Магистральные супераэробусы
Наибольшее внимание в настоящее время привлекает программа разработки широкофюзеляжного самолета А3ХХ. 19 декабря 2000 г. наблюдательный совет фирмы «Эрабас» вместе с держателями акций - европейской компанией EADS и фирмой «ВАЕ Системз» - приняли решение об официальном начале программы разработки этого самолета, присвоив ему обозначение А380 (А3ХХХ). В эксплуатацию самолет А380 (рис. 333) поступит в начале 2006 г.
Рисунок 33. Самолет А3ХХХ-100
К моменту принятия решение фирма «Эрбас» получила 50 заказов (еще 42 заказа было оформлено по предварительным заявкам) от пяти авиакомпаний и одной лизинговой компании ILFC. Последним "стартовым" заказчиком самолета стала английская авиакомпания «Вирджин Атлантик», которая 15 декабря 2000 г. оформила заказ на шесть самолетов (еще шесть было зарезервировано). Первый самолет А380 авиакомпания «Вирджин Атлантик» получит в 2006 г. Среди других заказчиков авиакомпании «Эмирейтс», «Эр Франс», «Сингапур Эрлайнз» и «Кантес».
Комментируя решение наблюдательного совета, его председатель Манфред Бишоф сказал, что для фирмы «Эрбас» это является "прорывом на мировом рынке. Мы уверены, что новый самолет хорошее будущее и горды тем, что Европа обладает возможностями создания нового поколения авиационной техники".
Самолет в исходном варианте А380-800 рассчитан на перевозку 555 пассажиров. Использование передовых технологий позволит обеспечить снижение эксплуатационных расходов на 15-20% и увеличение дальности полета на 10-15% по сравнению с самолетом Боинг 747-400, который в настоящее время является самым вместительным самолетом. Самолет А380 будет превосходить самолет 747-400 на 35% по пассажировместимости и на 49% - по площади пассажирских салонов и помещений. Основные характеристики самолета представлены в табл.111
Таблица 111. Расчетные характеристики самолета Эрбас А380-800
Размах крыла, м
79,8
Длина самолета, м
73
Высота самолета, м
24,1
Число пассажирских мест (в салоне 3-х классов)
555
Число перевозимых грузовых контейнеров
36 контейнеров LD3
12 грузовых поддонов и 2 контейнера LD3
Силовая установка
4 ТРДД Роллс-Ройс "Трент" 900 или Энджин Альянс GP7200
Взлетная тяга
4 х 30,8-31,7 тс
Масса пустого снаряженного самолета, т
275
Максимальная взлетная масса, т
548 - 560
Максимальная масса самолета без топлива, т
358
Максимальная платная нагрузка, т
83
Максимальный запас топлива, л
325000
Максимальная посадочная масса, т
383
Максимальное число М
0,89
Крейсерское число М
0,85
Скорость захода на посадку, км/ч
268
Начальный крейсерский потолок, м
10675
Время набора потолка 10675 м, мин
30
Максимальный эксплуатационный потолок, м
13110
Потребная длина ВПП (G =560 т, Н=0, условия МСА+15°С), м
3350
Дальность полета, км
15100
В разработке самолета А380 и изготовлении деталей его конструкции примут участие не только те фирмы, которые в свое время вошли в состав консорциума «Эрбас Индастри», но и девять фирм из других стран. Основные элементы планера будут изготавливаться во Франции, Великобритании, ФРГ и Испании, а окончательная сборка будет осуществляться на заводе в Тулузе. После летных испытаний самолеты будут переправляться на завод в Гамбург для установки интерьера и оборудования пассажирских салонов и покраски. Фирма «Эрбас» сообщила, что поставки самолетов А380 заказчикам в Европе и на Ближнем Востоке будут осуществляться с завода в Гамбурге, а для остальных заказчиков - с завода в Тулузе.
Фирма «Эрбас» предусматривает создание семейства самолетов А380, среди которых будут варианты на 481 и 656 мест, грузовой вариант A380-800F рассчитанный на платную нагрузку 150 т, и грузопассажирский.
Программа разработки самолета А380 оценивается в 11,7-12 млрд. долл. Начало летных испытаний первого опытного самолета намечено на 2004 г. Правительства европейских стран, участвующих в разработке самолета, согласились выделить кредиты в размере, не превышающим 30% стоимости разработки. Такая величина была одобрена в соглашении между США и ЕС, подписанном в 1992 г.
Также сообщается, что ведутся большие работы по уменьшению площади акустического следа самолета на местности при взлете и посадке. Фирма «Эрбас» провела переговоры с фирмой «Роллс-Ройс» и американским СП «Энджин Альянс» относительно модификации двигателей "Трент" 900 и GP7200 для снижения уровня шума. Разработчики двигателей согласились на некоторое увеличение диаметра вентиляторов, что позволит решить возникшую проблему.
Несмотря на то, что проект самолета А380 утвержден, планируется провести незначительные улучшения в местной аэродинамике. В частности, на концах крыла будут использованы новые вертикальные аэродинамические поверхности.
На сборочном комплексе фирмы «Эрбас» в Тулузе завершено строительство натурного макета фюзеляжа самолета А380 и в настоящее время ведется подготовка к оборудованию интерьера его кабины. С этой целью объявлен конкурс, в котором участвуют девять международных групп дизайнеров и стилистов. В ближайшее время будут отобраны четыре группы, из которых выберут победителя конкурса.
