Реферат по предмету "Математика"


Гомоморфизм.

Гомоморфизм групп - это естественное обобщение понятия изоморфизма. Определение. Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть : .
Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения. Примеры. 1. Разумеется, всякий изоморфизм является гомоморфизмом. 2. Тривиальное отображение является гомоморфизмом. 3. Если - любая подгруппа, то отображение вложения будет инъективным гомоморфизмом. 4. Пусть - нормальная подгруппа. Отображение группы G на факторгруппу G/H будет гомоморфизмом поскольку . Этот сюръективный гомоморфизм называется естественным. 5. По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом. 6. Отображение , которое каждому перемещению n- мерного пространства ставит в соответствие ортогональный оператор (см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции . Теорема (свойства гомоморфизма) Пусть - гомоморфизм групп, и - подгруппы. Тогда: 1. , . 2. - подгруппа. 3. -подгруппа, причем нормальная, если таковой была . Доказательство. 1. и по признаку нейтрального элемента . Теперь имеем: . 2. Пусть p = a(h) , q = a(k) . Тогда и . По признаку подгруппы получаем 2. 3. Пусть то есть элементы p = a(h) , q = a(k) входят в . Тогда то есть . Пусть теперь подгруппа нормальна и - любой элемент. и потому . Определение. Нормальная подгруппа называется ядром гомоморфизма .Образ этого гомоморфизма обозначается . Теорема. Гомоморфизм a инъективен тогда и только тогда, когда Доказательство. Поскольку , указанное условие необходимо. С другой стороны, если , то и если ядро тривиально, и отображение инъективно. Понятие гомоморфизма тесно связано с понятием факторгруппы. Теорема о гомоморфизме. Любой гомоморфизм можно представить как композицию естественного (сюръективного) гомоморфизма , изоморфизма и (инъективного) гомоморфизма (вложения подгруппы в группу): . Доказательство. Гомоморфизмы p и i описаны выше (см. примеры) Построим изоморфизм j. Пусть . Элементами факторгруппы являются смежные классы Hg . Все элементы имеют одинаковые образы при отображении a : . Поэтому формула определяет однозначное отображение . Проверим сохранение операции .Поскольку отображение j очевидно сюръективно, остается проверить его инъективность. Если , то и потому . Следовательно, и по предыдущей теореме j инъективно. Пусть - любой элемент. Имеем : . Следовательно, . 10 Циклические группы.
Пусть G произвольная группа и - любой ее элемент. Если некоторая подгруппа содержит g , то она содержит и все степени . С другой стороны, множество очевидно является подгруппой G .
Определение. Подгруппа Z(g) называется циклической подгруппой G с образующим элементом g. Если G = Z(g) , то и вся группа G называется циклической. Таким образом, циклическая подгруппа с образующим элементом g является наименьшей подгруппой G, содержащей элемент g. Примеры 1. Группа Z целых чисел с операцией сложения является циклической группой с образующим элементом 1. 2. Группа поворотов плоскости на углы кратные 2p¤n является циклической с образующим элементом - поворотом на угол 2p¤n. Здесь n = 1, 2, . Теорема о структуре циклических групп. Всякая бесконечная циклическая группа изоморфна Z. Циклическая группа порядка n изоморфна Z / nZ . Доказательство. Пусть G = Z(g) - циклическая группа. По определению, отображение - сюръективно. По свойству степеней и потому j - гомоморфизм. По теореме о гомоморфизме . H = KerjÌZ. Если H - тривиальная подгруппа, то . Если H нетривиальна, то она содержит положительные числа. Пусть n - наименьшее положительное число входящее в H. Тогда nZÌH. Предположим, что в H есть и другие элементы то есть целые числа не