Реферат по предмету "Педагогика"


Нетрадиционные формы организации обучения

--PAGE_BREAK--В практике работы школы сложились следующие виды инструктажа при задавании уроков на дом: предложение выполнить таким же способом, каким выполнялись аналогичные работы в классе; объяснение способа выполнения задания па двух-трех примерах; разбор наиболее трудных элементов домашнего задания.
Выполнение домашних заданий в школах-интернатах и школах продленного дня осуществляется в процессе самоподготовки. Преимущества самоподготовки состоят в том, что она проходит в продуктивные для самостоятельной работы часы (обычно после отдыха, прогулки); общее руководство самоподготовкой осуществляет педагог (можно обратиться за помощью); учитель может контролировать ход выполнения домашней работы и учитывать результаты в последующей работе на уроке (если самоподготовкой руководит учитель класса); можно мобилизовать силу коллектива на создание общественного мнения, организовать взаимоконтроль, взаимопомощь; учитель класса может сразу проверить выполнение домашней работы и тем самым высвободить время на уроке.
Однако самоподготовка не лишена недостатков. Так, в частности, возможно списывание и подсказки, порождающие иждивенческие настроения отдельных учащихся; выполнившие задание, как правило, находятся в том же помещении, что и другие (мешают, вызывают торопливость); усложняется процесс подготовки устных задании.
Нередко самоподготовкой руководит учитель. С одной стороны, это хорошо, но с другой — самоподготовка часто превращается в урок, так как внимание обращается на ликвидацию пробелов, исправление недоработок. В настоящее время для руководства самоподготовкой все больше привлекаются штатные воспитатели. Они рекомендуют целесообразный порядок выполнения задания; подсказывают приемы работы; организуют взаимоконтроль и взаимопомощь.
Редко практикуемой в школах, но довольно действенной формой организации обучения, имеющей своей целью обобщение материала по какому-либо разделу программы, является учебная конференция. Она требует большой (прежде всего длительной) подготовительной работы (проведение наблюдений, обобщение материалов экскурсий, постановка опытов, изучение литературных источников и т.п.).
Конференции могут проводиться по всем учебным предметам и в то же время далеко выходить за рамки учебных программ. В них могут принимать участие учащиеся других (параллельных, прежде всего) классов, учителя, представители науки, искусства и производства, участники войны, ветераны труда.
В старших классах и особенно в вечерних и сменных школах используется лекция, адаптированная к условиям школы. Школьные лекции успешно применяются при изучении как гуманитарных, так и естественнонаучных дисциплин. Как правило, это вводные и обобщающие лекции, реже они представляют собой модификацию урока сообщения новых знании.
В условиях школы лекция во многом приближается к рассказу, но значительно продолжительнее по времени. Она может занимать урочное время целиком. Обычно лекция используется, когда учащимся необходимо дать дополнительный материал или обобщить его (например, по истории, географии, химии, физике), поэтому она требует записи.
В начале лекции учитель сообщает тему и записывает план. На этапе слушания и фиксирования лекции на первых порах учащимся необходимо указывать, что записывать, но не превращать лекцию в диктовку. В дальнейшем они должны самостоятельно по интонации и темпу изложения выделять подлежащее записи. Учащихся необходимо учить записывать лекции, а именно: показывать приемы конспектирования, использования общеупотребительных сокращений и обозначений, учить дополнять материал лекций, применять необходимые схемы, чертежи, таблицы.
Школьной лекции должна предшествовать подготовка учащихся к восприятию. Это может быть повторение необходимых разделов программы, выполнение наблюдений и упражнений и т.п.
Семинарские занятия проводятся в старших классах при изучении в основном гуманитарных предметов. При этом используются два вида семинаров: в форме докладов и сообщений; в вопросно-ответной форме. Сущность семинаров заключается в коллективном обсуждении предложенных вопросов, сообщений, рефератов, докладов, подготовленных учащимися под руководством учителя.