На основе исходного варианта будут созданы модификации А380-700 с укороченным фюзеляжем (480 мест в трех классах) и А380-900 с удлиненным фюзеляжем (656 мест в трех классах). Для авиалиний протяженностью 16200 км предназначен вариант A380-800R, который сможет перевозить 555 пассажиров. Предусматривается создание грузовых и грузопассажирских самолетов.
Если фирма «Эрбас» твердо решила идти по пути создания полностью нового самолета в классе на 550 мест, то фирма «Боинг» пытается идти другим путем. Следует, однако, отметить, что в начале 1990-х годов в США также исследовали проект сверхвместительного самолета VLCT, который внешне был похож на самолет А3ХХ (А380). Но в дальнейшем фирма «Боинг» решила, что создание полностью нового самолета на данном этапе нецелесообразно, и переориентировали свою деятельность на разработку новых вариантов самолета 747-400 с увеличенным числом мест. Специалисты фирмы считают, что самолет типа 747 еще имеет значительный потенциал для развития.
Попытки создания на основе самолета 747-400 более вместительных вариантов предпринимались не раз. Последняя была сделана в 1997 г., когда разрабатывались проекты 747-500 и 747-600. В начале 1998 г. от них отказались. В середине июня 2000 г. фирма «Боинг» объявила о новых планах разработки усовершенствованных вариантов самолета 747-400(рис.323), которые она рассматривает как альтернативу самолету А3ХХ. Работы ведутся одновременно по трем вариантам: 747-400Х , 747Х и 747Х "Стрэч".
Рисунок 3223. Самолет 747-400
Самолет 747-400Х по внешним размерам будет полностью идентичен самолету 747-400, отличаясь только установкой новой авионики и применением технических новшеств, позволяющих снизить затраты на эксплуатацию и обслуживание. Он также будет отличаться от исходного местными усилениями конструкции крыла, фюзеляжа и шасси, применением новых радиальных пневматиков, а также более рациональным использованием внутреннего объема. Интерьер пассажирского салона будет изменен; в его конструкции и отделке используется опыт разработки салона для самолета Боинг 777. Силовая установка самолета 747-400Х состоит из четырех ТРДД с тягой по 27-28,7 тс. Самолет сможет использоваться на таких маршрутах, как Лос-Анджелес - Сидней, Лондон - Сингапур и других, продолжительность полета на которых составляет почти 15 ч. Фирма полагает, что самолет 747-400Х появится в эксплуатации в третьем квартале 2002 г.
Второй проект 747Х (рис.55) отличается от исходного самолета 747-400 удлинением фюзеляжа на 2,8 м, в результате чего число мест в салоне трех классов увеличится до 430. За счет дополнительных топливных баков в кессоне центроплана запас топлива возрастет с 228280 до 274720 л. В результате дальность полета самолета 747Х составит 16620 км. Его предполагается использовать на маршрутах с продолжительностью полета до 18 ч (например, Сингапур - Чикаго или Нью-Йорк - Куала-Лумпур) .
Рисунок 55. Самолет 747Х
Наконец, самым радикальным проектом считается третий вариант 747Х "Стрэч". За счет увеличения длины фюзеляжа на 9,6 м число мест в салоне трех классов возрастет с 416 до 504-522, т.е. на 25%. Удлинение фюзеляжа достигается двумя дополнительными секциями: одна в районе верхнего пассажирского салона, а другая - за крылом. Более чем на 26% возрастет объем нижних грузовых отсеков: он будет равен 191 м3, что на 28,3 м3 больше, чем на самолете А3ХХ-100. По стоимости 1 место-км самолет 747Х "Стрэч" будет на 12 - 14% дешевле самолета 747-400 и на 3% дешевле самолета А3ХХ-100 при перевозках на международных авиалиниях.
На самолете 747Х "Стрэч" предполагается применить новое крыло, размах которого составит почти 70 м. В настоящее время фирма «Боинг» проводит активные исследования нового крыла, аэродинамические характеристики которого будут существенно улучшены по сравнению с исходным крылом, созданным по технологии 1960-х годов. Крыло предполагается оснастить усовершенствованными законцовками; фирма исследует несколько вариантов. На самолете будет применено новое основное шасси, а также изменена конструкция поверхностей оперения.
Фирма Боинг полагает, что эксплуатация самолета 747Х "Стрэч" может начаться во второй половине 2005 г., т.е. практически одновременно с появлением самолета А3ХХ-100.
Сравнительные расчетные характеристики самолета 747-400 и его будущих вариантов приведены в табл. 6.
Таблица 6. Сравнительные расчетные характеристики самолетов фирмы «Боинг»
Самолет
747-400
747-400X
747X
747X «Стреч»
Длина самолета, м
70,66
70,66
73,47
80,55
Размах крыла, м
64,44
64,44
69,77
69,77
Высота самолета, м
19,38
19,38
21,44
19,86
Максимальный внешний диаметр фюзеляжа, м
6,49
Максимальная ширина пассажирского салона, м
6,13
Число пассажирских мест в салоне 3-х классов
416
416
430
504-522
Объем грузовых отсеков, м3
138,1
138,1
150,2
191,1
Силовая установка
4 ТРДД Пратт-Уитни PW4056, Дженерал Электрик CF6-80C2 или Роллс-Ройс RB211-524
4 ТРДД Дженерал Электрик - Пратт-Уитни Энджин Альянс GP7000 или Роллс-Ройс "Трент" 600
Взлетная тяга двигателей, тс
4 х 25,7-26,3
4 х 27-28,7
4 х 30,8
4 х 30,8
Максимальная взлетная масса, т
396,9
412,77
473,1
473,1
Запас топлива, л
228280
240540
274720
274720
Крейсерское число М
0,85
0,85
0,86
0,86
Дальность полета, км
13210
14240
16620
14450
Дальнемагистральные самолеты
Кроме вышеупомянутых программ фирмы «Эрбас» и «Боинг» ведут разработку других самолетов, из которых наиболее важными являются программы создания европейских самолетов А340-500 и А340-600 и американских 777-200LR и 777-300ER.
