ОГЛАВЛЕНИЕ
1. Введение
2. Архитектурно-конструктивная часть
3. Расчетно-конструктивная часть
4. Производственно-строительная часть
5. Подбор башенного крана
6. Стройгенплан
7. Календарный план
8. Экономическая часть
9. Технико-экономические показатели
10. Литература
РАЗВИТИЕ МОНОЛИТНОГО ДОМОСТРОЕНИЯ
Основным направлением развития массового жилищного строительства
является сборное, панельное домостроение. Однако более 35% объемов
жилищного строительства осуществляется еще недостаточно индустриальными
методами. Поэтому индустриальные методы монолитного домостроения
рассматриваются как резерв повышения общего уровня дальнейшей
индустриализации строительства. Производственный эксперимент по применению
различных конструктивно-технологических методов монолитного домостроения
позволил сформировать теоретические основы рациональных сфер применения
монолитного бетона, технических решений конструкций зданий и опалубок, а
также разработать ряд нормативных и методических документов по
проектированию, строительству и сравнительной технико-экономической оценке
гражданских зданий из монолитного бетона.
Возведенные жилые и гражданские здания, как правило отличавшиеся
высоким качеством архитектурных решений. Наибольшее распространение
монолитное домостроение получило в Кишиневе, Сочи, Алма-Ате, Минске,
Вильнюсе, городах Кавказских минеральных вод, Южного берега Крыма, Средней
Азии и др. Анализ показал, что монолитное домостроение по большинству
технико-экономических показателей имеет преимущества по сравнению с
кирпичным домостроением, а в ряде случаев и с крупнопанельным:
единовременные затраты на создание производственной базы меньше, чем в
кирпичном на 35% и чем в крупнопанельном на 40-45%; расход стали в
конструкциях снижается на 7-25% по сравнению с крупнопанельным (экономия
увеличивается по мере повышения этажности и сейсмической активности района
строительства); расход стали на опалубку с учетом оборачиваемости форм
снижается на 1,5 кг на 1м2 общей площади в сборных конструкциях до 1 кг в
монолитных. Энергетические затраты на изготовление и возведение монолитных
конструкций уменьшается на 25-35% по сравнению со сборными и кирпичными:
трудовые затраты снижаются в среднем на 25-30%, а продолжительность
строительства сокращается на 10-15% по сравнению с кирпичным. Стоимость
строительства с учетом зданий по этажности, архитектурно-планировочным
решением и действующих чем на материалы и конструкции в среднем на 10%
ниже, чем кирпичного, и на 5%, чем крупнопанельного.
К достоинствам монолитного домостроения следует также отнести
возможность с минимальными затратами получить разнообразные
объемопространственные решения, повысить эксплуатационные качества зданий.
При этом сокращается инвестиционный цикл (проектирование зданий и
производственной базы – создание базы – строительства).
Недостатками монолитного домостроения являются более высокая по
сравнению с крупнопанельным продолжительность строительства (20%) и
трудоемкость на строительной площадке (25-30%) при одинаковых показателях
суммарных трудовых затрат, удорожание бетонных работ при отрицательных
температурах.
Рациональными областями применения монолитного домостроения являются
регионы со сложными геологическими условиями, преимущественно в южных
сейсмических районах страны.
основные направления повышения эффективности возведения монолитных конструкций.
Основные направления развития технологии бетонных работ должны
предусматривать мероприятия, которые позволили бы значительно повысить
производительность труда на этих работах:
- организацию централизованных изготовления сварных арматурных каркасов, сеток, и пространственных блоков и монтаж их на стройплощадках;
- применение унифицированных многократно оборачиваемых систем опалубок, организацию централизованного их изготовления и интенсивной эксплуатации;
- развитие индустрии товарных бетонных смесей путем организации их централизованного изготовления на высокомеханизированных и автоматизированных районных приобъектных заводах и установках с доставкой этой смеси специализированным транспортом;
- механизацию подачи распределения и укладки бетонной смеси с применением высокопроизводительных бетононасосов, бетоноукладчиков и другой техники;
- применение технологии зимнего бетонирования с использование эффективных противоморозных добавок, автоматизацию процессов термообработки бетона.