Семинарскому занятию предшествует длительная заблаговременная подготовка. Сообщается план занятия, основная и дополнительная литература, намечается работа каждого ученика и класса в целом. Структурно семинары довольно просты. Они начинаются с краткого вступления учителя (введение в тему), затем последовательно обсуждаются объявленные вопросы. В конце занятия учитель подводит итог, делает обобщение. Если готовились сообщения или доклады, то обсуждение строится на их основе при активном участии оппонентов, которые тоже готовятся заранее и предварительно ознакомились с содержанием сообщений.
Особой формой семинара является семинар-диспут. Его отличие от внеучебных диспутов в том, что сохраняется постоянный состав класса, диспутом всегда руководит учитель, и сохраняются традиции коллективной работы учащихся на уроке. Семинар-диспут имеет и особую цель — формирование оценочных суждений, утверждение мировоззренческих позиций.
Практикумы, или практические занятия, применяются при изучении дисциплин естественнонаучного цикла, а также в процессе трудовой и профессиональной подготовки. Они проводятся в лабораториях и мастерских, в учебных кабинетах и на учебно-опытных участках, в ученических производственных комбинатах и ученических производственных бригадах учащихся. Обычно работа строится в парах или индивидуально по инструкции или алгоритму, предложенному учителем. Это могут быть измерения на местности, сборка схем, ознакомление с приборами и механизмами, проведение опытов и наблюдений и т.п.
Практикумы во многом способствуют решению задач политехнического образования и трудовой подготовке школьников.

5. Нетрадиционные формы организации обучения
5.1. Учебные экскурсии
Наряду с уроками учебная работа в школе проводится в форме экскурсий. Слово экскурсия (excursio) латинского происхождения и в переводе на русский язык означает вылазку, посещение какого-либо места или объекта с целью его изучения.
Под экскурсией понимается такая форма организации обучения, при которой учащиеся воспринимают и усваивают знания путем выхода к месту расположения изучаемых объектов (природы, заводов, исторических памятников) и непосредственного ознакомления с ними.
Экскурсии являются весьма эффективной формой организации учебной работы. В этом отношении они выполняют следующие функции.
1. С помощью экскурсий реализуется принцип наглядности обучения, ибо в процессе их учащиеся, как отмечено выше, непосредственно знакомятся с изучаемыми предметами и явлениями.
2. Экскурсии позволяют повышать научность обучения и укреплять его связь с жизнью, с практикой.
3. Экскурсии способствуют техническому обучению, так как дают возможность знакомить учащихся с производством, с применением научных знаний в промышленности и сельском хозяйстве.
4. Экскурсии играют важную роль в профессиональной ориентации учащихся на производственную деятельность и ознакомлении их с трудом работников промышленности и сельского хозяйства.
В учебных программах по каждому предмету устанавливается обязательный перечень экскурсий и определяется их содержание. С этой точки зрения все проводимые в школе экскурсии условно разделяются на несколько видов.
Производственные экскурсии. Эти экскурсии проводятся по физике, химии, математике, экономической географии. Они предполагают посещение учащимися промышленных предприятий, сельскохозяйственных объектов, новостроек и т.д. Производственные экскурсии помогают в изучении основ современного производства и способствуют расширению технического кругозора и трудовому воспитанию учащихся.
Естественнонаучные экскурсии. Они проводятся с целью приобретения знаний по таким предметам, как ботаника, зоология, география и др. Объектами для таких экскурсий могут быть: поле, лес, луг, речка, зоопарк и т.д.
Историко-литературные экскурсии. Это экскурсии, которые проводятся по литературе и истории и предполагают посещение исторических мест, художественных выставок, картинных галерей, книгохранилищ, архивов и т.д.
Краеведческие экскурсии. Они организуются с целью изучения природы и истории родного края.
Комплексные экскурсии. Они проводятся по нескольким предметам одновременно. Например, экскурсия на стеклозавод может проводиться одновременно по физике, химии, математике, географии, и по каждому из этих предметов изучаются специфические вопросы.
Однако классификация учебных экскурсий зависит также от того, какие дидактические задачи решаются в процессе их проведения. С этой точки зрения выделяются два типа экскурсий. Одни из них служат средством изучения нового материала учащимися, другие используются для закрепления того материала, который предварительно изучен в классе.
Основная задача экскурсии изучения нового материала состоит и том, чтобы наглядно сообщить учащимся новые знания.