Самолеты А340-500 и А340-600 представляют собой дальнейшее развитие семейства дальнемагистральных самолетов А340. Новые самолеты должны, по мнению фирмы «Эрбас», потеснить на мировом рынке американские самолеты Боинг 747-400. Предполагается, что до 2016 г. может быть продано 500-800 таких самолетов. К настоящему моменту уже продано по твердым заказам почти 130 самолетов А340-500 и А340-600.
На сборочном комплексе фирмы «Эрбас» в Тулузе в конце 2000 г. была завершена сборка первого опытного самолета А340- 600, летные испытания которого начались в апреле 2001 г. В декабре 2001 г. начались летные испытания опытного самолета А340-500.
Оба самолета отличаются от серийного А340-300 удлиненными фюзеляжами, крылом увеличенного размаха, а также силовой установкой. Фюзеляж самолета А340-500 удлинен на 3,2 м, в результате чего число мест в салоне трех классов возросло до 313. При этом дальность полета составит 15750 км. Длина самолета А340-600 увеличена на 10,7 м, а число пассажиров в салоне трех классов - до 380. Самолет рассчитан для эксплуатации на авиалиниях протяженностью 13900 км.
Самолет А340-500 по дальности полета сопоставим с самолетом Боинг 777-200LR, но при этом не требует установки дополнительных топливных баков, обеспечивая дополнительный объем в грузовых отсеках. Этот вариант предназначен для полетов из Европы в Азию и Южную Америку. Сравнительные характеристики самолетов семейства А340 даны в таблице 7.
Таблица 7. Сравнительные характеристики самолетов семейства А340
Самолет
А340-300
А340-500
А340-600
Длина самолета, м
63,6
67,33
74,77
Размах крыла, м
60,3
63,45
63,45
Высота самолета, м
16,7
17,11
17,29
Диаметр фюзеляжа, м
5,64
5,64
5,64
Число пассажирских мест в салоне 3-х классов
295
313
380
Силовая установка
4 ТРДД CFM Интернешнл CFM56-5C4
4 ТРДД Роллс-Ройс "Трент" 553
4 ТРДД Роллс-Ройс "Трент" 556
Взлетная тяга, тс
4 х 15,4
4 х 24
4 х 25,4
Масса пустого снаряженного, т
130,8
170
176,7
Максимальная взлетная масса, т
275
365
365
Максимальная масса самолета без топлива, т
178
222
240
Максимальная платная нагрузка, т
47,9
54,4
66,36
Максимальный запас топлива, л
148700
214800
194880
Максимальная посадочная масса, т
192
236
254
Крейсерское число М
0,82
0,83
0,83
Дальность полета, км
13300
15750
13900
Для создания максимальных удобств пассажирам во время длительных беспосадочных полетов на самолетах А340-500 и А340-600 по желанию заказчика в нижних грузовых отсеках предусмотрено размещение нескольких душевых комнат, а также спальных отсеков для пассажиров и членов экипажа.
Для новых самолетов было разработано усовершенствованное крыло, размах которого увеличен с 60,3 до 63,5 м. Кроме увеличенного размаха крыло отличается от существующего большими размерами центроплана и усиленной конструкцией.
Впервые в практике фирмы «Эрбас» на самолетах семейства А340 будут использоваться двигатели Роллс-Ройс "Трент" 500, а не ТРДД CFM Интернешнл CFM56-5C4. В июне 2000 г. на летающей лаборатории А340-300 начались летные испытания двигателя "Трент" 500. Двигатель имеет максимальную стендовую тягу 27,2 тс, но при установке на самолетах А340-500 и А340-600 его тяга будет уменьшена до 24 - 25,4 тс.
Двигатель разработан на основе ТРДД "Трент" 700 и 800, но имеет несколько уменьшенные размеры. Он выполнен по традиционной для фирмы «Роллс-Ройс» трехвальной схеме. Вентилятор (диаметр 2,6 м) имеет 26 широкохордных лопаток, изготовленных из титановых сплавов методом сверхпластичного формования и диффузионной сварки. Лопатки турбин высокого, промежуточного и низкого давления выполнены из монокристаллического сплава CMSX-4, который обеспечивает увеличенный ресурс и не требует дополнительного охлаждения.
Особое внимание фирма «Роллс-Ройс» уделила разработке камеры сгорания. За счет использования новых жаропрочных материалов (на основе никеля) ее ресурс увеличен до 15000-20000 ч. Новая камера сгорания полностью соответствует стандарту САЕР/2 (ИКАО) по уровням эмиссии и дымления. Фирма заявила, что по эмиссии окислов азота (NOx) камера сгорания почти на 25% лучше еще не утвержденного стандарта САЕР/4.
В программе летных сертификационных испытаний будет занято три опытных самолета А340-600, которые должны налетать более 1500 ч. Первые два самолета предназначены для определения летных характеристик и испытаний силовой установки, а третий будет иметь полностью оснащенный пассажирский салон и будет использоваться для отработки полетов по маршрутам.
