Периодическая система элементов является графическим (табличным) изображением периодического закона.
Прообразом периодической системы был «Опыт системы элементов, основанный на их «атомном весе и химическом сходстве», составленный Д.И. Менделеевым 1 марта 1869 г. Это так называемый вариант длинной формы системы элементов, в нем периоды располагались одной строкой.
Короткая форма периодической системы была опубликована Д.И. Менделеевым в декабре 1870г. В этом варианте периоды разбиваются на ряды, а группы — на подгруппы (главные и побочные).
Основным недостатком короткой формы было сочетание в одной группе несходных элементов. Недостатком длинной формы — растянутость, некомпактность.
Короткий вариант периодической системы (см. таблицу) подразделяется на семь периодов — горизонтальных последовательностей элементов, расположенных по возрастанию порядкового номера, и восемь групп — вертикальных последовательностей элементов обладающих однотипной электронной конфигурацией атомов и сходными химическими свойствами.
Первые три периода называются малыми, остальные — большими. Первый период включает два элемента, второй и третий периоды — по восемь, четвертый и пятый — по восемнадцать, шестой — тридцать два, седьмой (незавершенный) — двадцать один элемент.
Каждый период (исключая первый) начинается щелочным металлом и заканчивается благородным газом.
Элементы 2 и 3 периодов называются типическими.
Малые периоды состоят из одного ряда, большие — из двух рядов: четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов расположены металлы и свойства элементов слева направо изменяются слабо. В нечетных рядах больших периодов свойства элементов изменяются слева направо, как у элементов 2 и 3 периодов.
В периодической системе любой формы для каждого элемента указывается его символ и порядковый номер, название элемента и значение относительной атомной массы. Координатами положения элемента в системе является номер периода и номер группы.
Элементы с порядковыми номерами 58—71, именуемые лантаноидами, и элементы с номерами 90-103 — актиноиды — помещаются отдельно внизу таблицы.
Группы элементов, обозначаемые римскими цифрами, делятся на главные и побочные подгруппы. Главные подгруппы содержат 5 элементов (или более). В побочные подгруппы входят элементы периодов, начиная с четвертого.
VIII группа кроме подгруппы гелия содержит «триады»
.элементов, составляющих семейства железа (Fe — Со — Ni) ж платиновых металлов (Ru —Rh — Pd, Os — Ir — Pt). В диадах элементов наблюдается горизонтальная аналогия. В некоторых вариантах таблицы под каждой группой расположены формулы высших оксидов элементов, они ^относятся к элементам главных и побочных подгрупп (исключая элементы, не проявляющие степень окисления, равную номеру группы; гелий, неон, аргон не образуют кислородных соединений). Элементы главных подгрупп, начиная с IV группы, образуют водородные соединения, формулы которых также приведены внизу таблицы.
Дальнейшее развитие науки показало, что химические свойства элементов обусловлены строением их атома, а точнее, строением электронной оболочки атомов.
Периодический закон Д.И. Менделеева в настоящее время формулируется так:
Свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от заряда ядер атомов этих элементов.
Сопоставление строения электронных оболочек с положением элементов в периодической системе позволяет установить ряд важных закономерностей.
Номер периода равен общему числу энергетических уровней, заполняемых электронами, у атомов данного элемента.
В малых периодах и нечетных рядах больших периодов с ростом положительного заряда ядер возрастает число электронов на внешнем энергетическом уровне (с 1 до 2 в первом периоде и с 1 до 8 в последующих). С этим связано ослабление металлических и усиление неметаллических свойств элементов слева направо по периодам.
В четных рядах больших периодов с ростом заряда ядер происходит заполнение электронами предвнешнего уровня при постоянном числе электронов на внешнем уровне (2 или 1), чем и объясняется медленное изменение свойств этих элементов.
Строение внешнего электронного уровня атомов элементов, относящихся к одной подгруппе, однотипно. Номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей (валентных электронов). У атомов элементов главных подгрупп это электроны внешнего электронного уровня. У атомов элементов побочных подгрупп валентными являются электроны не только внешнего, но и предпоследнего уровня.
В подгруппах с ростом положительного заряда ядер атомов элементов усиливаются их металлические и ослабляются неметаллические свойства.