При проведении экскурсий закрепления того материала важнейшая задача состоит в том, чтобы добиться обстоятельного осмысления и прочного усвоения изучаемого материала. Решению ее должна быть подчинена методика экскурсий.
В общем плане эта методика включает: а) подготовку экскурсии; б) выход (выезд) учащихся к изучаемым объектам и усвоение (закрепление) учебного материала по теме занятий; в) обработку материалов экскурсии и подведение ее итогов.
5.2. Урок–практикум
Математический материал, изучаемый в V — VIклассах, дает большой простор для составления задач, отражающих вопросы экономии и бережливости. Такие задачи не только способствуют закреплению навыков работы с натуральными и дробными числами, процентами, но и знакомят с экономической жизнью города, учат бережному отношению к народному достоянию, содействуют выработке активной жизненной позиции.
Для работы с учащимися составляются карточки-задания. При составлении заданий учитель использует различные материалы, публикуемые в региональной периодической печати, справочники по сельскому хозяйству, промышленному производству, экономические словари.
Учащимся предлагается на основании собранного материала составить задачу, записав ее условие, и решить ее. На следующем уроке 2—3 ученика зачитывают составленные задачи, а учитель вместе с классом комментирует их, выделяя моменты экономии и бережливости. Наиболее удачные задачи используются затем при повторении.
Например: За счет сокращения потерь сырья и материалов Полярный хлебозавод планирует в 2001 г. сэкономить муки на 200000 руб. Определите прибыль хлебозавода после реализации сверхплановой продукции, если 1 кг муки стоит 8 руб., на выпечку одного батона идет 400 г муки, а батон стоит 7 руб.
Другой способ составления задач — по готовым плакатам. Учащимся предлагается составить смету ремонта подъезда, класса, квартиры, используя данные плаката.
Например: Какое количество кафельной плитки необходимо для покрытия стен кабинета обслуживающего труда, если размеры плитки 15 см * 22 см? Выполните необходимые измерения самостоятельно. Во сколько обойдется покупка плитки, если каждая плитка стоит 10 руб.?
Вычислите, какое количество краски потребуется для окраски:
а) окон и дверей классного помещения;
б) всего школьного здания при предстоящем (во время летних каникул) ремонте школы?
Сделайте сами необходимые измерения.
Особый интерес вызывают у детей практические работы, выполняя которые самостоятельно или с помощью родителей, они могут составить семейный бюджет, подсчитать экономию электроэнергии.
Приведем примеры таких задач.
1. Используя показания счетчика на 1 июня и 1 июля, I декабря и I января, определите, на сколько больше платили за электроэнергию в один из более темных месяцев года по сравнению с оплатой за один из более светлых месяцев, если стоимость 1 кВт * ч энергии равна 34 коп.
2. В таблице указаны стоимость (в рублях) продукции, которую выпустил Полярный хлебозавод в I квартале текущего года. Постройте круговые диаграммы выпуска кондитерских хлебобулочных и шоколадных изделий.
3. Используя данные таблицы, постройте диаграмму объема реализации промышленной продукции трудящимися нашего города.
4. Постройте диаграмму роста расходов на социально-культурные мероприятия в нашем городе.
5. На рисунке приведена диаграмма объема реализации промышленной продукции трудящимися нашего города. Перенесите числовые данные диаграммы на координатную плоскость, соедините построенные точки плавной линией и, используя полученный график, определите:
а) объем реализованной продукции в октябре и ноябре месяцах;
б) месяц, в котором объем реализованной продукции был наименьшим;
в) месяц, в котором объем реализованной продукции был наибольшим;
г) месяцы, когда был перевыполнен план по объему реализованной продукции.
Воспитание бережливости нельзя сводить только к решению соответствующих задач. Здесь важен весь комплекс проводимых мероприятий. Экскурсии на заводы, школьный «Рейд бережливых» должны дополнять друг друга и одновременно служить материалом для новых задач.
1. После уроков в партах нашего класса были оставлены листы бумаги обшей массой в 1 кг. Если такое будет происходить каждый день, то сколько бумаги будет израсходовано напрасно:
а) в школе за 210 учебных дней в году;
б) во всех школах города за этот же период?