Сертификация самолета должна быть завершена до конца 2002 г. Ранее ее планировалось закончить в марте 2002 г., но из-за дополнительных работ по совершенствованию крыла сертификация была перенесена. Опытный самолет А340-500 будет построен только в одном экземпляре; по программе сертификации он должен налетать 400 ч. Его сертификация будет завершена в ноябре 2002 г. Ответственными за сборку секций фюзеляжей самолетов А340-500 и А340-600 являются бывшие фирмы «Аэроспасьяль Матра» и DASA, которые в настоящее время вошли в состав европейской компании EADS, а также фирмы SABCA (Бельгия), SAAB и «Сторк/Фоккер» (Нидерланды). Для сборки передней и центральной секций в Сент-Назере (Франция) был построен специальный сборочный комплекс, откуда они на грузовых самолетах A300-600ST "Белуга" доставляются в Тулузу. Хвостовая секция фюзеляжа изготавливается в Гамбурге (Германия). Консоли крыла собираются на заводе фирмы ВАЕ Системз и доставляются в Тулузу также на самолетах "Белуга".
Основными конкурентами новым моделям самолета А340 должны стать разрабатываемые фирмой «Боинг» новые варианты самолета 777 . В начале 2000 г. президент фирмы «Боинг» Фил Кондит и президент фирмы «Дженерал Электрик» Джек Уэлч на совместной пресс-конференции объявили официальное начало программы разработки сразу двух широкофюзеляжных дальнемагистральных самолетов: 777-200LR и 777-300ER.
Самолеты 777-200LR и 777-300ER являются конкурентами самолетам «Эрбас» А340-500 и А340-600. Однако, если самолеты фирмы «Эрбас» проходили летные испытания в течение 2001 г., то первые полеты новых вариантов самолета 777 начнутся не ранее второй половины 2002 г. Поставки самолета 777-200LR планируется начать в сентябре 2002 г., а самолета 777-300ER - в январе-марте 2003 г.
Оба самолета являются более вместительными вариантами серийных самолетов 777-200 и 777-300 и предназначены для авиалиний большой протяженности, где время полета составляет 14-18 ч. Самолеты предполагается использовать на маршрутах Нью-Йорк - Сингапур, Атланта - Гонконг, Даллас - Сидней, Париж - Лос-Анджелес, Лондон - Йоханнесбург, Рим - Чикаго и т.д. Фирма Боинг также заявила, что самолет 777-300ER по своим характеристикам рассматривается как будущая замена широкофюзеляжным самолетам 747-100 и -200.
Сверхзвуковые пассажирские самолеты
Если в США исследования по СПС второго поколения прекращены, то в Европе, в частности, во Франции они продолжаются, хотя не такими высокими темпами. В сентябре 1999 г. во Франции был сформирован технический комитет COS по определению основных ориентиров разработки СПС второго поколения должен был в 2000 г. представить правительству Франции отчет, в котором будут определены основные направления НИОКР, связанные с изучением возможности создания нового СПС. Он должен также сделать предложения в части организации исследовательских лабораторий, главным образом в университетах. Следующим этапом будет оценка возможности расширения работ в общеевропейском масштабе. Возглавляет комитет COS профессор Себастьян Кандель, заведующий лабораторией Центральной парижской школы.
Комитет привлек к своей деятельности большое число специалистов, включая около 40 ведущих экспертов по различным специальностям: аэродинамика, силовые установки, материалы, теории горения и т.д. Среди них были специалисты из фирм «Аэроспасьяль Матра» ( в настоящее время компания EADS), «Дассо Авиасьон», SNECMA и других, а также из ведущих научных центров, университетов и лабораторий (ONERA, CNES, ESA, Метео Франс и т.д.). Всего было привлечено свыше 70 научных организаций. В комитете были созданы пять рабочих групп, которые формировались по числу главных технических проблем, а не по количеству научных тем. С другой стороны, это позволяло комбинировать исследования по различным научным дисциплинам.
В группах обсуждались следующие проблемы:
· воздействие высоких температур при полетах на сверхзвуковом крейсерском режиме;
· шум на этапах взлета, захода на посадку и посадки, а также проблема звукового удара;
· сгорание топлива и эмиссия;
· оптимизация различных этапов полета;
· интеграция системы "планер - силовая установка" с социально-экономическими аспектами эксплуатации СПС.
Перед началом работы пяти рабочих групп комитет COS обратился к университетским лабораториям с предложениями по изучению таких важнейших взаимосвязанных тем как влияние СПС на окружающую среду, аэродинамика, материалы и бортовые системы. Кандель сообщил, что было получено более 70 ответов, что значительно больше, чем ожидалось (с учетом чрезвычайно небольшого финансирования). Такая ситуация, по его мнению, сложилась из-за того, что фирмы стремятся завершить работы по тем проблемам, которыми они занимаются уже более 10 лет. Речь не идет о том, чтобы подменить промышленность, а о том, чтобы дополнить ее деятельность работами университетских лабораторий. По мнению Канделя, преимуществом этих лабораторий будет возможность анализа проблем, не касающихся непосредственно создания самого СПС, что будет поручено промышленным фирмам. Сотрудники университетов сосредоточат свои усилия на теоретических исследованиях, в частности, проблемах уменьшения уровня шума и эмиссии окислов азота. Их деятельность уже привела к успешному решению ряда вопросов, в частности, при разработке и испытаниях новой ракеты-носителя "Ариан" 5 удалось совместно с ONERA решить проблему акустической вибрации, а также справиться с вопросом нестабильности процессов сгорания в реактивных двигателях.
Деятельность комитета COS должна помочь правительству Франции, авиационным фирмам и организациям дать ответ на вопрос: возможно ли в ближайшее время создание нового СПС, способного не только успешно конкурировать на рынке воздушных перевозок, но и возвратить вложенные инвестиции.
