Реферат по предмету "Математика"


Многомерный аналог признака орбитальной устойчивости Пуанкаре

Рассмотрим систему , ,1где дважды непрерывно дифференцируемая вектор-функция. Пусть некоторая траектория системы 1, содержащаяся при в ограниченной области . В дальнейшем будем также предполагать, что в замыкании области . Введм в рассмотрение симметричную не особую матрицу , где дважды непрерывно дифференцируемые вектор-функции, и дважды непрерывно дифференцируемую вектор-функцию , удовлетворяющую неравенству .


Пусть некоторая симметричная матрица, дифференцируемая функция, и числовые последовательности, удовлетворяющие условиям Здесь и некоторые числа. Введм также обозначение . Теорема. Пусть выполнено неравенство 1 . Тогда если квадратичная форма на множестве положительно определена и выполнено неравенство 2 , то траектория орбитально асимптотически устойчива. Если квадратичная форма на множестве не вырождена, может принимать отрицательные значения и выполнены


неравенства 3 то траектория будет орбитально неустойчивой. Доказательство. Рассмотрим множество . Здесь некоторое достаточно малое число. Зафиксируем некоторую точку и будем изучать поверхность в некоторой достаточно малой окрестности точки . Из следует, что найдтся число такое, что Возьмм число , близкое к . В этом случае .Определим теперь отображение точки в гиперплоскость таким образом, чтобы .2При этом


число будем выбирать так, чтобы , а матрицу такой, чтобы имело место соотношение 2. Ясно, что . Здесь , считаем, что величина является большой. Отсюда следует, что для выполнения соотношения 2 достаточно, чтобы выполнялось равенство .3Из соотношения 2 следует, что вектор ,нормальный к в точке , может быть определн следующим образом , где Заметим, что . Поэтому . Отсюда и из соотношения 3 получим, что .4Покажем теперь, что траектория системы 1,


проходящая в момент времени через точку , удовлетворяет с точностью до соотношению .5Для этого отметим, что при малых .Поэтому вектор с точностью до принадлежит гиперплоскости , которая параллельна гиперплоскости, касательной к поверхности , и проходит через точку . Ясно также, что проходит через расположенную в гиперплоскости точку , где . Отсюда, из соотношения и того факта, что векторы, нормальные к и в точке , совпадают с точностью до


, следует соотношение 5. Из включения 5, равенства 4 и условия 1 теоремы вытекает при всех соотношение , где некоторая непрерывная функция, удовлетворяющая неравенству . Используя это неравенство, условия 2, 3 теоремы и стандартную ляпуновскую технику, получим утверждение теоремы. В случае получим широко известный признак Пуанкаре. Список использованных источников 1. Демидович


Б. П. Обыкновенные дифференциальные уравнения. М 2. Леонов Г. А. Многомерный аналог признака орбитальной устойчивости Пуанкаре. Дифференциальные уравнения, 3. Хартман Ф. Обыкновенные дифференциальные уравнения. М 1970.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Мужчины терпеть не могут, когда женщины ведут себя так, будто они не любят секс
Реферат Gorillas Essay Research Paper GORILLAThe gorilla walks
Реферат Освальд Шпенглер религия - душа культуры
Реферат «середньовічний світ західної європи», «релігійно-церковне життя середньовічної європи», «візантія. Арабський світ», «європейські держави в добу середньовіччя», «культура західної європи в v—xv ст.», «слов’яни та їхні сусіди», «індія. Китай». І семес
Реферат Человек и развитие средств массовой коммуникации
Реферат 1. общие положения настоящее Положение принято на основании ст
Реферат Лекция – важнейшая форма преподавания философии: содержание, структура и стиль лекции
Реферат Получение, структура, свойства и маркировка высокопрочных и ковких чугунов и легированных сталей
Реферат 1984 And Animal Farm Compatitive Essay Essay
Реферат Автоматизация рабочего места бухгалтера-кассира
Реферат Фирма как экономический агент
Реферат История японского языка
Реферат Мировые суды
Реферат Петровские реформы в области культуры плюсы и минусы в оценках СМ Соловьёва и ВО Ключевского
Реферат Динамическое поведение мембранных систем и липидно-белковые взаимодействия