делящееся на n нацело и k одно из них. Разделим k на n с остатком: k = qn +r , где 0 Отметим, что » Z / nZ . Замечание. В процессе доказательства было установлено, что каждая подгруппа группы Z имеет вид nZ , где n = 0 ,1 , 2 , . Определение. Порядком элемента называется порядок соответствующей циклической подгруппы Z( g ) . Таким образом, если порядок g бесконечен, то все степени - различные элементы группы G. Если же этот порядок равен n, то элементы различны и исчерпывают все элементы из Z( g ), а N кратно n . Из теоремы Лагранжа вытекает, что порядок элемента является делителем порядка группы. Отсюда следует, что для всякого элемента g конечной группы G порядка n имеет место равенство . Следствие. Если G - группа простого порядка p, то - циклическая группа. В самом деле, пусть - любой элемент отличный от нейтрального. Тогда его порядок больше 1 и является делителем p, следовательно он равен p. Но в таком случае G = Z( g )». Теорема о подгруппах конечной циклической группы. Пусть G - циклическая группа порядка n и m - некоторый делитель n. Существует и притом только одна подгруппа HÌG порядка m. Эта подгруппа циклична. Доказательство. По предыдущей теореме G»Z / nZ. Естественный гомоморфизм устанавливает взаимно однозначное соответствие между подгруппами HÌG и теми подгруппами KÌZ , которые содержат Kerp = nZ . Но, как отмечалось выше, всякая подгруппа K группы Z имеет вид kZ Если kZÉnZ , то k - делитель n и p(k) - образующая циклической группы H порядка m = n /k. Отсюда и следует утверждение теоремы. Верна и обратная теорема: если конечная группа G порядка n обладает тем свойством, что для всякого делителя m числа n существует и притом ровно одна подгруппа H порядка m, то G - циклическая группа. Доказательство. Будем говорить, что конечная группа G порядка N обладает свойством (Z), если для всякого делителя m числа N существует и притом только одна подгруппа HÌG порядка m. Нам надо доказать, что всякая группа, обладающая свойством (Z) циклическая. Установим прежде всего некоторые свойства таких групп. Лемма. Если G обладает свойством (Z), то 1. Любая подгруппа G нормальна. 2. Если x и y два элемента такой группы и их порядки взаимно просты, то xy = yx. 3. Если H подгруппа порядка m такой группы G порядка N и числа m и N/m взаимно просты, то H обладает свойством (Z). Доказательство леммы. 1. Пусть HÌG . Для любого подгруппа имеет тот же порядок, что и H. По свойству (Z) то есть подгруппа H нормальна. 2. Пусть порядок x равен p, а порядок y равен q. По пункту 1) подгруппы Z(x) и Z(y) нормальны. Значит, Z(x)y = yZ(x) и xZ(y) = Z(y)x и потому для некоторых a и b . Следовательно, . Но, поскольку порядки подгрупп Z(x) и Z(y) взаимно просты, то . Следовательно, и потому xy = yx. 4. Используя свойство (Z) , выберем в G подгруппу K порядка N/m. По 1) эта подгруппа нормальна, а поскольку порядки H и K взаимно просты, эти подгруппы пересекаются лишь по нейтральному элементу. Кроме того по 2) элементы этих подгрупп перестановочны между собой. Всевозможные произведения hk =kh, где hÎH, kÎK попарно различны, так как =e поскольку это единственный общий элемент этих подгрупп. Количество таких произведений равно m N/m = и, следовательно, они исчерпывают все элементы G. Сюръективное отображение является гомоморфизмом с ядром K. Пусть теперь число s является делителем m. Выберем в G подгруппу S порядка s. Поскольку s и N/m взаимно просты, и потому - подгруппа порядка s. Если бы подгрупп порядка s в H было несколько, то поскольку все они были бы и подгруппами G условие (Z) для G было бы нарушено. Тем самым мы проверили выполнение условия (S) для подгруппы H.