Несколько лет тому назад фирмы «Аэроспасьяль» и «Бритиш Аэроспейс» вели совместные исследования проекта СПС "Альянс" (рис.555), который рассматривался как замена самолету "Конкорд". Позднее к этим работам присоединилась фирма DASA, после чего была сформирована европейская программа исследований СПС нового поколения ESRP (European Supersonic Research Program).
Рисунок 444. Сверхзвуковой пассажирский самолет «Альянс»
В настоящее время рассматривается проект европейского СПС ESCT (European Supersonic Commercial Transport), рассчитанного на перевозку 250 пассажиров с крейсерским числом М=2. Согласно Национальной авиационно-космической академии Франции (ANAE), стоимость разработки СПС может составить 20 млрд. долл., а на создание силовой установки для него потребуется еще 6-7 млрд. долл. По словам члена научного совета академии Андре Дюбрессона, при расчетной цене самолета 350 млн. долл. (по текущему курсу) потребуется построить 400 самолетов ESCT, что сделает программу прибыльной. В эксплуатации самолет может появиться в конце второй половины 2010-х годов.
Следует отметить, что Управление гражданской авиации Франции (DGAC) пока не проявило интереса к возобновившимся исследованиям по новому СПС. Его представители заявили, что сейчас Франция и ее европейские партнеры сконцентрировали усилия на разработке самолета «Эрбас» А3ХХ и исследованиях нового широкофюзеляжного самолета для замены самолетов А300 и A310.
Руководитель перспективных проектов бывшей фирмы «Аэроспасьяль Матра» Доминик Жентили сказал, что самолет ESCT вряд ли сможет летать над населенными районами суши со сверхзвуковой скоростью, но даже при этом он сможет эффективно обслуживать маршруты, связывающие 200 пар крупных городов. По его мнению, новый СПС может быть конкурентоспособным по прямым эксплуатационным расходам (ПЭР) и привлекательным для авиакомпаний в том случае, если у него по сравнению с самолетом "Конкорд" будут на 40% меньше соотношение массы пустого снаряженного самолета к числу пассажирских мест, уменьшенное на 30% сопротивление, а также сниженные на более чем 10% удельный расход топлива при крейсерском числе М=2 и на 20% - на дозвуковом режиме (по сравнению с двигателями "Олимп" 593, используемыми на самолете "Конкорд").
Жентили сказал, что "сейчас мы не можем обеспечить такие амбициозные цели. Однако, полученные недавно результаты показали, что мы можем снизить соотношение массы пустого самолета к числу мест примерно на 30%, сопротивление - на 20%, расход топлива на сверхзвуковом режиме - на 7%, а на дозвуковом - на 15%". На фирме «Аэроспасьяль Матра» полагают, что это может быть получено за счет широкого использования композиционных материалов и титановых сплавов, современных достижений в аэродинамике высоких скоростей и силовых установок. Последние исследования проводились в предположении создания СПС взлетной массой 340 т, рассчитанного на перевозку 250 пассажиров на расстояние 10200 км с крейсерским числом М=2,05. Силовая установка состоит из четырех ТРДД MTF с изменяемым рабочим циклом; на дозвуковом режиме двигатель имеет степень двухконтурности 2,3, а на сверхзвуковом - 0,9.
Руководитель отдела перспективных исследований на фирме SNECMA Мариус Гутинэ заявил, что главной проблемой создания силовой установки для самолета ESCT является обеспечение при относительно малом диаметре двигателя современных норм по шуму. Он также добавил, что снижение удельного расхода топлива на 1 % эквивалентно уменьшению максимальной взлетной массы самолета на 5 т. Отработка отдельных элементов двигателя MTF проведена в ONERA. В частности, прошли испытания вспомогательные воздухозаборники (с помощью которых регулируется степень двухконтурности), а также усовершенствованные камеры сгорания с предварительным смешением топливо-воздушной смеси и испарением.
Специалисты по аэродинамике в ONERA считают, что другой важной проблемой является снижение сопротивления. Сейчас в ONERA ведутся исследования аэроупругости, распределения давлений, вихревых потоков и полей скоростей, методов минимизации сопротивления, а также целесообразности применения оребренных поверхностей ("риблетов") и усовершенствованных интерцепторов и предкрылков. Испытания в аэродинамических трубах должны экспериментально подтвердить расчетное снижение сопротивления трения на 6%.
Сравнительные характеристики самолетов "Конкорд" и ESCT приведены в таблице 8.
Таблица 8. Сравнительные характеристики СПС "Конкорд" и ESCT
Самолет
"Конкорд"
ESCT
Длина самолета, м
61,66
89
Размах крыла, м
25,56
42
Число пассажирских мест
100
250
Силовая установка
4 ТРДДФ
4 ТРДД
Максимальная взлетная масса, т
185
340
Крейсерское число М
2,04
2,05
Дальность полета, км
6200
10200
Скорость реактивной струи, м/с
> 800
400
Эмиссия окислов азота, г/кг топлива
50
5
Расход топлива, г/м.-км
100
50
Расчетный срок службы, ч
20000
60000
Руководитель отдела гражданской авиации в ONERA Кристина Мишо заявила, что новый СПС должен быть рассчитан на 60000 летных часов или 20000 летных циклов. Самолеты "Конкорд", совершающие полеты через Северную Атлантику, имеют средний годовой налет 700 ч.
