Гравитация? Это очень просто! (гравитонная гипотеза)
д-р Александр Вильшанский
Проблема.
Круговое движение спутников вокруг Земли (а также естественных спутников планет
и самих планет вокруг Солнца) обычно объясняется с помощью схемы, приведенной
на рис.1. Сила тяготения F, направленная к центру Земли, вызывает ускорение, с
которым тело на рисунке ДВИГАЕТСЯ в радиальном направлении. Однако, когда мы
задумываемся о величине РАБОТЫ, которую производит эта сила, мы натыкаемся на
парадокс. Сила - есть, масса - есть, ускорение - есть. Но в результате сложения
двух скоростей движения оказывается, что суммарное расстояние до планеты не
изменилось! Значит нет ни пройденного пути, ни работы? Это какая-то очень
странная сила, и какая-то странная ситуация. Аналогии с вращением груза на нити
здесь не годятся. В случае использования нити расстояние не меняется. Связь
тела с центром вращения ЖЕСТКАЯ. В этой вращающейся системе координат в точке
крепления груза к нити центростремительная сила уравновешивается силой реакции
опоры. То есть имеются ДВЕ силы, сумма которых равна нулю. Естественно, что и
результат их действия равен нулю. В случае же спутника воздействующая сила
только одна, и она не уравновешивается никакой другой силой. Но по Второму
закону Ньютона любая сила, воздействующая на свободное тело, должна вызывать
ускорение и производить работу! Более того, если траектория будет иной (скажем,
эллиптической), и расстояние тела от центра Земли будет изменяться, то,
согласно классической теории, сила притяжения также не будет производить
никакой работы! В данном случае не только сила и ускорение в наличии, но также
и путь. Но работа все равно не производится! Это странно, по меньшей мере.
Усилим
парадокс. Представим себе космический корабль, имеющий на борту двигатель,
всегда ориентированный по радиусу, но в обратную сторону от Земли (рис.2).
Двигатель показан на рисунке в виде вытянутого треугольника. Представим себе далее,
что космический корабль должен совершить облет вокруг Земли по круговой орбите,
но тяготение отсутствует. Иначе говоря, уберем Землю и рассмотрим простой
маневр корабля в пространстве - движение по окружности. Очевидно, что для
выполнения этого маневра при отсутствии тяготения космический корабль должен
использовать свой реактивный двигатель. Сопло этого двигателя должно быть
постоянно направлено в обратную сторону от центра окружности. Таким образом,
силу земного притяжения мы заменяем силой тяги двигателя. Ясно, что в данном
случае энергия будет расходоваться. Если бы взлетающая с Земли ракета просто
зависла над землей на старте примерно на время полного оборота спутника на
орбите (то есть около 100 минут), то она израсходовала бы приблизительно такую
энергию. Причем понятно, что эта энергия прямо зависит от массы корабля. Любому
человеку ясно, что эта энергия очень велика. Налицо парадокс. Но можно ли
преодолеть противоречие? Модель. Поместим пробное тело А в центр сферы, через
которую в самых разных случайных направлениях пролетают очень маленькие и
легкие частицы (рис.3). Назовем эти частицы "гравитонами".
Предположим, что гравитоны обладают исключительно высокой проникающей
способностью и слабо взаимодействуют с веществом, то есть отдают частицам вещества
очень небольшую часть своего импульса. Аналог такого рода в природе известен -
это нейтрино. Однако гравитоны в нашей модели по своим размерам существенно
меньше нейтрино, и двигаются со скоростями, значительно превышающими их
скорость.