Какая часть всей бумаги, произведенной в нашей стране (около 6 тыс. тонн), будет потрачена впустую?
2. После обеда в школьной столовой отходы хлеба составили 1 кг100 г. Если бы такие отходы оставались каждый день, то сколько хлеба было бы неправильно использовано в школе за 210 учебных дней?
Какова стоимость этого хлеба, если 1 булка белого хлеба (весом 400 г) стоит 7 руб.? Сколько учеников из малообеспеченных семей смогла бы кормить школа на эти средства весь учебный гол, если на питание одного школьника требуется 308руб. в месяц?
3. Измерьте площадь одной страницы учебника.
Определите, какова площадь всей бумаги, из которой изготовлен один экземпляр учебника.
Посмотрите, каков тираж учебника, и вычислите, сколько бумаги (м3) израсходовано на изготовление всех экземпляров учебника.
Для производства 1000 м2 бумаги требуется вырубить лес с  га. С какой площади потребовалось вырубить лес, чтобы выпустить весь тираж учебника?
Решая такие задачи, ребята начинают лучше представлять, во что обходится государству и родителям их обучение, каков масштаб их школьных дел, к чему приводит расточительность и т.д.
Для решения задач по экономической тематике желательно подбирать задания, при решении которых необходимо произвести несложный экономический расчет. В ходе решения этих задач школьники могут уяснить смысл таких понятий, как себестоимость, расценка, прирост продукции, прибыль, рентабельность, сверхплановая продукция.
Например: Совхоз «Полярная звезда» продал государству 2,8 тыс. т молока по плану по цене 1500 руб. за тонну. Увеличив затраты на 500 тыс. руб., он получил дополнительно 0,4 тыс. т молока и уровень рентабельности производства повысился на 4%. Какую прибыль получил колхоз, если за сверхплановую продажу молока была установлена надбавка 30% к закупочным ценам?
При рассмотрении задач с экономическим содержанием в V — VIклассах можно использовать и задачи на отыскание наилучшего решения, правда, пока только такие, в которых наилучшее решение можно определить путем сравнения полученных результатов.
Для кормления коров в совхозе «Тулома» требуется произвести 120 тыс. кормовых единиц ячменя или овса. Определите, что выгоднее производить, если известно, что 1 кг овса содержит 1 кормовую единицу, а 1 кг ячменя — 1,21 кормовой единицы и что производство 1 ц овса обходится хозяйству в 4 руб., а 1 ц ячменя в 4 руб. 30 коп.?
На примере решения несложных задач можно показать учащимся, как добиться экономии материальных средств, как обеспечить получение данного результата при минимуме затрат или получить максимальный результат, используя известный объем ресурсов.
1. До реконструкции на ферме совхоза «Полярная звезда» работало 60 доярок, которые обслуживали 1200 коров. После реконструкции 28 операторов стали обслуживать 1680 коров. Во сколько раз увеличилось число коров, обслуживаемых одним человеком? На сколько возросла производительность труда оператора по сравнению с производительностью труда доярки?
2. За счет сокращения потерь сырья и материалов, внедрения передовой технологии предприятия нашего города планируют сэкономить 17 тыс. кВт * ч электроэнергии. Какую часть составляет экономия Полярного хлебозавода, если он сэкономил 2 тыс. кВт ч? (Сколько процентов составляет экономия хлебозавода, если он сэкономил 2 тыс. кВт * ч?)
    продолжение
--PAGE_BREAK--3. В колхозе «Северная звезда» собрали с 1 га 60,8 и кормовых культур. После внедрения нового сорта морозостойких трав, урожай увеличивается на 25%. Сколько кормов собирает теперь колхоз с 23 га? На сколько гектаров можно уменьшить посевные площади, чтобы получать прежний объем кормов?
Решения подобных задач помогают учащимся понять, что эффективность общественного производства зависит не только от увеличения выработки продукции, но и от рационального, экономного использования времени, сырья, материалов, улучшения качества выпускаемой продукции, и убеждают их в том, что экономия — это результат предварительно продуманных действий.
