции, т.е. в сторону противоположную направлению угловых ускорений.




3.4 Определение реакций в опорах и шарнирах
Силовой расчет проводится по аналитическому способу (при решении используются алгебраические уравнения сил и моментов сил, приложенных к звеньям механизма). Для этого рассмотрим равновесие каждого звена отдельно, заменив разорванные связи реакциями, и составим уравнения равновесия для каждого звена:

Звено 1:

Звено 2:

Звено 1:





Далее составляем матрицы коэффициентов и неизвестных реакций для решения этой системы уравнений в программе MathCADи решаем, используя для решения функцию lsolve.

В результате решения получены следующие значения реакций и движущего момента:

Погрешность движущего момента по сравнению с движущим моментом, рассчитанным на листе №1, составляет:





4. Проектирование цилиндрической эвольвентой зубчатой передачи и планетарного редуктора
4.1 Проектирование зубчатой передачи
Исходными данными для проектирования являются следующие величины:

Число зубьев колес z5=11,

z6=22.

Модуль колес m= 10 мм.

При проектировании зубчатой передачи для зубьев z5 , z6 будет использоваться обозначение z1 и z2 .
4.2 Выбор коэффициентов смещения с учетом качественных показателей
От выбора коэффициентов смещения во многом зависит геометрия и качественные показатели зубчатой передачи. В каждом конкретном случае коэффициенты смещения следует назначать с учетом условий работы зубчатой передачи.

Спроектировать зубчатую передачу с минимальными габаритными размерами, массой и требуемым ресурсом работы можно только в том случае, если будут правильно учтены качественные показатели, т.е. коэффициенты удельного давления, определяющие контактную прочность зубьев передачи, коэффициенты скольжения, характеризующие в определенной степени абразивный износ, коэффициент перекрытия, показывающий характер нагружения зубьев и характеризующий плавность работы передачи. При этом немаловажное значение имеют габаритные размеры и масса спроектированной передачи.

Необходимо учитывать общие рекомендации по выбору коэффициентов смещения x1и x2:

1)                проектируемая передача не должна заклинивать;

2)                коэффициент перекрытия проектируемой передачи должен быть больше допустимого ea> [ea];

3)зубья у проектируемой передачи не должны быть подрезаны и толщина их на окружности вершин должна быть больше допустимой Sa> [Sa].Примем [Sa]=0.2

Значения коэффициентов x1и x2должны быть такими, что бы предотвратить все перечисленные явления. Расчетные коэффициенты смещения должны быть выбраны так, чтобы не было подрезания и заострения зубьев. Отсутствие подрезания обеспечивается при наименьшем, а отсутствие заострения – при максимальном значении коэффициента смещения, следовательно, должно выполняться неравенство x1min> x1> x1max

Основными видами повреждений зубьев колес, учитываемыми в методах расчета, являются следующее:

а) выкашивание и отслаивание материала на боковых поверхностях зубьев преимущественно в окрестностях мгновенной оси относительного вращения (полюса зацепления), вызываемое высокими контактными напряжениями в поверхностном слое зубьев;

б) излом зубьев у вершины в случае их чрезмерного заострения или у основания, где имеют место наибольшие изгибные напряжения;

в) истирание боковых поверхностей зубьев (абразивный износ), наблюдающееся в большей степени в плохо герметизированных передачах;

г) заедание зубьев, возникающее от разрыва масляной пленки; возникновению заедания благоприятствуют высокие контактные напряжения и большие относительные скорости и ускорения зубьев.

Ограничение по коэффициенту перекрытия может привести к тому, что значения  придется выбирать из более узкой области значений, каковой будет область дозволенных решений по [ea]. Принимаем ea=1.05 .

Для средненагруженных передач можно попытаться уменьшить износ подбором коэффициентов смещения. Для этого необходимо выбирать значения  таким, чтобы получить значения l1и l2либо равными, либо такими, чтобы наибольшие значения коэффициентов скольжения были пропорциональны твердостям материала зубьев колес. Учитывая все ранее сказанное, принимаем значение x1=0.5, x2=0.5 как рекомендует ГОСТ 13775-81
4.3 Геометрический расчет зацепления
В основу методики расчета эвольвентных зубчатых передач внешнего зацепления положена система расчета диаметров окружностей вершин колес, при которой в зацеплении пары колес сохраняется стандартный зазор c*m. Расчет велся при свободном выборе межосевого расстояния. При нарезании колес прямозубой передачи исходный производящий контур, в соответствии с ГОСТ 13775-81, имеет следующие параметры: a=200, h*a=1, с*=0,25.