Гравитоны
равномерно распределены в пространстве. Большинство их пролетает мимо пробного
тела А, и нас не интересует. Их траектории обозначены на рис.3 пунктирными
стрелками (изобр. слева). Те гравитоны, которые попадают в пробное тело,
передают ему часть своего импульса. Плотность потока гравитонов через сферу
постоянна. Так как все гравитоны одинаковы, то вектор суммарного импульса,
переданного ими пробному телу, будет равен нулю, и оно будет находиться в
покое. Поместим на некотором расстоянии от пробного тела A массивное тело (шар
на рис.4). Очевидно, что если гравитоны частично задерживаются шаром, то он
экранирует пробное тело от воздействия частиц, приходящих к нему из
пространственного угла с образующими АU и АV. В то же время гравитоны,
прилетающие из пространственного угла c образующими AU' и AV', воздействуют на
пробное тело с прежней интенсивностью. Результирующее воздействие всех частиц
на пробное тело уже не будет равным нулю, и возникнет сила FA, направленная
точно к центру массивного шара. Величина силы, действующей на пробное тело,
будет зависеть от степени поглощения гравитонов массивным телом. Эта сила прямо
пропорциональна величине пространственного угла UAV, который в свою очередь обратно
пропорционален квадрату расстояния. В этой модели имеет место не «притягивание»
двух тел друг к другу, а «приталкивание». Но, если наблюдатель ничего не знает
о летящих частичках, а видит лишь взаимодействие тел, то это выглядит для него
как «притяжение» одних тел к другим.
Таким
образом, воздействие гравитонов на пробное тело А рассчитывается как разность
двух потоков гравитонов, приходящих из пространственного угла U'AV' и из
пространственного угла UAV, определяемого поглощающим гравитоны телом.
Гравитоны поглощаются на любом участке b этого тела (рис.5). В статье [1]
приведен вывод формулы отношения силы приталкивания на определенном расстоянии
к силе, действующей на расстоянии двух радиусов от центра массивного шара:
где:
k=1+h/R - угол, указанный стрелкой на рис.5, под которым виден отрезок
взаимодействия "b" - максимально возможное значение угла h - расстояние
пробного тела от поверхности поглощающего тела (шара) R – радиус поглощающего
шара b - длина пути взаимодействия на рис.5 - плотность поглощающего тела в
произвольной точке k=2 для случая нахождения пробного тела на расстоянии от
поверхности шара, равном радиусу Численное интегрирование выражения (1)
приводит к результатам, полностью совпадающим с результатами расчета по
классической формуле закона всемирного тяготения Ньютона. В общем случае тело
(шар), поглощающее гравитоны, может иметь переменную вдоль радиуса плотность
(рис.6). Как известно, Земля имеет более плотное ядро с диаметром, примерно
равным половине диаметра самой Земли. Расчет показал, что сила воздействия на
пробное тело будет одной и той же для любого распределения плотности по радиусу
при условии постоянства средней плотности.
О
критике модели "пушинга" (приталкивания). О возможности существования
механизма "приталкивания" космических тел (как альтернативного их
"притяжению") говорили многие ученые, в том числе и Лессаж. Он
рассматривал "гравитоны" как частички, глубоко проникающие в планету,
и создающие разность давлений на нее вследствие образования "гравитонной
тени" от Солнца. Эту модель подверг критике Пуанкаре, показав, что
сопутствующее приталкиванию поглощение этих микрочастиц в небесном теле должно
сопровождаться их нагревом до температур, не наблюдающихся на практике. Кроме
того, планеты в своем движении должны были бы тормозиться "гравитонным
газом", чего также не наблюдается. О таком торможении говорил и Р.Фейнман
в своих лекциях. Эти возражения обоснованы лишь при определенных предположениях
о свойствах гравитонов, которых не предполагали эти исследователи, и без учета
следствий из этих свойств. Одним из таких следствий является существование
"космической метлы" (см. ниже), благодаря действию которой
преодолевается торможение планет "гравитонным газом", и
осуществляется их вечное вращение. Возражение Пуанкаре также исчезает, если
рассмотреть взаимодействие гравитона с элементом массы (атомом) более
внимательно. В нашей гипотезе если масса тела, через которое проходит гравитон,
меньше некоторой величины (хотя и очень большой), то гравитон чаще всего
встречается лишь с одним атомом (ядром атома), и претерпевает рассеивание на
нем, отдавая атому небольшую часть своего момента движения в направлении своего
движения до соударения. Этот случай показан на рис.7 (движение "а").