5.3. Урок-мастерская
Урок-мастерская нацеливает учащихся на то, чтобы они собственным трудом добывали знания. В этом — основной лейтмотив развивающей педагогики. Тема «Степенная функция» очень подходит для творческой работы всего класса, так как степенная функция (у = хn, где n — любое рациональное число) — это фактически множество функций, имеющих различные свойства в зависимости от показателя степени.
Обсуждение этих свойств лучше всего организовать по группам. Для этого класс целесообразно поделить на шесть групп.
Прежде всего, учителю необходимо представлять себе последовательность работы в «мастерской»:
I этап — индукция — обращение к предыдущему опыту;
II этап — обсуждение темы в группах, а далее со всем классом;
III этап — разрыв — момент, когда учащиеся должны осознать, что в их знаниях имеются пробелы, которые они сами должны восполнить;
IV этап — рефлексия — определение степени усвоения.
Опишем подробнее каждый из этапов урока.
I этап — индукция. Учитель напоминает о том, что в классе уже изучат функции у=х, у=, у=x2 их свойства и графики. Эти функции можно в общем виде задать формулой: у=хq, где q — некоторое целое число. Такая функция называется степенной. Перед классом ставится следующая задача: перечислить вопросы, на которые мы должны ответить, изучая новую функцию.
Класс обсуждает эти вопросы по группам, а потом все вопросы от групп собираются в единый список:
— Какими свойствами обладает данная функция?
— Каков ее график?
— В каких ситуациях она используется?
Начнем с ответа на последний вопрос. Приведем примеры нескольких ситуаций, в которых появляется степенная функция.
Три ученика поочередно выходят к доске и делают сообщения, подготовленные дома.
Первый ученик рассматривает функцию
S = , где S — площадь поперечного сечения провода диаметром d. Слушатели замечают, что эта степенная функция фактически представляет собой квадратичную, но с ограничениями на значение аргумента d.
Второй ученик рассказывает о том, что сила притяжения F двух тел с массами m1, и m2, выражается формулой F=γm1m2r-2. Это функция расстояния г между этими телами. В классе найдется ученик, который заметит, что мы уже строили график функции такого вида, хотя специально ее не изучали.
Третий ученик анализирует дальность d расстояния горизонта от наблюдателя: d=3,8h1/2. Эта функция высоты, на которую поднят наблюдатель над уровнем моря. Если ребята сами этого не заметили, то учитель должен подчеркнуть, что здесь величина d не может возрастать неограниченно. Действительно, как бы ни был высоко поднят наблюдатель, он не может увидеть больше, чем позволяют возможности его зрения и выпуклость Земного шара. Этот пример особенно показателен, так как позволяет судить о целесообразности ограничений на значения функции. Здесь какие-то ограничения мы должны наложить на значения функции d, хотя значения h, теоретически говоря, могут возрастать неограниченно.
II этап — обсуждение темы. Учащимся предоставляется некоторое время для того, чтобы они разобрали свойства одной из выбранных ими степенных функций. Главная проблема здесь в выборе функции. Одна группа склонна упрощать задачу, ограничиваясь функцией вида у = х2, которая всем учащимся хорошо известна. Другая группа слишком усложняет свою работу, занявшись функцией вида y=х4 или у=х5, а то и обеими вместе, хотя общий подход к вопросу учащимся еще не ясен.
В конце концов, находятся группы, избравшие функции, графики которых уже рассматривались ранее, хотя на них не делалось нужного акцента.
Первая группа рассматривала функцию вида у=х3; отметила область ее определения: D(f)=(-∞; +∞) и нулевое значение функции при х = 0. Ребята особо остановились на том, что функция возрастает на всей области определения. Выделили промежутки, на которых функция больше или меньше нуля. Выступавшие особо подчеркнули, что эта функция нечетная и не имеет ни наибольшего, ни наименьшего значения.
От этой группы выступает перед классом один ученик, который рассказывает о результатах исследований в группе.
Вторая группа выбрала для рассмотрения функцию у=х-3. Ребята заметили, что теперь придется исключить из области определения функции число 0, т.e. D(f)=(-∞; 0) U (0; +∞). В отличие от предыдущей, эта функция не имеет нулей. Но, как и рассмотренная выше, эта функция положительна при х > 0 и отрицательна при х
Представитель этой группы особо подчеркивает различия между функциями у = х3 и у = х-3.