Точных оценок размеров рынка самолетов ESCT пока нет. Рынок зависит от величины ПЭР, готовности пассажиров платить увеличенную цену за билеты и соответствия самолета более строгим нормам по шуму и дополнительным экологическим ограничениям. В середине 1990-х годов фирма Боинг полагала, что до 2020 г. может быть продано 800-1000 новых СПС, но при условии, что разработка самолета официально начнется в 2005 г. Выполненный недавно во Франции предварительный анализ рынка СПС показал, что имеется потребность в 500-1000 самолетов. Фирма «Эрбас» (не участвующая в исследованиях по СПС) полагает, что в 2025 г. в мире будет эксплуатироваться 575 самолетов ESCT. Специалисты консорциума по маркетингу сообщили, что при определении этого количества они рассмотрели 524 маршрута, на которых эксплуатация СПС может быть достаточно эффективной.
Исследования перспективных пассажирских самолетов
В течение 2000 г. за рубежом проводились различные НИОКР, направленные на исследования облика перспективных пассажирских самолетов, которые могут появиться в 2010-2020-х годах. Основные работы в этой области были сосредоточены в США и Европе.
NASA и фирма «Боинг» объявили, что в начале 2002 г. в летно-испытательном центре им. Драйдена собираются приступить к летным испытаниям модели LSV, в рамках исследований перспективного самолета, выполненного по концепции BWB (Blended Wing Body). Концепция BWB предусматривает создание тяжелых пассажирских и транспортных самолетов по схеме "летающее крыло". Первые исследования самолетов типа BWB начала фирма «Макдоннелл-Дуглас» в 1991 г. В то время она рассматривала проект 800-местного самолета с размахом крыла 88,1 м, длиной - 48,8 м и высотой - 12,2 м. В дальнейшем фирма провела испытания летающей радиоуправляемой модели.
В настоящее время работы по концепции BWB продолжает фирма «Боинг» совместно со специалистами NASA. Исследования ведутся по проекту самолета, рассчитанного на перевозку 450 пассажиров. Самолет имеет размах крыла 75,3 м, длину - 48 м и высоту - 13,7 м. Его силовая установка состоит из трех ТРДД. Расчетная дальность полета составляет 12900 км при крейсерской скорости, соответствующей числу M=0,85.
Летающая модель LSV (Low-Speed Vehicle) предназначена для исследований характеристик самолета BWB при малых скоростях полета (включая полет при отказе одного двигателя), на режимах сваливания и пикирования, а также бафтинга. Модель будет изготовлена в масштабе 0,142: размах крыла составит 10,67 м. Максимальная взлетная масса равна 817 кг. Силовая установка будет состоять из трех малогабаритных ТРДД Уильямс Интернешнл WJ24-8 тягой по 108 кгс.
Модель способна выполнять полеты на высоте 6100 м, хотя все полеты будут выполняться на высотах не более 3000 м. Скорость не будет превышать 280 км/ч, хотя модель рассчитана на максимальную скорость 370 км/ч. Ведущий специалист отдела НИЦ им. Лэнгли, занимающегося исследованиями "революционных" концепций летательных аппаратов, Роберт Маккинли сказал, что "мы не планируем достижение больших скоростей, а хотим определить характеристики подобного летательного аппарата на малых скоростях". Взлет и посадка модели будут осуществляться на обычную ВПП; для аварийной посадки предусматривается использование парашюта. Модель также оснащена небольшим парашютом, который предназначен для вывода ее из штопора.
Планер модели LSV изготавливается из композиционных материалов на основе углеродных волокон с обшивкой из тонких листов стеклопластика. Каждая консоль крыла модели будет иметь семь поверхностей управления на задней кромке и пять предкрылков. На концах крыла размещаются вертикальные кили с рулями направления. Для привода закрылков, элеронов, рулей направления и элевонов будет использоваться ЭДСУ. Предкрылки имеют только два фиксированных положения ("убрано" и "выпущено"). Их положение будет выбираться исходя из целей полетного задания.
В НИЦ им. Лэнгли в вертикальной аэродинамической трубе (диаметр рабочей части 6,1 м) ведутся испытания модели самолета BWB, изготовленной в масштабе 0,01. Испытания проводятся с целью оценки управляемости модели во время сваливания; для ускоренного выхода из штопора применяется парашют. Для дополнительного уточнения аэродинамических характеристик и устойчивости в дозвуковой трубе (размер рабочей части 4,2 х 6,7 м) в НИЦ им. Лэнгли будут проведены испытания еще одной модели (масштаб 0,03). Эта же модель будет использована для испытаний на аэроупругость.
Последние годы фирма «Эрбас» ведет в инициативном порядке поисковые исследования по определению облика будущего магистрального самолета, полагая, что основными требованиями к нему будут уменьшение расхода топлива и соответствие требованиям экологии по шуму и эмиссии. Помимо усилий, предпринимаемых в последние годы ведущими двигателестроительными фирмами для снижения уровней эмиссии углекислого газа и окислов азота и уменьшения шума, фирма «Эрбас» сама пытается способствовать улучшению экологических характеристик самолета за счет снижения сопротивления и уменьшения шума планера на взлетно-посадочных режимах. Проведенные исследования показали, что классическая аэродинамическая схема современных самолетов "фюзеляж-крыло" вряд ли сможет отвечать будущим экологическим требованиям.
Поэтому фирмой «Эрбас» были предложены в какой-то мере "экзотические" компоновки. Ведущий инженер фирмы «Эрбас» Жан-Жак Мира классифицирует их с точки зрения совершенствования технологий. Самолет с ромбовидным сочлененным крылом, по его мнению, является самым революционным, но имеет при этом самую малую вероятность появления среди всех рассмотренных вариантов. Данная компоновка отличается большой жесткостью крыла, в результате чего удалось бы снизить массу планера. Исследовательские центры ONERA и DLR, а также ряд университетов периодически исследуют ромбовидные крылья, однако пока никто не смог доказать их преимущества. Сложность аэродинамики такой конструкции, обусловленная взаимодействием четырех горизонтальных плоскостей, требует серьезных исследований, которые фирма «Эрбас» еще не готова финансировать.