Доказательство теоремы. Пусть - разложение числа N в произведение простых чисел. Проведем индукцию по k. Пусть сначала k = 1, то есть . Выберем в G элемент x максимального порядка . Пусть y любой другой элемент этой группы. Его порядок равен , где u £ s. Группы и имеют одинаковые порядки и по свойству (Z) они совпадают. Поэтому и мы доказали, что x - образующий элемент циклической группы G. Пусть теорема уже доказана для всех меньших значений k. Представим N в виде произведения двух взаимно простых множителей N = pq (например, ) . Пусть H и K подгруппы G порядка p и q. Использую 3) и предположение индукции , мы можем считать, что H = Z(x), K = Z(y), причем xy = yx . Элемент xy имеет порядок pq = N и, следовательно, является образующим элементом циклической группы G.
11. Некоторые теоремы о подгруппах конечных групп. Теорема Коши. Если порядок конечной группы делится на простое число p, то в ней имеется элемент порядка p. Прежде чем переходить к доказательству этой теоремы, отметим, что если g¹e и , где p - простое число, то порядок g равен p. В самом деле, если m - порядок g, то p делится на m, откуда m=1 или m=p. Первое из этих равенств невозможно по условиям выбора g. Индукция , с помощью которой проводится доказательство теоремы, основана на следующей лемме Лемма. Если некоторая факторгруппа G/H конечной группы G имеет элемент порядка p, то тем же свойством обладает и сама группа G. Доказательство леммы. Пусть - элемент порядка p. Обозначим через m порядок элемента . Тогда и значит m делится на p. Но тогда - элемент порядка p. Доказательство теоремы Коши. Зафиксируем простое число p и будем проводить индукцию по порядку n группы G. Если n=p, то G»Z/pZ и теорема верна. Пусть теорема уже доказана для всех групп порядка меньше n и , причем n делится на p. Рассмотрим последовательно несколько случаев 1. G содержит собственную ( то есть не совпадающую со всей группой и нетривиальную) подгруппу H , порядок которой делится на p. В этом случае порядок H меньше n и по предположению индукции имеется элемент порядка p. Поскольку в этом случае теорема доказана. 2. G содержит собственную нормальную подгруппу. Если ее порядок делится на p, то по 1 теорема доказана. В противном случае на p делится порядок факторгруппы G/H и теорема в этом случае следует из доказанной выше леммы. 3. Если G - коммутативна, то возьмем любой . Если порядок g делится на p, то теорема доказана по 1, поскольку Z(g)ÌG. Если это не так, то , поскольку в коммутативной группе все подгруппы нормальны, теорема доказана по 2. 4. Остается рассмотреть случай, когда порядки всех собственных подгрупп G не делятся на p, группа G проста ( то есть не имеет собственных нормальных подгрупп ) и не коммутативна. Покажем, что этого быть не может. Поскольку центр группы G является нормальной подгруппой и не может совпадать со всей группой, он тривиален. Поэтому G можно рассматривать как группу преобразований сопряжения на множестве G. Рассмотрим разбиение множества G на классы сопряженных элементов: . Здесь отдельно выделен класс и классы неединичных элементов. Стабилизатор St(g) элемента g¹ e представляет собой подгруппу группы G, не совпадающую со всей группой. В самом деле, если St(g) = G, то g коммутирует со всеми элементами из G и потому gÎZ(g) = {e}. Значит, порядок этой подгруппы не делится на p, а потому делится на p: . Но тогда - не делится на p, что не соответствует условию. Замечание. Если число p не является простым, то теорема неверна даже для коммутативных групп. Например, группа порядка 4 коммутативна, но не является циклической, а потому не имеет элементов порядка 4. Теорема о подгруппах коммутативной группы. Для конечной коммутативной группы G справедлива теорема обратная к теореме Лагранжа : если m - делитель порядка группы, то в G имеется подгруппа порядка m. Доказательство. Проведем индукцию по порядку n группы G. Для n = 2 теорема очевидна. Пусть для всех коммутативных групп порядка естественный гомоморфизм, то - подгруппа G порядка m . Замечание. Для некоммутативных групп данная теорема неверна. Так, например, в группе четных перестановок степени 4, которая имеет порядок 12, нет подгрупп шестого порядка.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.