Еще двое учеников рассказывают о функциях у = х4; у = х-4.
Во время своих выступлений все докладчики должны продемонстрировать графики рассмотренных функций.
Во время III этапа урока учащиеся должны обобщить свои знания. А сделать это они должны самостоятельно, удивившись разнообразию рассмотренных функций. «Почему им дано одно название, если их так много и они разные?» — вот вопрос, который должны поставить перед собою учащиеся. Задача учителя — незаметно подвести учащихся к этому вопросу. Наступает момент так называемого разрыва, когда ребята должны осознать недостатки своих знаний, их ограниченность или неполноту. Действительно, одна функция из рассмотренных имеет нули, другая нет. Одна возрастает на всей области определения, другая — то возрастает, то убывает. Какую же характеристику мы должны дать всей степенной функции, чтобы она охватывала как можно больше частных случаев?
В поиске ответа на этот вопрос кто-то из ребят, в конце концов догадывается, что вид степенной функции у = хn удобно связать с четностью или нечетностью показателя степени n.
Теперь уместно снова дать задание группам обсудить свойства функций:
у = хn, где n — нечетное;
у = хn, где n — четное,
у = х-n, где n — нечетное;
у = х-n, где n — четное.
Еще раз отмечаем план исследования функции:
1. Указать область определения.
2. Определить четность или нечетность функции
(или отметить, что она не является ни четной, ни нечетной).
3. Найти нули функции, если таковые существуют.
4. Отметить промежутки знакопостоянства.
5. Найти промежутки возрастания и убывания.
6. Указать наибольшее или наименьшее значение функции.
Работа завершается тем, что на доске возникают графики рассмотренных функций (рис. 1, а-г). Эти графики выполняют представители каждой из групп.

Рис. I
Теперь вместе с классом строим графики функции у = х1/n, у =x -1/n, где n — натуральное число и n ≥ 2 (рис. 2, а. 6).


Рис. 2
Отмечается общее свойство этих функций: они обе имеют область определения — промежуток (0; +∞). Они обе являются ни четной, ни нечетной. Они обе больше нуля.
Но у этих функций есть и различия. Ребята их называют особо: функция вида у = х1/n возрастает на своей области определения, а функция вида у = х-1/n убывает на той же области. Функция вида у = х1/n имеет нулевое значение при х = 0, а функция вида у = х-1/n не имеет нулей.
На IV этапе учащиеся должны заняться рефлексией, т.е. определением степени усвоения материала. Весь класс получает следующее задание по рис. 3.

Рис. 3
На рис. 3, а-з схематически изображены графики функций, которые заданы формулами: у = х3; у = x1/3; y=x4; у = х2; у = 1/x2; у=x1/2; y = х-1, у = х-1/2.
Установите, какая формула из данного списка примерно соответствует каждому из графиков а-з.
5.4. Учебные викторины
Одной из нетрадиционных форм обучения является учебная викторина. Она нацеливает учащихся на интерес к математике, развивает их умственные способности, заставляет их мыслить нетрадиционно. Рассмотрим несколько примеров проведения математических викторин в 11 и 5 классах.
Математическая викторина 5 класс.
Математическую викторину можно провести в виде «Рыбки»
1.     Из плотной цветной бумаги изготавливается несколько рыбок

2.На чистой обратной стороне пишется задача

3. К каждой рыбке прикрепляется большая железная скрепка
4. Все рыбки с задачами помещаются в ящик
5. Представители команд вылавливают рыбки из ящика с помощью удочки (палочки с веревочкой, на конце которой прикрепляется магнит)
6. Пойманные задачи решаются учениками и оцениваются баллами.
Задачи для «Рыбки»
1. В комнате четыре угла. В каждом углу сидит кошка. Против каждой кошки сидят по 3 кошки. Сколько всего кошек в комнате?
2. Сколько квадратов на чертеже?

2.     Сколько треугольников на чертеже?

4. У меня в левом кармане столько же денег, сколько в правом. Из левого переложили в правый одну копейку. На сколько после этого станет больше денег в правом кармане, чем в левом?
5. Пять рыбаков за 5 часов распотрошат 5 судаков. За сколько часов 100 рыбаков распотрошат 100 судаков?