Комплекс работ по возведению монолитных бетонных и ж/б конструкций
включает ряд процессов, в том числе приготовления бетонной смеси,
транспортировку ее к месту укладки, устройство опалубки, установку
арматуры, подачу, распределение и уплотнение бетонной смеси в подземных и
наземных частях зданий, подготовку забетонированных конструкций к сдаче. общие сведения о районе строительства
Жилой 16-ти этажный монолитный дом строится в г. Рязани. Преобладают
северо-восточные ветра (см. раздел ветров на генплане).
Расчетные температуры воздуха: t внутреннего +18(; t наружного -26(.
Источники водоэнергоснабжения: водоснабжения – от ввода в ЦТП,
энергоснабжения – от трансформаторной подстанции кабелем марки АПВ-380.
Напряжение 380/220 В.
Поставка материалов и оборудования со стороны существующих дорог (см.
генплан).
архитектурно-планировочное решение.
16-ти этажный монолитный жилой дом запроектирован с подвалом высотой
2м и чердаком. Высота жилого этажа 2,8м (от пола до пола).
На каждом жилом этаже запроектировано 5 квартир:
- однокомнатных – 1
- двухкомнатных – 3
- трехкомнатных – 1
Площади квартир в пределах норм для города Рязани. Квартиры имеют
холлы, кухни, санузлы. В доме предусмотрено кухонное и санитарно-
техническое оборудование. В 1-ом этаже запроектированы вестибюли,
электрощитовая и мусорокамеры.
Запроектированы незадымляемые, несгораемые лестницы с закрывающей
пружиной, запроектирован тамбур.
Все квартиры запроектированы с раздельными санузлами (кроме
однокомнатных). В доме запланировано 1 пассажирский лифт грузоподъемностью
350 кг и 1 грузопассажирский лифт грузоподъемностью 500 кг.
Мусоропровод d=400мм с клапанами. Мусоросборная камера расположена на
1-ом этаже, с выгрузкой мусора в сторону двора.
Окна – стандартные.
Архитектурно-строительный раздел.
16-ти этажный жилой дом в сборно-монолитном исполнении строится в г.
Рязани. Согласно СНиПу «Нагрузки и воздействия» относится
- к III снеговому району (S0 = 1,0кПа)
- к I ветровому району (W0 = 0,23кПа)
Здание строится в обычных условиях строительства.
Фундамент. Вариант монолитной ребристой плиты разработан в условиях
посадки здания на однородные непросадочные и ненабухающие грунты с несущей
способностью основания Rc=2кг/см2 с осадкой фундамента не более 10см.
Толщина плиты 700мм, высота ребра 1500мм.
Стены. Внутренние стены выполнены из монолитного тяжелого бетона
класса В15. Армирование стен осуществляется при помощи каркасов и сеток.
Каркасы устанавливаются по краям стен, обрамляют проемы и устанавливаются в
стенах с шагом не более 2,2м. Перемычки стен – монолитные, рассчитаны с
учетом трещиностойкости (шарнир). Армируются пространственными каркасами.
Стены несущие наружные стены выполнены из крупнопористого керамзитобетона
класса В-75, толщиной 350мм. Стены несущие, связаны шарнирно с
внутренними. Армирование стен конструктивное – каркасами и сетками.
Перекрытия. Сборные из плит перекрытия круглопустотных по серии
1.141.-1, выпуски 9, 10, 12, 15 с изменениями опорной части и
индивидуальной плиты. Связь плит со стенами осуществляется при помощи
соединительных стержней, приваренных к петлям плит (рис.1).
Сборные ж/б элементы.
Перегородки – индивидуальные сборные ж/б из тяжелого бетона класса В-
15 толщиной 80мм.
Элементы ограждения лоджий – индивидуальные, выполнены из тяжелого
бетона класса В-15 толщиной 120мм. Крепление элементов осуществляется путем
приварки их к закладным деталям плит лоджий и наружных стен.