В зависимости от строения электронных оболочек атомов все элементы периодической системы Д.И. Менделеева делят на четыре семейства: s-, p-, d- и f-элементы.
К семейству s-элементов относят химические элементы, в атомах которых происходит заполнение электронами s-подуровня внешнего уровня. К ним относятся первые два элемента каждого периода.
Элементы, у которых происходит заполнение электронами р-подуровня внешнего уровня, принадлежат к р-элементам. К ним относятся последние 6 элементов каждого периода. Семейство d-элементов включает переходные элементы, у которых электронами заполняется d-подуровень второго снаружи уровня. К ним относятся элементы больших периодов, расположенные между s-и р-элементами.
У семейства f-элементов происходит заполнение f-подуровня третьего снаружи уровня. К ним относятся лантаноиды и актиноиды.
Принцип Паули
Для определения состояния электрона в многоэлектронном атоме важное значение имеет сформулированное В. Паули положение (принцип Паули), согласно которому в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы, одинаковыми. Из этого следует, что каждая атомная орбиталь, характеризующаяся определенными значениями п, I и т, может быть занята не более чем двумя электронами, спины которых имеют противоположные знаки. Два таких электрона, находящиеся на одной орбитали и обладающие противоположно направленными спинами, называются спаренными, в отличие от одиночного (т. е. не спаренного) электрона, занимающего какую-либо орбиталь.
Распространенность химических элементов во вселенной и на земле
Природа щедро разбросала свои материальные ресурсы по нашей планете. Но если сравнить их с наиболее часто употребляемыми материалами, то нетрудно заметить между ними некую обратную зависимость: чаще всего человек использует те вещества, запасы сырья которых ограничены, и наоборот, крайне слабо использует такие химические элементы и их соединения, сырьевые ресурсы которых почти безграничны. В самом деле, 98, б% массы физически доступного слоя Земли составляют всего восемь химических элементов. Среди этих восьми элементов железа почти в два раза меньше, чем алюминия. Между тем более 95% всех металлических изделий, конструкций самых разнообразных машин и механизмов, транспортных путей производятся из железорудного сырья. Ясно, что такая практика расточительна с точки зрения как исчерпания ресурсов железа, так и энергетических затрат на первичную обработку железорудного сырья.
Химическая связь и структура химических соединений. Синтез новых материалов.
Ж. Пруст установил закон постоянства состава: любое индивидуальное химическое соединение обладает строго определенным, неизменным составом, прочным притяжением составных частей(атомов) и тем отличается от смесей. Но Н.С. Курнаков в результате точнейших физико-химических исследований соединений, состоящих из двух металлов, установил образование настоящих индивидуальных соединений переменного состава и нашел границы их однородности. Химические соединения переменного состава он назвал бертоллидами, а постоянного состава- дальтонидами .
Суть проблемы химических соединений состоит не столько в постоянстве(непостоянстве) химического состава, сколько в физической природе химических связей, объединяющих атомы в единую квантово-механическую систему- молекулу. Химические связи- обменное взаимодостижение электронов, обобщение валентных электронов, «перекрывание электронных облаков».
Число химических соединений огромно. Они отличаются как составом, так и химическими и физическими свойствами. Но химическое соединение – качественно определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет химической связи объединены в частицы-молекулы, комплексы, монокристаллы или иные системы. Химические соединения могут состоять как из многих, так и из одного элемента.
Современную материально-техническую базу примерно на 90 процентов составляют 2 вида материалов: металлы и керамика. Преимущество керамики- ее плотность на 40 процентов ниже плотности металла. С применением новых химич. Элементов(титана, бора, хрома) в последнее время синтезируют термостойкую высокотвердую керамику. Детали машин из технической керамики нового состава производятся прессованием порошков с получением готовых изделий заданных форм и размеров. Также керамика обладает сверхпроводимостью при температурах выше температуры кипения азота, что открывает просторы для научно-технического прогресса. «Революционером» в химической промышленности стала химия фторорганических соединений. Она противопоставляет углеводородам фтороуглероды, где атом углерода несет слабый положительный заряд, а атом фтора- слабый отрицательный. Фтороуглероды устойчивы даже в средах кислот и щелочей и обладают поверхностной активностью, способностью поглощать кислород и перекиси.
При подготовке этой работы были использованы материалы с сайта www.studentu.ru