В
этом случае никакого поглощения гравитонов (с переходом их энергии в тепловую),
о котором говорил Пуанкаре, не происходит. В случае же прохождения гравитона
через значительно бОльшую массу, траектория его движения становится более
сложной. Наталкиваясь на некоторое множество атомов, гравитон также отдает
каждому из них часть своего количества движения, но эта отдача происходит в
случайном направлении. В результате атомы как бы раскачиваются случайным
образом, что можно интерпретировать как тепловое движение. Этот случай показан
на рис.7 (движение "b"), и именно вследствие такого движения и происходит
разогрев тела. Но при этом понятно, что гравитационный эффект вызывается лишь
самым первым столкновением гравитона с атомом. И, наконец, когда в результате
целого ряда соударений гравитон теряет значительную часть своей энергии, его
скорость снижается настолько, что он в определенной ситуации может быть
захвачен ядром атома, "поглощен" им. На этом его путешествие внутри
массы заканчивается (рис.7, движение "с"). Однако и это поглощение
также не связано с повышением температуры вещества; попадая внутрь ядра,
гравитон отдает свою энергию на его раскрутку, и является по-существу, причиной
существования и источником внутренней энергии атома вообще. Проверка
адекватности предложенной модели Соответствует ли действительности предложенная
здесь модель? Это можно было бы проверить во время полного солнечного затмения.
Согласно теории Ньютона сила притяжения любого тела Землей на ее поверхности
должна уменьшаться во время солнечного затмения. В этот момент Луна и Солнце
находятся на одной прямой по отношению к наблюдателю в зоне затмения. При этом
их сила притяжения должна увеличиться, уменьшая результирующую силу притяжения
на поверхности Земли.
Но,
согласно предложенной здесь модели все должно обстоять наоборот. При достаточно
большой массе вещества, через которую проходят гравитоны, они должны в этой
массе поглощаться полностью. Именно такая ситуация возникает в звездах. В
результате возникает ситуация, изображенная на рис.8. Для наглядности и
простоты предположим, что Солнце поглощает гравитоны полностью почти по всему
диаметру.
До
тех пор, пока Солнце и Луна находятся в разных частях небосвода, каждое из этих
небесных тел поглощает свою часть гравитонов. Величина гравитационной
постоянной у поверхности Земли зависит от воздействия Земли, Луны и Солнца.
Однако, во время затмения ситуация меняется (рис. Луна входит в полную
«гравитонную тень» Солнца. До затмения она несколько ослабляла поток
гравитонов. Теперь она уже не может его ослабить дополнительно, так как он уже
полностью перед этим был поглощен Солнцем. Для земного наблюдателя гравитонного
потока Луна в этот момент как бы «исчезает» с небосклона. В результате
суммарная сила притяжения в момент солнечного затмения должна увеличиваться. Интересно,
что явление увеличения веса во время солнечного затмения было открыто еще в
конце 19 века русским инженером Ярковским с помощью модифицированных
лабораторных весов, а с 50-х годов ХХ века были многократно повторены опыты
Мориса Алле (Allois), обнаружившего изменение периода колебаний маятника во
время затмения. Повторенные нами опыты показали, что точности и
чувствительности применявшихся этими исследователями приборов было совершенно
недостаточно для обнаружения хоть какого-нибудь влияния Луны, и они, скорее
всего, измеряли некий артефакт - сопутствующее затмению явление более крупного
порядка. Более точные измерения планируется реализовать в ближайшее время.
Следствия
из предложенной гипотезы
Описанный
выше «механизм гравитации» является на данный момент единственным, способным
объяснить явление увеличения силы тяжести вблизи поверхности Земли при
солнечном затмении. И это дает основание рассмотреть некоторые следствия из
этой гипотезы, как если бы она была адекватной реальности.
"Невсемирность"
Закона всемирного тяготения Ньютона
Представления
о силе неизвестной природы, заставляющей объекты притягиваться друг к другу,
позволили в свое время Ньютону найти лишь эмпирическую формулу закона
всемирного тяготения. Эта формула, по Ньютону, справедлива для любых
расстояний, в чем у него не было причин сомневаться. Изложенное здесь
представление о "приталкивании" тел друг к другу частицами со слабым
взаимодействием с веществом (гравитонами) позволяет дать непротиворечивое
физическое описание этого явления. Полученные при этом формулы дают результаты,
в точности совпадающие с результатом расчета по эмпирической формуле Ньютона,
но… Одновременно должно быть ясно, что эта модель адекватна только на длине
свободного пробега частиц (гравитонов). Это означает, что так называемый закон
«всемирного» тяготения не является на самом деле всемирным, а справедлив лишь
на расстояниях, примерно равных размерам нашей Солнечной системы. На больших
расстояниях действуют, повидимому, законы вихревой газовой динамики применительно
к «гравитонному газу».