Лестничные марши – по серии 1.151-1В6. Площадки – индивидуальные
устанавливаются на столбики, которые крепятся к закладным деталям стены.
Лифт – принято 2 лифта: пассажирский из сборных ж/бетонных элементов
по серии 1.189-6 и грузопассажирский из сборных ж/б …?... элементов.
Соединение сборных ж/б элементов – шарнирное.
Санкабины – сборные по серии 1.188-5В10.
Вентблоки – индивидуальные на основе серии 1.В4-3.
Плиты лоджий – индивидуальные сборные t=160мм.
Наружная отделка.
Фасады и входы в жилые секции монолитные с облицовкой. Входы в жилые
секции с установкой алюминиевых витражей, деревянных дверных и оконных
блоков.
Наружные стены монолитные. Ограждения лоджий из индивидуальных
скорлуп.
Металлические элементы ограждений лоджий, окна и балконные двери
окрашиваются масляной краской белого цвета.
Потолки лоджий окрашиваются красками ПХВ белого цвета.
Внутренняя отделка помещений.
Жилые комнаты: полы из штучного букового паркета, стены оклеиваются
обоями, потолки окрашиваются клеевой краской.
Кухни: полы линолеумные. Стены окрашиваются масляной краской на всю
высоту с облицовкой вдоль фронта кухонного оборудования – глазурованной
плиткой на высоту 2 м, а выше масляная покраска.
Лифтовые холлы и вестибюли: полы керамические из крупноразмерной
плитки с фактурой «мелкография».
Стены на всю высоту облицовываются керамической плиткой «кабанчик» с
рисунком.
Вестибюль: потолки – клеевая окраска.
Решение по инженерным сетям, коммуникациям и инженерному оборудованию здания.
Отопление и вентиляция.
Расчетные параметры наружного воздуха для проектирования приняты:
- для систем отопления - 26°С
- для систем вентиляции - 26°С (зима)
22°С - 33°С (лето)
Расчетная скорость ветра – 5 м/сек.
Предположительность отопительного периода – 213 дней.
Расчетный коэффициент теплопередачи К=0,9 стены ограждающих
конструкций.
Тройное окно – 3Ккал/час м2°С= 3,48 Вт/м2°С.
Двери - 2Ккал/час м2°С= 2,32 Вт/м2°С.
Чердачного перекрытия – 0,696 Вт/м2°С.
Источником теплосистем отопления и вентиляции является тепловая сеть.
Изоляция труб и воздухоотводов.
Тепловая изоляция осуществляется минеральной ватой в качестве
покровного слоя и используется рулонный стеклопластик. Изоляции подлежат
трубопроводы, подающие системы отопления и теплоснабжения.
Основные решения по теплоснабжению.
Источниками тепла РТС.
Расчетные t теплоносителя: t1 = 150°С, t2 = 70°С.
Теплоснабжения осуществляется по закрытой схеме.
Система отопления присоединяется к тепловым сетям по независимой
схеме через водонагреватели отопления в существующем ИТП.
Водоснабжение, канализация, газоснабжение.
Водоснабжение обеспечивается от насосов в существующем ИТП.
Водомерный узел размещается в ЦТП сущ. В здании проектируются 2
заводомерных ввода 2d=100 из чугунных водопроводных труб.
Разводящие трубопроводы прокладываются с уклоном не менее 0,002 к
подвалу.
Принятые нормы водопотребления.
|Жилая часть | |
|Нормальный расход хоз. питьевой воды (общий) на одного | |
|жителя 1/сут. Работающего |3,00 |
|Максимально-суточный расход горячей воды на 1-го жителя, | |
|работающего 1/сут. | |
|Расход воды в часы наибольшего водопотребления (общий) |120 |
|1/час. | |
| |20 х.в. |
| |10,9 г.в. |
Расчетные расходы холодной и горячей воды потребителями на
хозяйственно-питьевые нужды, расход тепла на горячее водоснабжение в
соответствии с СНиП 2.04.01.85.