Схеме "триплан" фирма «Эрбас» отдавала большее предпочтение, и уже провела серию тщательных испытаний моделей такого самолета в аэродинамических трубах. Специалисты фирмы «Эрбас» полагают, что установка развитого ПГО является одним из методов опосредованного уменьшения расхода топлива. Его наличие позволит улучшить распределение массы и подъемной силы одновременно с уменьшением массы планера, что позволило бы улучшить летные характеристики на малых скоростях. Жан-Жак Мират поясняет, что третья несущая поверхность позволила бы создать статически неустойчивый пассажирский самолет. Тем не менее, работы над этой компоновкой в последнее время замедлились, так как не было выявлено какого-либо значительного ее преимущества.
В настоящее время фирма «Эрбас» акцентирует усилия на трех новых компоновок, которые, возможно, обеспечат не только уменьшение сопротивления, но и снижение излучения шума, направленного к земле. Среди этих компоновок две, у которых двигатели расположены в хвостовой части фюзеляжа, и одна с расположением двигателей над крылом.
Двигатели в хвостовой части фюзеляжа предполагается разместить по двум схемам: над фюзеляжем между V-образным оперением или между двумя вертикальными килями, расположенными на концах стабилизатора. Такие схемы позволят не только отразить шум вверх, но и экранировать как шум, создаваемый вентилятором, так и шум от реактивной струи. Таким образом, по мнению Жан-Жак Мира, можно надеяться на уменьшение шума, по крайней мере, до 10 дБ по сравнению с обычной компоновкой. Однако серьезной проблемой, с которой столкнулись специалисты, является риск повреждения близко расположенных двигателей при разрушении турбины на одном из них. В связи с тем, что двигателестроительные фирмы не дают полную гарантию от разрушения турбины, то фирме «Эрбас» предстоит найти серьезные аргументы в защиту таких компоновок при сертификации.
В случае с V-образным оперением уменьшение сопротивления может быть достигнуто за счет упразднения третьей поверхности оперения, но такая конструкция потребовала бы разработки новой системы управления полетом. Недостаток схемы оперения с двумя концевыми килями заключается в том, что нарушает идеологию фирмы «Эрбас», заключающуюся в создании новых самолетов с использованием единого фюзеляжа.
Схема самолета, у которого двигатели расположены над крылом, более консервативна. Она не создает проблем с сертификацией, но может экранировать шум от вентилятора и реактивной струи. В зависимости от расположения двигателей по хорде крыла возможно снижение шума до 10 дБ. Однако изменение обтекания верхней поверхности крыла может создать трудности для снижения сопротивления.
Жан-Жак Мира не сообщил о сроках выделения средств для проведения исследований по трем последним компоновкам, так как руководство фирмы никакого решения в ближайшее время принимать не собирается. Но при этом он уточнил, что они могли бы найти применение при разработке будущего самолета, который может появиться после самолета А380 (А3ХХ). Это может произойти до 2010 г, когда зайдет речь о замене самолетов А300 и А310.
В европейских странах возобновляются исследования возможности применения жидкого водорода в качестве топлива для транспортного самолета. В июне 2000 г. Европейская комиссия приняла решение о выделении на двухлетний срок 4,5 млн. евро на исследования проекта такого самолета, получившего название "Криоплан". Его разработка предусмотрена 5-й Европейской программой НИОКР в области авиационно-космической техники (PCRD).
Исследования по применению жидкого водорода в авиации ведутся (с перерывами) почти 30 лет. Энергетический кризис 1970-х годов и увеличение цен на авиационный керосин стали основными причинами активизации работ по применению жидкого водорода в авиации. Однако в настоящее время криогенное топливо рассматривается как важное средство улучшения экологической ситуации. Последние оценки показали, что мировых запасов нефти хватит еще на несколько десятилетий, поэтому вопросы экологии вышли на первый план. За счет сжигания авиационного керосина эмиссия углекислого газа ежегодно увеличивается на 2,5%. Двигатель на жидком водороде выбрасывает, в основном, в атмосферу воду и незначительное количество окислов азота NOx.
В Европе основные исследования по использованию криогенных топлив на самолетах ведутся в ФРГ фирмой DASA, входящей в настоящее время в состав компании EADS. Немецкие специалисты с 1990 г. наладили сотрудничество с российским АНТК им. А.Н.Туполева, в котором в 1988 г. был разработан опытный самолет Ту-155 с силовой установкой на криогенном топливе.
Многолетние эксперименты, проведенные в научно-исследовательском институте DLR, показали, что с уменьшением температуры горения можно снизить эмиссию окислов азота, т.е. сделать двигатель еще более экологически "чистым". Для этого необходимо сжигать не капельную смесь, а газообразную. Специалисты DLR с этой целью разработали и испытали на стендах специальные форсунки и камеры сгорания.
Зная особенности горения водорода, который не горит на воздухе и взрывается только при определенных концентрациях, можно разработать безопасные технологии его использования в качестве топлива, что с успехом делается в ракетно-космической технике. Применение жидкого водорода в авиации потребует создания новых технических решений, включая камеры сгорания и системы подачи водородного топлива в двигатель. Существенному пересмотру подлежит конструкция планера и, в частности, топливная система. Самолет "Криоплан" должен иметь крупногабаритные цилиндрические баки для жидкого водорода, которые для поддержания температуры –253 °С имеют мощную теплоизоляцию, утяжеляющую конструкцию планера.