Были определены радиусы делительных окружностей колес
,


радиусы основных окружностей





Как уже было отмечено, требуется выполнение условия .

Определили наименьшее на колесе число зубьев без смещения, свободных от подрезания,

а затем коэффициенты наименьшего смещения исходного контура.
.
Угол зацепления передачи определяют по формуле
,
где хS=х1+х2, а zS=z1+z2.

Коэффициент воспринимаемого смещения
.
Коэффициент уравнительного смещения

Dy= хS-y=0,144

Радиусы начальных окружностей
.
rw1=57.85

rw2=115.7

Межосевое расстояние
aW=rW1+rW2=57.85+115.7=173.55
Радиусы окружностей вершин
.
ra1=68.56

ra2=123.56

Радиусы окружностей впадин

rf1=47.5

rf2=102.5

Высота зубьев колес






.
Толщина зубьев по дугам делительных окружностей
.
s1,2=19.35

Углы профиля на окружностях вершин зубьев колес
.
Толщины зубьев по дугам окружностей вершин
.
sa1=4.95

sa2=6.86

Для построения станочного зацепления дополнительно определены следующие размеры:

толщина зуба Sисходного производящего контура по делительной прямой, равная ширине впадины
,
радиус скругления основания ножки зуба





шаг по хорде делительной окружности шестерни и колеса

4.4 Построение профиля зуба колеса, изготовляемого реечным инструментом
Построение профиля зуба колеса, изготовляемого реечным инструментом выполняем в соответствии с методикой, изложенной в [5].
4.5 Построение проектируемой зубчатой передачи
По вычисленным с использованием ЭВМ параметрам проектируемую зубчатую передачу строим, как описано в [5].

При расчете параметров зубчатой передачи была использована программа ”Zub”, с помощью которой были получены следующие значения рассчитываемых величин:

