Реферат по предмету "Математика"


Преобразования плоскости, движение

Преобразования плоскости
Отображение плоскости на себя
Отображенем плосости на себя называется такое преоброзование, что каждой точке исходной плоскости сопоставляется какая-то точка этой же плоскости, причем любая любая точка плоскости оказывается сопоставленой другой точке. Если при отображении плоскости на себя фигура F преобразовывается в фигуру F', то говорят, что фигура F' - образ фигуры F, а фигура F - прообраз фигуры F'. Если одним отображением фигура F переводится в фигуру F', а затем фигура F' переводится в фигуру F'', то отображение, переводящее F в F'' называется композицией двух отображений. Неподвижной точкой отображения называется такая точка A которая этим отображением переводится сама в себя. Отображение, все точки которого неподвижные называется тождественным отображением. Если при данном отображении разным точкам фигуры соответствуют разные образы, то такое отображение называется взаимно однозначным. Пусть фигура F' получена из фигуры F взаимно однозначным отображением f, то можно задать отображение обратное отображению f, которое определяется так: композиция отображения f и отображения, обратного f является тождественным отображением. Существует множество видов отображения плоскости на себя, рассмотрим некоторые из них:
Движения . Параллельный перенос . Осевая симметрия . Поворот вокруг точки . Центральная симметрия Подобие . Гомотетия
Движение
Движением называется отображение плоскости на себя при которром сохранаяются все расстояния между точками. Движение имеет ряд важных свойств:
Три точки, лежащие на одной прямой, при движении переходят в три точки, лежащие на одной прямой, и три точки, не лежащие на одной прямой, переходят в три точки, не лежащие на одной прямой.
Докозательство: пусть движение переводит точки A, B, C в точки A', B', C'. Тогда выполняются равенства
A'B'=AB , A'C'=AC , B'C'=BC (1) Если точки A, B, C лежат на одной прямой, то одна из них, например точка B лежит между двумя другими. В этом случае AB+BC=AC, и из равенств (1) следует, что A'C'+B'C'=A'C'. А из этого следует, что точка B' лежит между точками A' и C'. Первое утверждение доказано. Второе утверждение докажем методом от противного: Предположим, что точки A', B', C' лежат на одной прямой даже в том случае, если точки A, B, C не лежат на одной прямой, то есть являются вершинами треугольника. Тогда должны выполнятся неравенства треугольника:
AB


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Satellites Essay Research Paper Satellites have been
Реферат Сверление металлов
Реферат Господарське право України, Гайворонський, Жушман
Реферат Результат наблюдений изменения остроты зрения и рефракции во время беременности
Реферат Государственный служащий в системе государственной службы
Реферат Государство и государственная власть
Реферат Использование среды MatLAB для решения линейной программы
Реферат Государственный строй Афин в период расцвета рабовладельческой демократии V в. до н.э.
Реферат Політичні вбивства як крок у прірву
Реферат Государство и право Византии
Реферат Господарське право як галузь права проблеми його становлення
Реферат Афины. Законодательство Солона
Реферат Операції які здійснюють банки
Реферат Основные теоретические аспекты Д. Юма
Реферат Государственная гражданская и военная служба