--PAGE_BREAK-- (1.23)
(ºС);
где – большая разность температур, ºС, (ºС)(см. рис1),
– меньшая разность температур, ºС, (ºС)(см. рис1).
График изменения температур теплоносителей при противотоке,([7], рис. П1.2)
Рис.1.Графическая зависимость для определения большей и меньшей разности температур теплоносителей
При сложном взаимном движении теплоносителей, например при смешанном и перекрестном токе в многоходовых теплообменниках, средняя разность температур теплоносителей определяется с учетом поправки ([7]):
(1.24)
(ºС)
Для нахождения поправочного коэффициента вычисляются вспомогательные коэффициенты P и R ([7]):
(1.25)
(1.26)
По полученным значениям коэффициентов P и R определяем поправочный коэффициент ([5]).
Поверхностная плотность теплового потока, Вт/м², ([7]):
(1.28)
(Вт/м²)
Из основного уравнения теплопередачи определяется необходимая поверхность теплообмена, м², ([7]):
(1.29)
(м²)
По рассчитанной площади и заданному диаметру труб выбирается стандартный теплообменный аппарат ([1]):
Параметры кожухотрубчатого теплообменника сварной конструкции с неподвижными трубными решетками (ГОСТ 15118-79, ГОСТ 15120-79, ГОСТ 15122-79).
Таблица 1
Диаметр кожуха, мм
Диаметр труб, мм
Число ходов
Общее число труб, шт.
Поверхность теплообмена(в м2) при длине труб, м
Площадь сечения потока 10-2 м2
Площадь сечения одного хода по трубам, 10-2 м2
В вырезе перегородок
Между перегородками
3
400
20×2
2
166
31
1,7
3
1,7
Пересчитываются скорости движения и критерий Рейнольдса для греющего и нагреваемого теплоносителей, м/с, ([7]):
(1.30)
(м/с)
(1.31)
(м/с)
где – площадь сечения одного хода по трубам, м2, (м2)
– площадь сечения межтрубного пространства между перегородками, м2, (м2)
(1.32)
(1.33)
1.5 Конструктивный расчет теплообменного аппарата
Определяется число труб в теплообменнике,([7]):
(1.34)
(шт.)
где – площадь поверхности теплообмена стандартного теплообменника, м2, (м2);
– длина труб одного хода стандартного теплообменного аппарата, м, (м).
По условию трубы по сечению трубной решетки расположены по вершинам равносторонних треугольников. Количество трубок, расположенных по сторонам большего шестиугольника,([7]) :
(1.35)
(шт.)
Количество трубок, расположенных по диагонали шестиугольника, ([7]):
(1.36)
(шт.).
Число рядов труб, омываемых теплоносителем в межтрубном пространстве, приближенно можно принять равным 0,5 · b, т.е., ([7])
(1.37)
Для стандартных труб с наружным диаметром равным 20мм, размещенных по вершинам равносторонних треугольников, при развальцовке принимают шаг между трубами ([7], стр.12) :
t = (1,31,6),
t = 1,4·20 = 28 (мм)
Рассчитанную величину шага между отверстиями в трубной решетке сравнивают со стандартными значениями ([1])
Внутренний диаметр кожуха двухходового теплообменника, мм,([7]):
(1.38)
(мм)
где – коэффициент заполнения трубной решетки, принимается равным 0,6 – 0,8.
1.6 Определение температуры поверхности стенок трубы
Термическое сопротивление теплоотдачи от греющего теплоносителя к поверхности загрязнений, (м²· К)/Вт, ([7]):
(1.40)
((м²· К)/Вт)
Термическое сопротивление слоя отложений со стороны греющего теплоносителя, (м²· К)/Вт, ([7])
(1.41)
((м²· К)/Вт)
где – тепловая проводимость слоя отложений со стороны греющего теплоносителя ([1]), ((м2· К)/Вт).
Термическое сопротивление стенки трубы, (м²· К)/Вт, ([7]):
(1.42)
((м²· К)/Вт)
где – толщина стенки трубки, м, (м);
– коэффициент теплопроводности стенки, Вт/м·К, (Вт/м·К).
Термическое сопротивление слоя отложений со стороны нагреваемого теплоносителя, (м²· К)/Вт, ([7]):
(1.43)
((м²· К)/Вт)
где – тепловая проводимость слоя отложений со стороны нагреваемого теплоносителя, Вт/(м²· К), ([1])
(Вт/(м²· К))
Термическое сопротивление теплоотдачи от стенки загрязнений к нагреваемому теплоносителю, (м²· К)/Вт, ([7], формула 1.44):
((м²· К)/Вт)
Аналитически температура стенок трубы определяется по формулам,([7], формулы 1.45, 1.46):
(ºС)
(ºС)
Для проверки температуру стенки определим графическим способом, ([7], рис П.1.4).
Рис.4. Графический способ определения температуры поверхности стенки трубы со стороны греющего и нагреваемого теплоносителей
1.7 Гидравлический расчет теплообменника
Целью гидравлического расчёта является определение величины потери давления теплоносителей при их движении через теплообменный аппарат.
Полное гидравлическое сопротивление при движении жидкости в трубах теплообменного аппарата определяется выражением, Па, ([7]):
(1.47)
где – гидравлическое сопротивление трения, Па, ([7]);
– потери давления, обусловленные наличием местных сопротивлений; складываются из сопротивлений, возникающих в связи с изменением площади сечения потока, обтекания препятствий, Па, ([7]);
(1.48)
(Па)
где – коэффициент трения, ([7]);
z– число ходов теплоносителя по трубному пространству, z=2.
Коэффициент трения определяется по формуле:
(1.49)
где – относительная шероховатость труб, ([7], стр.14);
– высота выступов шероховатостей, принимаем = 0,2 мм,([7], стр.14).
Потери давления, обусловленные наличием местных сопротивлений, Па,([7]):
(1.50)
(Па)
где – сумма коэффициентов местных сопротивлений трубного
пространства,([7]):
(1.51)
где , – коэффициенты сопротивлений входной и выходной камер ([1]), ,;
, – коэффициенты сопротивлений входа в трубы и выхода из них ([1]), , ;
– коэффициент сопротивления поворота между ходами,([1]), .
Величина потерь давления греющего теплоносителя в теплообменном аппарате, Па,([7]):
(1.52)
(Па)
Величина потерь давления нагреваемого теплоносителя в межтрубном пространстве теплообменника, Па, ([7]):
(1.53)
(Па)
где – сумма коэффициентов местных сопротивлений межтрубного пространства, ([7]):
(1.54)
где , – коэффициент сопротивления входа и выхода жидкости ([1]), ,
– коэффициент сопротивления пучка труб,([7]):
продолжение
--PAGE_BREAK--