Движение
планет по орбитам. Вечное и постоянное движение планет по их околосолнечным
орбитам представляется до некоторой степени загадочным. Трудно предположить,
что движению Земли по орбите со скоростью 30 кмсек совершенно ничего не
препятствует. Даже в предположении об отсутствии эфира существует достаточное
количество более или менее крупной космической пыли и мелких метеоритов, через
которые проходит планета. И если для больших планет этот фактор достаточно мал,
то с уменьшением размеров тела (до астероида) его масса уменьшается гораздо
быстрее, чем поперечное сечение, которое определяет динамическое сопротивление
движению. Тем не менее и большинство астероидов вращается по орбитам с
постоянной скоростью, без признаков торможения. Представляется, что одного лишь
ньютоновского «притяжения» недостаточно, чтобы удержать систему в вечном
вращении. В рамках же гравитонной гипотезы такое объяснение может быть предложено.
"Космическая метла" На рис.11 (изобр. справа) изображены траектории
гравитонов, принимающих участие в создании «пушинга» (приталкивающей силы) в
случае, если они проходят через большую массу, которая не вращается. В этом
случае картина сил, создающих давление на меньшую массу, полностью симметрична,
и суммарный вектор всех сил Z направлен точно на центр большой массы.
Если
же большая масса вращается, то картина выглядит несколько иначе (Рис.12 ) Можно
видеть, что сектор, из которого приходят гравитоны, формирующие верхнюю
(относительно половины) часть поглощенного потока, оказывается несколько
большим, чем сектор, в котором гравитоны приходят из нижней полусферы. Поэтому
векторная сумма Х=X1+X2 несколько больше векторной суммы Y=Y1+Y2, что создает
отклонение результирующего вектора Z. Этот вектор в свою очередь можно
разложить на два вектора. Один из них направлен точно к центру притяжения О, а
другой перепендикулярен ему, и направлен вдоль касательной к орбите. Именно эта
составляющая силы приталкивания и вызывает движение планеты по орбите при
вращении массивного тела S. Таким образом вокруг вращающегося массивного тела
возникает как бы "метелка" "вертушка", подгоняющая каждую
элементарную массу планеты по касательной к орбите в направлении вращения
основной массы. Поскольку воздействие производится на каждую элементарную часть
планеты, то действие "метелки" пропорционально массе увлекаемого ею
тела на орбите. Но если бы дело этим и ограничивалось, то скорости планет непрерывно
увеличивались бы, и круговые орбиты не могли бы быть устойчивыми. Очевидно,
существует и тормозящий фактор, причем он также должен быть пропорционален
массе. Таким фактором, скорее всего, является сам гравитонный газ, то есть сами
гравитоны, пронизывающие тело со всех сторон. Как бы ни была велика скорость
гравитонов, но, если они оказывают воздействие на элементарные массы, как было
объяснено ранее, то и сами элементарные массы будут испытывать определенное
сопротивление при своем движении сквозь гравитонный газ. Таким образом, не
имеет никакого значения, какая именно масса находится на данной орбите.
Увеличивая массу, мы увеличиваем подгоняющую силу, и одновременно увеличиваем
тормозящую силу. Из всего этого вытекает важное следствие - планета может иметь
спутники только в том случае, если сама она обладает не только определенной
массой, но еще и определенной скоростью вращения вокруг своей оси, создавая
эффект "космической метлы". Если планета вращается медленно, то она и
спутников иметь не может, метелка «не работает». Именно поэтому Венера и
Меркурий не имеют спутников. Не имеют спутников и сами спутники Юпитера,
которые хотя и сравнимы с Землей по размеру, но вращаются очень медленно.