6. Что тяжелее: пуд железа или пуд пуха?
7. На озере росли лилии. Каждый день их число удваивалось и на 20-й день заросло все озеро. На какой день заросла половина озера?
8. Разделить фигуру на две равные части

9. Четыре человека обменялись рукопожатиями. Сколько всего было рукопожатий?
10. Во сколько раз уменьшится число, если от него отнять половину такого же числа?
Математическую викторину можно провести в форме «Ромашки». Для этого надо:
1. Изготовить круг из цветной плотной бумаги
2. К кругу скрепками прикрепляются разноцветные лепестки, на обратной стороне которых пишется задача
3. Ученик из команды подходит к учителю, вытаскивает лепесток, читает и решает задачу

Задачи на лепестках
1. У Андрея и Бори вместе 11 орехов. У Андрея и Вовы — 12 орехов. У Бори и Вовы — 13 орехов. Сколько всего орехов у Андрея, Бори и Вовы вместе?
2. Из чисел 21, 19, 30, 25, 3, 12, 8, 15, 6, 27 подбери такие три числа, сумма которых равна 50…
3. Перечислить не менее 6 способов, которыми можно набрать 15 копеек.
4. Как тремя отрезками, не отрывая карандаша от бумаги, перечеркнуть все точки?
5. В семье у каждого из 6 братьев есть по сестре. Сколько детей в семье?
6. Два в квадрате 4, 3 в квадрате 9. Чему равен угол в квадрате?
7. Величина угла 30°. Чему она будет равна, если рассматривать угол в лупу с 2-кратным увеличением?
8. Сколькими нулями оканчивается произведение первых десяти натуральных чисел?
9. Кто изображен на портрете;
В семье я рос один на свете,
И это правда, до конца.
 Но сын того, кто на портрете,—
Сын моего отца
(На портрете — мой отец)
10. Найти сумму натуральных чисел от 1 до 100
Учитель может задать по вопросу каждой команде
1. Шел Кондрат в Ленинград.
 А навстречу 12 ребят.
У каждого по 3 лукошка.
 В каждом лукошке кошка.
 У каждой кошки 12 котят.
У каждого котенка в зубах по 3 мышонка.
 И задумался старый Кондрат:
«Сколько мышат и котят
Ребята несут в Ленинград?»
После ответа учащихся учитель прочитает стихотворение:
«Глупый, глупый Кондрат
 Он один шагал в Ленинград,
А ребята с лукошками,
С мышами и кошками
Шли навстречу ему — в Кострому!
2. Электропоезд идет с востока на запад со скоростью 60 км/ч. В этом же направлении с востока на запад дует ветер со скоростью 50 км/ч. В какую сторону отклоняется дым поезда?
(Ответ: электропоезд бездымен)

Математическая викторина «Что, Где, Когда?» 11 класс.
Г. Г Плотникова (Пермь)
Математика — царица всех наук, ее любимцем является истина, а простота и бесспорность — одеянием. Математика, которая оказала столько услуг обществу, наукам и искусству, станет также путеводной звездой человеческого разума во всех областях познания.
Ян Снядецкий
Цель викторины: воспитывать интерес к математике развивать логическое мышление и расширять кругозор.
Ход викторины; к участию в викторине, привлекаются команды учащихся 11 класса по 5 человек в каждой. В состав команды входят не обязательно хорошо успевающие по математике учащиеся, но непременно начитанные, умеющие логически мыслить ребята. Они же выбирают капитана.
В центре игрового зала располагается круглый зал с волчком, а вокруг — столы учащихся полукругом.
Руководитель мероприятия, он же ведущий, объявляет начало и конец каждого раунда, оценивает ответы, комментирует их.
По жребию капитан команды крутит волчок, и эта же команда отвечает первой.
В случае неверного ответа отвечает другая команда, а если верного ответа нет, то ответ даст ведущий.
Соревнование состоит максимально из 9 раундов. В каждом раунде знатокам предлагается вопрос, подготовленный заранее учащимися (или учителем).
