Реферат по предмету "Компьютеры и цифровые устройства"


Поиск хеш-функции

Поиск хеш-функции. ХЕШИРОВАНИЕ До сих пор мы рассматривали методы поиска, основанные на сравнении данного аргумента K с имеющимися в таблице ключами или на использовании его цифр для управления процессом разветвления. Но есть и третий путь не рыскать вокруг да около, а произвести над K некоторое арифметическое вычисление и получить функцию fK, указывающую адрес в таблице, где хранится K и ассоциированная с ним информация. К сожалению, находить подобные функции fK довольно сложно.

Функции, дающие неповторяющиеся значения, неожиданно редки даже в случае довольно большой таблицы. Например, знаменитый парадокс дней рождения утверждает, что, если в комнате присутствует не менее 23 человек, имеется хороший шанс на то, что у двух из них совпадет день рождения Иными словами, если мы выбираем случайную функцию, отображающую 23 ключа в 365-элементную таблицу, то с вероятностью 0.4927 менее половины все ключи попадут в разные места.

Разумеется, такой метод имеет существенный недостаток, ибо содержимое таблицы должно быть известно заранее добавление хотя бы одного ключа может все испортить, и нам придется начинать фактически на пустом месте. Можно получить гораздо более гибкий метод, если отбросить идею однозначности, допуская совпадения значений fK для различных аргументов, и использовать особый метод разрешения неопределенности после вычисления fK. Наши рассмотрения приводят к широко известному классу методов, обычно называемых хешированием

или рассеянной памятью. Английский глагол to hash имеет смысл нарезать, раскрошить что-либо или сделать из этого месиво идея хеширования состоит в том, чтобы взять некоторые характеристики ключа и использовать полученную частичную информацию в качестве основы поиска. Мы вычисляем хеш-функцию hK и берем это значение в качестве адреса начала поиска. Парадокс дней рождения служит для нас предостережением, что, вероятно, найдутся различные ключи

Ki Kj , для которых hKihKj. Подобное событие называется коллизией для разрешения коллизий были разработаны интересные подходы. Чтобы использовать рассеянную таблицу, программист должен принять два почти независимых решения он должен выбрать хеш-функцию hK и метод разрешения коллизий. Эти два аспекта задачи поиска мы и рассмотрим по очереди. Хеш-функции. Для определенности будем полагать, что хеш-функция hK имеет не более

M различных значений и, что эти значения удовлетворяют условию 0 hK M 1 для всех ключей K. В реальном файле много почти одинаковых ключей, поэтому желательно выбрать хеш-функцию, рассеивающую их по таблице. Это важно для уменьшения числа коллизий. Теоретически невозможно так определить хеш-функцию, чтобы она создавала случайные данные из неслучайных реальных файлов. Но на практике нетрудно сделать достаточно хорошую имитацию случайности, используя

простые арифметические действия. На самом деле мы можем поступить даже лучше, выявляя неслучайные свойства реальных данных и строя на их основе хеш-функцию, дающую меньше коллизий чем когда имеются истинно случайные ключи. Рассмотрим, например, случай десятизначных ключей на десятичном компьютере. Сам собой напрашивается следующий способ выбора хеш-функции положить M равным, скажем, 1000, а в качестве hK взять три цифры, выбранные примерно из середины 20-значного

произведения KK. Казалось бы, это должно давать довольно равномерное распределение значений между 000 и 999 с низкой вероятностью коллизий. В самом деле, эксперименты с реальными данными показали, что такой метод середины квадрата неплох при условии, что ключи не содержат много левых или правых нулей подряд. Выяснилось, однако, что существуют более надежные и простые способы способы задания хеш-функций. Многочисленные проверки реальных файлов выявили очень хорошую работу двух основных типов хеш-функций.

Один из них основан на делении, а другой на умножении. Метод деления особенно прост используется остаток от деления на M hKK mod M. 2 Например, если M - четное число, то значение hK будет четным при четном K и нечетным в противном случае часто это приводит к значительным смещениям данных.