Применение жидкого водорода окажет влияние на аэродромную инфраструктуру, особенно на системы хранения и заправки топливом, а также вентиляции ангаров. Чрезвычайно важной представляется проблема получения жидкого водорода в массовом количестве.
В настоящее время компания EADS ведет активные исследования прочности крыла, изготовленного практически полностью из композиционных материалов на основе углеродных волокон. Исследования, начатые в 1992 г. фирмой DASA, предусматривают определение прочностных характеристик крыла, предназначенного для 80-100-местного регионального самолета.
В 1992-1993 гг. был изготовлен и испытан углепластиковый кессон крыла длиной 9,8 м. В 1994 г. была начата разработка кессона длиной около 15 м. К работам были привлечены некоторые германские университеты (в частности, Брауншвейгский и Штутгартский), а также научные организации, в том числе научно-исследовательский институт DLR, общество имени Фраунгофера и институт материаловедения (IMA).
Кессон крыла из углеродных композиционных материалов был изготовлен на заводе бывшей фирмы DASA в Бремене. Он представляет собой прототип кессона крыла для 100-местного регионального самолета взлетной массой 40- 50 т. Основным композиционным материалом для изготовления кессона и панелей обшивки явилось однонаправленное углеволокно НТА ("тенакс"), предварительно пропитанное эпоксидной смолой Гексел 6376 ("Фиберит" 977-2). Данный материал имеет слоистую структуру. Однако на фирме DASA были использованы и другие технологические процессы, в частности, впрыскивание под дифференциальным давлением эпоксидной смолы в предварительно заготовленные формы (материал RTM) или пропитка ею отформованного многослойного сухого углеволокна (материалы RTM6 или Ml8).
Хотя фирма DASA заявила, что кессон "выполнен полностью из углеродных материалов", тем не менее, узлы крепления пилонов двигателей и опор шасси и узлы стыковки с фюзеляжем металлические. Для проведения статических и усталостных испытаний эти узлы были сделаны несколько переразмеренными. Сравнение весовых характеристик показало, что кессон из КМ имеет массу 1223 кг (включая панели обшивки, передний и задний лонжероны, нервюры и стрингеры), в то время как цельнометаллический кессон весит 1491 кг. Таким образом, экономия в массе составляет 268 кг (почти 22%) для одного кессона, а для всего крыла она равна 536 кг. Представители фирмы DASA заявили, что "в настоящее время даже выигрыш в массе конструкции около 500 кг уже вызывает большой интерес". Экстраполяция данных, полученных для кессона 100-местного самолета, на кессон тяжелого пассажирского самолета может дать достаточно многообещающие результаты.
В 1998 г. начались статические и усталостные испытания консоли, завершившиеся в декабре 1999 г. Всего было смоделировано 90000 летных циклов; кроме того, во время проведения последних 30000 циклов конструкция кессона была преднамеренно повреждена. После окончания испытаний никаких признаков усталости обнаружено не было. Это позволило руководителям фирмы DASA заявить, что предложенная конструкция крыла пригодна для использования в гражданской авиации.
Очередной этап в развитии технологии изготовления крыла из углеродных композиционных материалов, который завершила фирмы DASA, позволяет предположить, что в будущем эта технология будет применима и к более крупным самолетам. Но если идея изготовления крыла из углепластиков для широкофюзеляжного самолета типа Эрбас Индастри А3ХХ выглядит все-таки преждевременной, то ничто не мешает пола гать, что будущий европейский военно-транспортный самолет А400М станет первым тяжелым летательным аппаратом с таким крылом.
Кроме того, если крыло из углеродных композиционных материалов в будущем будет широко применяться на магистральных самолетах консорциума Эрбас Индастри, то можно предположить, что фирма DASA может занять место фирмы ВАЕ Системз, которая в настоящее время ответственна за изготовление комплектов крыльев для всех самолетов консорциума. Фирма DASA уже сейчас подготовила плацдарм в этой области, взяв на себя окончательную сборку крыльев для самолетов А330 и А340, кессоны для которых изготовляет фирма ВАЕ Системз.
Особое внимание уделялось вопросам финансирования НИОКР, особенно в США. Этому вопросу были посвящены материалы с изложением планов NASA на ближайшие годы.
В бюджете NASA на 2001 ф.г. предусматривалось выделение 1,193 млрд. долл. на выполнение программ НИОКР по статье "Авиационно-космическая наука и техника". Эти НИОКР должны обеспечить революционные научные и технологические достижения, которые сохранят ведущие позиции США в гражданской авиации и космической технике.
В бюджете на 2001 ф.г. были добавлены три новые целевые программы и исключена (как самостоятельная) программа экспериментального ВКС Х-33, расходы по которой включены в другие статьи расходов. К новым программам относятся программа SATS, исследования малошумного самолета и исследования второго поколения многоразовых космических носителей (RLV). Последняя программа является составной частью новой широкомасштабной инициативной программы под названием "Космическая инициатива" (Space Launch Initiative), которая, в свою очередь, представляет собой основной элемент объединенной программы NASA по созданию космической транспортной системы (ISTP - Integrated Space Transportation Program). Эксперты полагают, что в результате появления этих программ можно ожидать ускорения работ, связанных со снижением уровня шума, развитием промышленности, занимающейся созданием легких самолетов авиации общего назначения (АОН) и созданием перспективной космической техники.