После двухминутного обдумывания первая команда дает ответ. У каждой команды — эксперт. Ответы на вопросы команда дает эксперту, и после заслушанного ответа эксперты дают оценку команды. Результаты ответов фиксируются на доске. Побеждает в соревновании та команда, которая наберет большее количество очков.
Можно во время викторины проводить музыкальную паузу. Она возникает либо по указанию стрелки волчка, либо по объявлению ведущего.
В конце викторины проводится награждение победившей команды.
Вопросы к викторине
1. Какой угол между стрелками в половине десятого?
2. Кусок мыла, который лежит на вашем умывальнике, имеет форму параллелепипеда. Вы расходуете мыло равномерно, каждый день одно и то
же количество. Спустя 7 дней размеры вашего мыла уменьшились вдвое, так как мыло смылось. На сколько дней хватит этого мыла, если вы будете пользоваться так же?
3. Известно, что вес тела на Луне в 6 раз меньше, чем на Земле. Представьте себе, что вам предложено отправиться на Луну и проверить этот факт экспериментально. Какое оборудование вы возьмете с собой?
4. Уважаемые знатоки! У меня в руках игральная карта: шестерка бубен. Посмотрите внимательно, на карте вы видите изображение ромба. У меня к вам такой вопрос: почему на картах бубновой масти изображен именно ромб, а не что-нибудь другое?
5. Какая борона сидит глубже в земле: массой в 60кг с 20 зубьями или массой 120кг с 60 зубьями?
6. Математик, оказавшись случайно в небольшом городке и желая хоть как-то убить время, решил подстричься. В городке имелось лишь два мастера (у каждого из них своя парикмахерская). Заглянув к одному мастеру, математик увидел, что в салоне грязно, сам мастер одет неряшливо и небрежно подстрижен. В салоне другого мастера было идеально чисто, я владелец был безукоризненно одет и аккуратно подстрижен. Поразмыслив, математик отправился стричься к первому мастеру. Уважаемые знатоки! Не можете ли вы объяснить причину столь странного, на первый взгляд, решения математика?
7. В 1271 г. один венецианский купец отправился в путешествие по странам Востока. Поход оказался длительным и чрезвычайно интересным. Он побывал в Армении, в Персии, в Индии… 17 лет он прожил в Китае. В 1295 г. отважный венецианец вернулся на родину. Через несколько лет он написал книгу о своем путешествии. В книге рассказывается много диковинного. Нос особым восторгом автор описывает богатство китайских вельмож. Купцы Венеции — состоятельные люди. Арифметику знают прекрасно. Свои доходы они считают на тысячи. «Милле», — сочно произносят они. Это и означает «тысяча». Но путешественник, о котором я рассказываю, уверяет, что богатейший китайский вельможа намного богаче достойнейшего из венецианских купцов. Как это выразить, как передать одним словом несметные богатства Востока? И он произносит: «Мильоне!» Получилось необычное, но в общем понятное для итальянца слово. «Миллс» — по-итальянски «тысяча». Окончание «-оне» играет у итальянцев ту же роль, что у нас суффикс «-ищ-». «Мильоне», очевидно, «тыся-чише», «великая тысяча», «тысяча тысяч». Так родилось слово «миллион», означающее «тысяча тысяч». В порыве вдохновения венецианский купец сочинил слово, которым ныне пользуется весь мир. Внимание! Вопрос: Кто был этот купец"
8. В начале сороковых годов нашего века автостроители всего мира столкнулись со странным непонятным явлением. Во время скоростного полета на некоторой, так называемой критической скорости возникла стремительно нарастающая вибрация конструкции. Она внезапно охватывала самолет, и иногда достаточно было нескольких секунд, чтобы машина в воздухе развалилась на куски. С земли казалось, что самолеты взрываются. Многие исследования, проведенные в США, Англии. Германии, не принесли успеха. Полностью разобраться в этой запутанной проблеме удалось лишь известному советскому математику. Были найдены простые и эффективные методы предупреждения вибраций. Угроза самолету и экипажу быта полностью ликвидирована. За выдающийся вклад в решение труднейшей проблемы этот математик в 19-12 г. был удостоен Государственной премии СССР. Вопросы к вам, уважаемые знатоки, таковы: Какое название получило в технике описание явления? Какова фамилия советского математика, о котором я рассказала?
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.