Расход горячей воды – 3,15 л/сек.
Расход тепла на горячее водоснабжение 0,460 Ккал/час.
Потребный напор: М холл.=52м; М гор.=54м.
Основные технические решения по горячему водопроводу.
Вода для кухни горячего водоснабжения приготавливается в скоростных
водоводяных подогревателях. В здании проектируется централизованное горячее
водоснабжение.
Разводящие трубопроводы прокладываются в подвале. Система
проектируется из стальных оцинкованных труб ф 15-100мм.
Основные технические решения по канализации.
Для отведения вод от санитарно-технических приборов (унитазов,
умывальников и др.) жилой части здания и нежилых помещений проектируется
бытовая канализация.
Монтируются:
- стоянки из чугунных канализационных труб, трубопроводы по техподполью из
чугунных труб.
Канализационные стоянки присоединяются к канализационной сети
техподполья.
мероприятия по пожарной безопасности.
(выполняются в соответствии СНиП 2.01.02.85)
Степень огнестойкости здания №1. Здание обеспечено пожарными
проездами со стороны главного фасада шириной 5м.
Лестницы выполнены незадымляемыми. Вход в них осуществляется с улицы,
а выход на них через балконы.
Двери в лестничную клетку самозакрывающиеся. Открываются двери по
ходу эвакуации.
Для удаления дыма из пожарных холлов и коридоров запланировано
дымоудаление, оборудованное клапанами с автоматическим открыванием.
Незадымляемость шахт лифтов и коридоров обеспечивается подпором
воздуха сверху. Проектом предусмотрено оборудование всех пожарных помещений
автоматической пожарной сигнализацией и дымоудаления.
Также предусматривается выход на кровлю.
Проект разработан в соответствии с требованиями СниП 2-80; 2.01.02-85
«Противопожарные нормы проектирования зданий и сооружений».
Роза ветров г. Рязани
| |с |св |в |юв |ю |юз |з |сз |
|Январь |7 |5 |8 |15 |17 |23 |14 |11 |
|июль |13 |9 |10 |9 |8 |12 |20 |19 |
архитектурно-планировочное и конструктивное решения. Основные сведения по генплану.
Площадь застройки составляет 0,419га. Участок строительства внутри
микрорайона, между улицей Волкова и Инициативная.
Рельеф участка имеет падение с запада на восток.
Рельеф участка с перепадом высот 1,0 м и падением горизонт. 0,1 м.
Находящиеся на участке жилые и нежилые строения подлежат сносу.
Проектируемый рельеф, проезды, внутриквартальные и др. Элементы устройства
решены в увязке с проектными отметками городских профилей и существующей
городской застройкой. Благоустройство территории предусматривает детские и
хозяйственные площадки, автостоянки, спортплощадки. Общая площадь
благоустройства и земных насаждений 1,77га.
Инженерная подготовка территории включает высотную посадку здания,
максимально приближенную к существующему рельефу.
Отвод дождевых и талых вод поверхностный в лотки внутриучастковых
дорог со сбросом на ниже располагаемую территорию.
Дренаж не требуется, водосток открытый.
технический расчет стены монолитного дома.
Город Рязань характеризуется следующими климатическими данными:
Температура наиболее холодной пятидневки – (-31(С);
Температура наиболее холодных суток - (-35(С);
Расчетная внутренняя температура - (+18(С);
Для определения сопротивления теплопередачи наружных стен для зимнего
времени принимаем ограждающие конструкции средними в соответствии со СНиП
II-А-77. За расчетную принимаем температуру наиболее холодных суток (-
35(С).
Наружные стены принимаем из керамзитобетона с объемным весом
(=1200кг/м3.