Именно поэтому Фобос, спутник Марса, постепенно приближается к Марсу. Скорее
всего, параметры Фобоса являются критическими. «Метла», образуемая небольшим
Марсом с его скоростью вращения 24 часа и массой 0,107 земной, создает для
полуоси 10 000 км как раз критическую силу. Возможно, что все тела, имеющие
произведение относительной массы на относительную скорость вращения менее 0.1
(как у Марса), не могут иметь спутников. В связи с таким поведением Фобоса
высказывается мнение, что он в конце концов упадет на Марс. Однако наиболее
вероятным является предположение, что этого все же не произойдет. По мере
приближения Фобоса к Марсу сила воздействия "метлы" на него может
несколько увеличиться, и его орбита может стать устойчивой. С другой стороны,
поскольку Луна понемногу удаляется от Земли, можно предположить, что энергия
«Метлы» у Земли избыточная, и она ускоряет Луну.
Наличие
этого "механизма" в длействительности легче всего демонстрируется на
примере всем известных комет. Сегодня уже практически установлено, что кометы
приходят к нам из очень удаленных от Солнца областей (но в пределах Солнечной
системы) - поясов Койпера, Оорта. В этих областях (точка 1 рис.13) кометы
(сгустки льда и пыли) вращаются вокруг Солнца с крайне малой скоростью (почти
нулевой). Время от времени в результате взаимных столкновений, некоторые из них
сходят со своих орбит, и начинают свое сближение с Солнцем. Поскольку исходные
орбитальные скорости у них крайне малы, они должны были бы просто падать на
Солнце по линии, близкой к прямой (пунктир на рис.13). На деле же они
постепенно отклоняются от прямой в сторону вращения Солнца (точка 2 на рис.13),
и при максимальном с ним сближении (точка 3) уже имеют довольно большую боковую
скорость. По параметрам траектории комет (а эти параметры довольно сходные)
можно рассчитать силу воздействия "космической метлы".
"Критическая
масса"
Если
гравитоны существуют, и действительно поглощаются веществом (атомами и,
возможно, элементарными частицами), то при достаточно большом количестве
вещества (обычно называемом «массой» вещества), весь поток гравитонов может
быть поглощен веществом. Именно это соображение и было положено в основу
объяснения поведения маятника Allois’a и прибора Ярковского во время солнечного
затмения. Но если тяготеющая масса поглощает ВЕСЬ поток гравитонов, то она
становится уже «непрозрачной» для этого потока, и ее следует рассматривать не
как «полупрозрачный шар», а как непрозрачный диск (нижний рис.14)
Понятно,
что в этом случае зависимость гравитационной силы от расстояния для достаточно
малых углов (меньших 0,1 рад, под которыми обычно тяготеющая масса видна «с
точки зрения» планет), попрежнему с высокой точностью обратно пропорциональна
квадрату расстояния (пропорциональна величине телесного угла, под которым виден
диск непрозрачной массы. (Что именно происходит при бОльших углах и меньших
расстояниях будет рассмотрено впоследствии). Но пока мы приходим к неожиданному
выводу. Оказывается, если плотность массы тяготеющего тела больше некоторой
критической, и она начинает поглощать практически весь гравитонный поток, то
при одной и той же гравитационной силе плотность тела (а, значит, и его масса)
может быть сколь угодно больше этой критической. Увеличение массы выше
определенного предела не влияет более на силу гравитационного воздействия этой
массы, создаваемую разностью гравитонных потоков. Экранировка гравитонного
потока определяется полным поглощением его частью небесной сферы, которую
закрывает непрозрачная для гравитонов масса вещества. Из этого следует, что
масса Солнца, которая, естественно, определяется по силе воздействия на планеты
(и, прежде всего, на Землю с ее известной массой, через которую и была
вычислена масса Солнца в свое время), на самом деле может быть значительно
бОльшей, если принять во внимание результаты измерений при солнечном затмении,
и возможность наличия в центре Солнца большой зоны с полным поглощением
гравитонов.