Совсем плохо брать M равным степени основания системы счисления ЭВМ, так как тогда hK дает нам правые значащие цифры K K mod M не зависит от других цифр. Аналогично, M не должно быть кратно 3, ибо буквенные ключи, отличающиеся друг от друга лишь порядком букв, могли бы дать значения функции, разность между которыми кратна 3. Причина кроется в том, что 10n mod 3 4n mod 1. Вообще мы хотели бы избежать значений

M, делящих rk a , где k и a -небольшие числа, а r-основание системы счисления для множества используемых литер обычно r 64, 256 и 100, так как остаток от деления на такие значения M обычно оказываются простой суперпозицией цифр ключа. Наши рассмотрения подсказывают, что лучше всего взять в качестве M такое простое число, чтобы rk a mod M при небольших k и a.

Практически во всех случаях, этот выбор оказывается вполне удовлетворительным. M1009 hK вычисляется следующим образом rX K rA 0 3 rA K mod 1009 Мультипликативную схему хеширования также легко реализовать, но несколько труднее описать, так как нужно представить, что мы работаем с дробями, а не с целыми числами. Пусть w есть размер машинного слова целое число A можно рассматривать как дробь

Aw, если мысленно поставить десятичную или двоичную точку слева от машинного слова, в котором записано A. Метод состоит в том, чтобы выбрать A взаимно простым с w и положить hKMAwK mod 4 В двоичной системе M обычно берут равным степени двойки, так что hK состоит из старших битов правой значащей половины произведения AK. В двоичном виде при M2m мультипликативная хеш-функция вычисляется так rA

K. rAX AK. 5 rAX AK mod w. Сдвиг rAX на m битов влево. Результат получается в регистре A. Одна из привлекательных черт мультипликативной схемы состоит в том, что в 5 не происходит потери информации мы могли бы вновь найти K, зная лишь содержимое rAX после выполнения инструкций 5. Дело в том, что A взаимно просто с w, и при помощи алгоритма

Евклида можно найти Константу A AA mod w 1 отсюда следует, что KAAK mod w mod w. Иными словами, K1 K2 влечет fK1 fK2 . 6 Конечно, fKпринимает значения в диапазоне от 0 до w-1 и не является сколько-нибудь подходящей хеш-функцией, но она может быть очень полезной в качестве рассеивающей функции, а именно функции, удовлетворяющей 6 и обычно приводящей к рандомизации ключей. Хорошая хеш-функция должна удовлетворять двум требованиям

aее вычисление должно быть очень быстрым bона должна минимизировать число коллизий. Свойство a отчасти зависит от особенностей машины, а свойство b- от характера данных. Если бы ключи были действительно случайными, можно было бы просто выделить несколько битов и использовать их для хеш-функции, но на практике, чтобы удовлетворить b, почти всегда нужна функция, зависящая от всех битов. До сих пор мы рассматривали хеширование ключей, состоящих из одного слова.

С ключами, состоящими из нескольких слов или имеющими переменную длину, можно работать как с представленными с многократной точностью числами и применить к ним рассмотренные методы. Однако обычно оказывается достаточной более быстрая процедура, когда отдельные слова сначала комбинируются в одно, а затем производится единственное умножение или деление. Для комбинирования можно использовать сложение по модулю w или операцию исключающее или на двоичных

ЭВМ. Достоинством обеих операций является их обратимость, т.е. их результат зависит от всех битов аргументов, причем исключающее или иногда предпочтительнее, так как не может привести к арифметическому переполнению. Заметим, что обе операции коммутативны, поэтому ключи X, Y и Y, X будут брошены по одному адресу. Чтобы избежать этого, Г.Д. Кнотт предложил предварительно делать циклический сдвиг.