Требуемое сопротивление определяем по формуле:
Roтр= (tв-tн)(Rвn , где
(tн
tв = +18(С – температура внутреннего воздуха помещений
tн = -35(С – температура наиболее холодных суток
(tн = 10(С – нормируемый температурный период
n = 1 – коэффициент, зависящий от положения наружных поверхностей
ограждения по отношению к наружному воздуху и имеющие значение для наружных
стен
Rв = 0,133 – сопротивление теплоотдаче, зависящей от рельефа внутренней
поверхности ограждения
Roтр= (18-(-35))(0,133(1=0,705
10
Экономическое сопротивление теплопередаче определяем по формуле:
Roэк= Wо(Цо
Е(((Цм , где
Wо = 0,23
Цо = 5,39 руб/ккал – стоимость тепла от ТЭЦ для г. Рязани.
( = 0,4 – коэффициент теплопроводимости
Цм = 72,4 руб/м3 – стоимость материала
Roэк= 0,23 ( 5,39 = 0,59
0,12(0,4(72,4
Roэк( Roтр
Толщину панели определяем по формуле:
Sц = (Ro – (Rв + Rм + (1/(1 + (2/(2) ( (
S = (0,705 – (0,133 + 0,08)) ( 0,4 = 0,341 (м)
Принимает стеновую керамзитобетонную стену (=350 (мм). Проверку
правильности выбора расчетной наружной температуры производим по формуле:
D=R1S1 + R2S2 + … + RnSn
Техническое сопротивление керамзитобетонной стены:
S=7,95
Коэффициент теплоусваемости:
S=7,95
Тепловая инерция определяется:
D = 0,5 ( 7,95 = 3,975
Так как 1(D(4, конструкция стены относится к группе стен малой
массивности и поэтому расчетную зимнюю температуру принимаем средней из
температур наиболее холодных суток. tn = -35(С
Тогда Roтр= (18-(-35))(0,133=0,705 м2(г(град/ккал
10
Roэк=0,45 м2(г(град/ккал; Roэк
Ro= Roтр=0,705 м2(г(град/ккал
S=(0,705-(0,133+0,08)) (0,7=0,341м ? 350 мм
Удовлетворяет теплотехническому расчету.
Расчет сборного железобетонного марша
Исходные данные для проектирования:
1. Ширина марша – 1350мм.
2. Высота этажа – 2800мм.
3. Угол наклона марша ? - 30?.
4. Размеры ступенек 150х300мм.
5. Бетон класса В25.
6. Арматура каркасов кл. А-II сеток кл.Вр-I.
Определение нагрузок и усилий.
Собственный вес типовых маршей по каталогу индустриальных изделий для
жилищного и гражданского строительства составляет gn=3,6км/м2
горизонтальной проекции.
Расчетная схема марша.
Временная нормативная нагрузка для лестниц жилого дома рн=3(км/м2) –
коэффициент надежности по нагрузке
?f=1,2
- длительно действующая временная нагрузка Pldn=1 км/м2
Расчетная нагрузка на 1м длины марша.
g=(qn ?f + pn ?f) a = (3.6*1.1+3.0*1.2)*1.35 = 10.3км/м
Расчетный изгибающий момент в середине пролета марша.
М=gl2/8*Cos? = (10.3*2.8)2/2*0.867 = 16.63км
Поперечная сила на опоре.
Q= gl/2Cos? = 10,3*2,8/2*0,867 = 16,63км
Предварительное назначение размеров сечения марша.
Применительно к типовым заводским формам назначаем толщину плиты по
сечению между ступенями hf=30мм, высоту ребер h=170мм, толщину ребер
в2=80мм (рис.1)
1. Действительное сечение марша заменяем на расчетное тавровое с
полкой в сжатой зоне (рис.2) в=2в2=2*80=160мм
2. Ширину полки вf при отсутствии поперечных ребер принимаем не более вf'=2(l/6) +в = 2 (280/6)+16 = 110см
или в'f=2hl'f+в = 12*3+16 = 52см
Принимаем за расчетное меньшее значение в'f=52см
Подбор площади сечения продольной арматуры.
1. Устанавливаем расчетный случай для таврового сечения (при х= h'f)
- при м?Rвyв2 вf' hf'*(h0-0.5 h'f)
- нейтральная ось проходит в полке 1164000 2 * (0,75(3*3)*3/16*14,5) = 0,175
(1+?f+?n)=1+0,175=1,175