В
относительно разреженной внешней части звезды (рис.15) гравитоны поглощаются
частично. В более плотной части они поглощаются полностью, и именно в этой
части происходит основной разогрев звезды. А вот во внутреннюю область
гравитоны уже проникнуть не могут, и масса этого ядра может быть очень большой,
но она никак не влияет на суммарное поглощение гравитонов (они уже поглощены
внешней зоной), а стало быть и на силу гравитации, создаваемую звездой. Может
ли аналогичная зона поглощения быть у планет? Как следует из изложенного, если
такая зона есть, то она может проявить себя не всегда. Если наблюдатель находится
на расстоянии, большем, чем критический угол (0,1 радиана), сила гравитации
никак не зависит от наличия этой массы. Но если это расстояние меньше, и угол,
под которым видна предельная (критическая) масса, больше, чем 0.1 рад, то ее
влияние может быть обнаружено, когда тангенс угла визирования становится
заметно отличным от самого угла, и зависимость гравитационной силы от
расстояния перестает соответствовать закону обратного квадрата. При этом должны
наблюдаться отклонения от законов КЕПЛЕРА, третий из которых утверждает
постоянство отношения куба расстояния от тяготеющей массы к квадрату периода
обращения вокруг этой массы пробного тела (планеты вокруг звезды, спутника
вокруг планеты) при “ньютоновских” допущениях о “точечной массе”. Согласно
третьему закону Кеплера (упрощенно) для круговых орбит планет имеет место
соотношение: R3/T2 =Const, где R – радиус орбиты (в млн. км) и Т – период
обращения (в земных сутках). Для Международной космической станции (МКС),
находящейся на высоте около 400 км, расчетный период обращения по формуле
Кеплера составляет около 89,5 минут. Реальный же период обращения МКС равен 95
минутам. По заданной орбите спутник движется медленнее, чем он должен
двигаться. Он делает оборот почти на 6 минут дольше, чем должен! Еще один спутник
«Техсат» (Израиль), находящийся на орбите с высотой 800 км, имеет период
обращения, равный 101 минуте, в то время как его расчетный период несколько
меньше 100 минут. Для них уже очевидно не выполняется закон Кеплера! Дело
выглядит так, как будто для этих спутников величина С уменьшается, действующая
на спутник сила гравитации становится несколько меньше рассчитанной по формуле
Ньютона для закона всемирного тяготения, и необходимая скорость для поддержания
его на данной орбите несколько уменьшается. Это явление может быть объяснено
наличием в центре Земли непрозрачного для гравитонов ядра, угловые размеры
которого с высоты орбит указанных спутников несколько превышают величину, за
которой уже нельзя пренебрегать разницей между величиной угла в радианах и его
тангенсом. Если принять эту величину близкой к 0,1 рад (то есть около 6
градусов), то размеры непрозрачного (для гравитонов) ядра Земли не могут
превышать 600-650 км. Параметры орбит указанных спутников позволяют рассчитать
размеры этого непрозрачного ядра с достаточно большой точностью. (Не следует
путать непрозрачное для гравитонов ядро Земли с ее физическим ядром, диаметр
которого примерно равен 6000 км, и плотность которого превышает примерно вдвое
плотность внешней части Земного шара. Это ядро для гравитонов может быть еще
достаточно "прозрачным"). Для других планет также можно наблюдать
отклонение параметров орбит их собственных спутников от закона Кеплера, хотя и
в небольшой степени, так как ближайшие к ним спутники все же находятся не
настолько близко к планете, как искусственные спутники Земли. А вот для
элементов колец Сатурна ситуация кардинально меняется. Кольца Сатурна
необычайно тонки: хотя их диаметр - 250,000 км или чуть больше, их толщина
составляет 1,5 км. Все кольца состоят из отдельных кусков льда разных размеров:
от пылинок до нескольких метров в поперечнике. Эти частицы двигаются с
практически одинаковыми скоростями (около 10 км/с). Внутренние части колец
вращаются несколько быстрее внешних.
Для
Сатурна коэффициент Кеплера Const =R3/T2 = 0,0717. Ближайший к планете спутник
Сатурна Атлас находится в пределах кольца "А" на его дальнем краю на
расстоянии примерно 140 000 км от центра планеты, и имеет скорость 18 км в сек.
Если бы закон Кеплера выполнялся и для самого внутреннего края внутреннего
кольца “С” (радиус 75 000 км), то период обращения элементов этого участка
кольца должен быть равен примерно Т=0,05857 суток. Но реально скорости частей
колец приблизительно равны 10 км/сек. Радиус внутренней орбиты колец вдвое
меньше, окружность орбиты вдвое меньше, а период должен быть меньше в 2,49 раз.