Вариант: 52 Фамилия: Shamin

Расчет зубчатого зацепления

*Исходные данные*

z1 = 11.000 z2 = 22.000 m = 10.000 beta = .000

alf = 20.000 ha = 1.000 c = .250 aw0 = .000

*Результаты расчета*

x2 = .500 r1 = 55.000 r2 = 110.000 rb1 = 51.683

rb2 = 103.366 pt = 31.416 mt = 10.000 hat = 1.000

ct = .250 alft = 20.000 ro = 3.800 p1x = 30.991

p2x = 31.309 zmint = 17.097 xmint1 = .357 xmint2 = -.287

so = 15.708

x1: .000 .100 .200 .300 .400 .500

.600 .700 .800 .900 1.000 1.100

y: .456 .540 .621 .701 .779 .856

.932 1.006 1.079 1.151 1.222 1.292

dy: .044 .060 .079 .099 .121 .144

.168 .194 .221 .249 .278 .308

rw1: 56.521 56.799 57.071 57.337 57.598 57.854

58.105 58.353 58.597 58.837 59.074 59.308

rw2: 113.042 113.599 114.142 114.674 115.196 115.708

116.211 116.706 117.193 117.674 118.148 118.615

aw: 169.564 170.398 171.213 172.011 172.794 173.562

174.316 175.058 175.790 176.510 177.222 177.923

ra1: 64.564 65.398 66.213 67.011 67.794 68.562

69.316 70.058 70.790 71.510 72.222 72.923

ra2: 124.564 124.398 124.213 124.011 123.794 123.562

123.316 123.058 122.790 122.510 122.222 121.923

rf1: 42.500 43.500 44.500 45.500 46.500 47.500

48.500 49.500 50.500 51.500 52.500 53.500

rf2: 102.500 102.500 102.500 102.500 102.500 102.500

102.500 102.500 102.500 102.500 102.500 102.500

h: 22.064 21.898 21.713 21.511 21.294 21.062

20.816 20.558 20.290 20.010 19.722 19.423

s1: 15.708 16.436 17.164 17.892 18.620 19.348

20.076 20.804 21.531 22.259 22.987 23.715

s2: 19.348 19.348 19.348 19.348 19.348 19.348

19.348 19.348 19.348 19.348 19.348 19.348

alfwt: 23.879 24.505 25.097 25.659 26.193 26.704

27.193 27.662 28.114 28.548 28.968 29.374

sa1: 6.672 6.344 6.007 5.661 5.306 4.945

4.577 4.204 3.824 3.439 3.048 2.653

sa2: 5.578 5.793 6.031 6.290 6.566 6.858

7.165 7.484 7.813 8.151 8.498 8.852

ealf: 1.340 1.308 1.275 1.243 1.210 1.177

1.144 1.111 1.078 1.044 1.011 .977

egam: 1.340 1.308 1.275 1.243 1.210 1.177

1.144 1.111 1.078 1.044 1.011 .977

lam1: -41.018 22.627 8.206 4.740 3.178 2.287

1.709 1.303 1.001 .768 .582 .430

lam2: .792 .809 .825 .840 .854 .867

.880 .892 .904 .915 .926 .936

teta: .776 .772 .768 .765 .761 .758

.755 .752 .748 .745 .742 .739
4.6 Проектирование планетарного редуктора
Исходными данными для проектирования являются:

Планетарный двухрядный механизм со смешанным зацеплением.

Число сателлитов k=3

Модуль зубчатых колес m=5

Под синтезом будем понимать подбор (определение) чисел зубьев планетарных механизмов при условии, что зубчатые колеса нулевые, а радиальный габарит механизма минимальный.

При проектировании необходимо выполнить ряд условий:

1.                 Отклонение от заданного передаточного отношения не должно превышать 10% (5%).

2.                 Обеспечить отсутствие подреза у нулевых зубчатых колес:

У колес с внешними зубьями z1, z2, z3 ≥18;

У колес с внутренними зубьями z ≥85.

Если колеса не нулевые, то zmin до 7 илидо 56.

3.                 Обеспечить отсутствие заклинивания в зацеплении сателлит – коронная шестерня.

Заклинивания нет, если zкш – zсат ≥ 8

4.                 Обеспечить выполнение условия соосности входного и выходного звеньев.

5.                 Необходимо обеспечить выполнение условие соседства (окружности вершин соседних сателлитов не должны касаться друг друга).

6.                 Обеспечить выполнение условия сборки. Определить условие сборки, исходя из чертежа невозможно, необходимо проверить выполнение этого условия по уравнению.

В исходных данных не задано передаточное отношение редуктора, поэтому требуется его определить, чтобы рассчитать параметры редуктора:

Формула для определения передаточного отношения через число зубьев редуктора со смешанным зацеплением имеет вид:
 , откуда .
Тогда для определения числа зубьев редуктора необходимо подобрать неизвестные коэффициенты, входящие в уравнение:





При этом должны выполняться условия:z1>18,z2>18,z3>28,z4>72,z4-z2>4

В результате подбора коэффициентов A,B,C,Dи параметра qполучены следующие числа зубьев редуктора:



Тогда передаточное отношение редуктора будет равно:

Определим погрешность передаточного отношения:



Проверим, как выполняется:

1.                 Условие сборки

где Р=1, к=3

2.                 Условие соседства







Т.е условие выполнено. Тогда определим диаметры делительных окружностей колес:

Редуктор чертится в двух проекциях в масштабе длин:



    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Идейно-художественное своеобразие деревенской трилогии А.П. Чехова "Мужики", "В овраге", "Новая дача"
Реферат Математические игры
Реферат Оцінка ліквідності та платоспроможності підприємства
Реферат Проблема счастья в романе Л.Н. Толстого «Война и мир»
Реферат Money Essay Research Paper Money BYAnonymousIt was
Реферат Особенности обучения детей ходьбе на лыжах в старшем дошкольном возрасте
Реферат А, память положения водительского сиденья, боковых зеркал и рулевого колеса, 10 подушек безопасности, омыватель передних фар, передние противотуманные фары, доп
Реферат Влияние стратегии на культуру организации
Реферат Образовательно-развивающий урок по теме: виды насекомых
Реферат Природные магнитные аномалии. Влияние магнитных полей на живые организмы
Реферат Основные положения, понятия и факты гештальтпсихологии
Реферат Музеї просто неба України
Реферат Общественное движение в России XIX века
Реферат Преждевременная эякуляция и длительность полового акта
Реферат Бизнес план по риск менеджменту