Из других испытанных методов хеширования, пожалуй, наиболее интересным является способ, основанный на алгебраической теории кодирования. Идея аналогична методу деления, только вместо деления на целое число используется деление на многочлен по модулю 2. Для предлагаемого метода M должно быть степенью 2 M2m кроме того, используется многочлен m-й степени Pxxm pm-1 xm-1 p0. Двоичный ключ Kkn-1 k1 k0 2 можно рассматривать как многочлен

Kxkn-1 xn-1 k1x k0, и вычислить остаток Kx mod Px hm-1 xm-1 k1 x k0, используя полиномиальную арифметику по модулю 2 hK hm-1 h1 h02. При правильном выборе Px такая хеш-функция позволяет избежать коллизий, между почти равными ключами. Разрешение коллизий методом цепочек. Мы уже говорили, что некоторые адреса могут порождаться несколькими ключами. Пожалуй, наиболее очевидный способ решения проблемы состоит в том, чтобы поддерживать

M связанных списков, по одному на каждый возможный хеш-адрес. Все записи должны содержать поля LINK кроме того, нужно иметь M головных узлов списков HEADi, где i меняется от 1 до M . После хеширования Рис. Раздельные цепочки. ключа мы просто выполняем последовательный поиск в списке с номером hK1. Рисунок иллюстрирует этот простой метод цепочек при

M9 для последовательности семи ключей KEN, TO, TRE, FIRE, FEM, SEKS, SYV так называются числа от 1 до 7 по-норвежски, имеющих соответственные хеш-коды hK1 3, 1, 4, 1, 5, 9, 2. Первый список содержит два элемента, три списка пусты. Метод цепочек является весьма быстрым, поскольку списки коротки. Если в одной комнате собрать 365 человек, то найдется много пар, имеющих один и тот же день рождения,

но данный день рождения в среднем имеет лишь один человек Вообще, если имеется N ключей и M списков, средний размер списка равен NM таким образом, хеширование уменьшает количество работы, требуемое на последовательный поиск, примерно в M раз. В целях экономии времени желательны большие M , но в этом случае многие ссылки будут пустыми, так что большая часть пространства, отводимого под

M головных узлов, потратится зря. Для небольших по размеру записей напрашивается другой подход можно наложить пространство для записей на пространство для головных узлов, отводя в таблице место под M записей и M ссылок, а не под N записей и MN ссылок. Иногда можно совершить один проход по данным и выяснить, какие головные узлы будут использоваться, вставляя на следующем проходе переполняющие записи в свободные щели.

Часто, однако, это нежелательно или невозможно нам хотелось бы иметь метод, при котором каждая запись обрабатывается лишь один раз, при первом поступлении в систему. Следующий алгоритм, принадлежащий Ф.Уильямсу, является общепринятым способом решения этой задачи. alg C.Поиск с вставкой по рассеянной таблице с цепочками. Предлагаемый алгоритм позволяет отыскать в таблице из

M элементов данный ключ K. Если K нет в таблице и она не полна, K вставляется в нее. Элементы таблицы обозначаются через TABLEi, 0i M, и могут быть двух различных типов свободный и занятый. Занятый узел содержит ключевое поле KEYi, поле ссылки LINKi и, возможно, другие поля. Алгоритм использует хеш-функцию hK.

Для облегчения поиска свободного пространства используется вспомогательная переменная R если таблица пуста, RM1 по мере проведения вставок будет оставаться в силе утверждение, что узлы TABLEj заняты для всех j в диапазоне RjM. Условимся, что узел TABLE0 всегда будет свободен. C1.Хеширование. Установить i



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Ідз №1 Модуль ІV
Реферат Трагедия церковного разделения: "Речь идет об оппозиции восток-запад"
Реферат Классификация ассортимента одежды из тканей
Реферат Значимость восточного учения и способы приобретения отдельных культурных навыков духовного развития для европейской личности
Реферат Газові мережі: класифікація та їх трасування
Реферат Краткий справочник инфекционных болезней
Реферат Проблеми морально-естетичного розвитку особистості
Реферат Гавро, Лайош
Реферат Форматирование документов. Работа с таблицами
Реферат The Life Of Margret Atwood Essay Research
Реферат Геродот книга 3 Талия
Реферат Україна в сучасній системі міжнародних відносин
Реферат Качественный креатив: что это такое?
Реферат Фиш Геннадий
Реферат Проекты по реорганизации народного образования созданные во время буржуазной французской революции