То есть скорость любого тела в пределах кольца должна быть ВЫШЕ, чем у Атласа,
больше 18 км/сек. Ведь все кольца БЛИЖЕ к планете, чем Атлас. А реально она в два
(или более чем в два) раза ниже! Таким образом для колец мы видим АНОМАЛИЮ!
Причиной возникновения таких явлений как распределенные «кольца» вокруг планет
может быть изменение зависимости гравитационной силы на относительно близких
расстояниях от «непрозрачного» для гравитонов ядра. Внешняя граница кольца
Сатурна находится на расстоянии почти 150 тыс. км. от его центра, при радиусе
планеты около 60 тыс км. Это означает, что непрозрачное ядро планеты может
иметь размеры не менее 15 тыс. км. Для более близких расстояний оно «видно» с
орбиты под углом, бОльшим 6 градусов. И так до 75 тыс. км – внутренней границы
колец. Атмосфера же у Сатурна довольно разреженная, общая его плотность
довольно мала. Но размеры его при этой плотности столь велики, что он, возможно,
начинает задерживать гравитоны полностью уже при радиусе ядра 15 тысяч км. Если
предположить, что большое (но неплотное) ядро Сатурна размером в 15 тыс.км (!)
является непрозрачным для гравитонов, то сила тяжести на поверхности может быть
очень большой, и поэтому атмосфера может быть плотной, но не слишком
протяженной в высоту. Это тем более вероятно, что Сатурн разогревается изнутри
меньше, чем Юпитер, и температура атмосферы у него довольно низкая. Тогда
возникает ситуация, благоприятная для возникновения колец. Начиная с
“шестиградусной зоны” постепенно перестают «работать» законы Ньютона и Кеплера.
Поскольку
значительная часть планеты непрозрачна для гравитонов, то сила гравитации на ее
поверхности - максимально возможная, и поэтому атмосфера не слишком толстая,
зато достаточно плотная.. А при низкой температуре газообразный газ не слишком
отдаляется от планеты. Поэтому условия для существования колец – довольно
широкие. То же и на Уране и Нептуне, у которых кольца обнаружены сравнительно
недавно. Из вышеизложенного следует, что гравитационное “поле” вовсе не
обязательно и всегда описывается законом обратного квадрата. Если мы попадаем в
“шестиградусную” зону, то при изменении расстояния сила уже не увеличивается
обратно пропорционально уменьшению расстояния, увеличение идет несколько
медленнее. Таким образом, исходя из представлений гравитонной гипотезы и на
основании реальных параметров орбит спутников планет и их колец, мы приходим к
выводу, что у звезд и больших планет может существовать НЕГРАВИТИРУЮЩАЯ МАССА.
Эта масса окружена со всех сторон “экраном”, не пропускающим к ней гравитоны.
Заключение
Предположение
о причине возникновения гравитационной силы как результата существования и
действия гравитонов не противоречат наблюдающимся явлениям, но способно
объяснить физический «механизм» этих явлений. Из этого предположения следует
невсемирность закона тяготения Ньютона, а также возможность существования
больших масс вещества, не проявляющих гравитационных (а, возможно, и
инерционных) свойств. Объясняется также явление разогрева планет и источник
энергии звезд. В свою очередь, если верно, что закон всемирного тяготения вовсе
не всемирен, а сфера его действия ограничивается длиной свободного пробега
гравитонов (примерно размерами нашей Солнечной системы), то из этого следует
неадекватность недавно возникших представлений о некоей "темной
материи-энергии". Большие космические образования удерживаются вовсе не
силами гравитации, а обычными механизмами газовой динамики - движением в
пространстве "гравитонного газа". А понятие о
"закритической" массе вещества, не проявляющей гравитационных свойств
в силу недоступности ее для гравитонов из пространства, приводит к выводу о
невозможности существования в космосе так называемых "черных дыр" в
виде сверхбольших масс вещества со сверхгравитационными свойствами. Конечно,
реально "черные дыры" наблюдаются, но они могут представлять собой и
образования другого типа, не пропускающие сквозь себя фотоны.
Список литературы
Для
подготовки данной работы были использованы материалы с сайта http://www.astrogalaxy.ru