Реферат по предмету "Производство"


Выбор оптимального места строительства очистного сооружения

--PAGE_BREAK--1.1 Градиентные методы
Основная идея методов заключается в том, чтобы идти в направлении наискорейшего спуска, а это направление задаётся антиградиентом :



где λ[j] выбирается

·                     постоянной, в этом случае метод может расходиться;

·                     дробным шагом, то есть длина шага в процессе спуска делится на некое число;

·                     наискорейшим спуском:
1.2 Метод наискорейшего спуска (метод градиента)
Выбирают , где все производные вычисляются при , и уменьшают длину шага λ[j] по мере приближения к минимуму функции F.

Для аналитических функций F и малых значений fi тейлоровское разложение F(λ[j]) позволяет выбрать оптимальную величину шага

(5)

где все производные вычисляются при . Параболическая интерполяция функции F(λ[j]) может оказаться более удобной.
Алгоритм

1.                 Задаются начальное приближение и точность расчёта

2.                 Рассчитывают , где

3.                 Проверяют условие останова:

o                     Если \epsilon" v:shapes="_x0000_i1050">, то j = j + 1 и переход к шагу 2.

o                     Иначе и останов.
1.3 Метод покоординатного спуска (Гаусса—Зейделя)
Улучшает предыдущий метод за счёт того, что на очередной итерации спуск осуществляется постепенно вдоль каждой из координат, однако теперь необходимо вычислять новые раз за один шаг.
Алгоритм

1.                 Задаются начальное приближение и точность расчёта

2.                 Рассчитывают , где

3.                 Проверяют условие останова:

o                     Если \epsilon" v:shapes="_x0000_i1056">, то и переход к шагу 2.

o                     Иначе и останов.
    продолжение
--PAGE_BREAK--1.4 Метод сопряжённых градиентов
Метод сопряженных градиентов— метод нахождения локального минимума функции на основе информации о её значениях и её градиенте. В случае квадратичной функции в минимум находится за n шагов.

Определим терминологию:

Пусть .

Введём на целевую функцию .

Вектора называются сопряжёнными, если:

·                    

·                    

где — матрица Гессе .
1.4.1 Обоснование метода Нулевая итерация


Рисунок 2 — Иллюстрация последовательных приближений метода наискорейшего спуска (зелёная ломаная) и метода сопряжённых градиентов (красная ломаная) к точке экстремума.

Пусть

Тогда .

Определим направление так, чтобы оно было сопряжено с :



Разложим в окрестности и подставим :



Транспонируем полученное выражение и домножаем на справа:



В силу непрерывности вторых частных производных . Тогда:



Подставим полученное выражение в (3):



Тогда, воспользовавшись (1) и (2):



Если , то градиент в точке перпендикулярен градиенту в точке , тогда по правилам скалярного произведения векторов:



Приняв во внимание последнее, получим из выражения (4) окончательную формулу для вычисления :


    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Системный подход в экономическом анализе
Реферат Композиция "Слова о полку Игореве"
Реферат Ludwig Van Beethoven Essay Research Paper Education
Реферат 20-31 марта 2012 Международная научная конференция: Актуальные проблемы науки и образования
Реферат Разработка системы автоматизации технологического процесса на примере установки ЭЛОУ-АВТ
Реферат Революция в Англии. Конституционный этап
Реферат Авторская позиция как выражение субъективного начала в журналистском тексте на материале красноярской
Реферат Логика как наука. Определение логики
Реферат Anger Sin Or Virtue Essay Research Paper
Реферат Фізична хімія
Реферат Анализ концепции гуманитарной интервенции как новой формы миротворчества на примере конфликта в Косово
Реферат «транспортные преступления» для студентов юш двфу
Реферат Использование проблемных ситуаций на уроках математики в развитии творческого мышления младших школьников
Реферат King Lear The Role Of The Fool
Реферат Военная организация, вооружение и боевые качества русского войска (IX-XIV вв.)