Реферат по предмету "Математика"


Аналитическая геометрия

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.
Пусть задана система векторов а1, а2, а3, …, ал (1) одной размерности. Определение: система векторов (1) называется линейно-независимой, если равенство a1а1+a2а2+…+aлал=0 (2) выполняется лишь в том случае, когда все числа a1, a2, …, aл=0 и ОR Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одномai№0 (i=1, …, k) Свойства
Если система векторов содержит нулевой вектор, то она линейно зависима Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.
Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.
Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой. Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых. Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.
Теорема: Если заданы два вектора a и b, причем а№0 и эти векторы коллинеарны, то найдется такое действительное число g, что b=ga. Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны.
Доказательство: достаточность. Т. к. векторы коллинеарны, то b=ga. Будем считать, что а, b№0 (если нет, то система линейно-зависима по 1 свойству). 1b-ga=0. Т. к. коэфф. При b№0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. aа+bb=0, a№0. а= -b/a*b. а и b коллинеарны по определению умножения вектора на число. Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.
Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны. Доказательство: т. к. векторы линейно-зависимы, то aа+bb+gc=0, g№0. с= - a/g*а - b/g*b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости. БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.
1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы.
В множестве векторов на прямой базис состоит из одного ненулевого вектора. В качестве базиса множества векторов на плоскости можно взять произвольную пару.
В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов.
2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях.
Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними.
(а, b)=|a| |b| cos u, u90, пр-е отриц. Свойства: (а, b)= (b, а) (aа, b)= a (а, b) (а+b, с)= (а, с)+ (b, с) (а, а)=|a|2 – скал. квадрат.

Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0. Определение: вектор называется нормированным, если его скал. кв. равен 1. Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован.
Теорема: Если векторы а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат. Найдем формулу угла между векторами по определению скалярного произведения. cos u=a, b/|a||b|=x1x2+y1y2+z1z2/sqrt(x12+y12+z12)*sqrt(x22+y22+z22) ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
Определение: векторным произведением двух векторов a и b обозначаемым [a, b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с, а)=0 и (с, b)=0. 3. а, b, с образуют правую тройку. Свойства: [a, b]= - [b, a] [aа, b]= a [а, b] [a+b, c]=[a, c]+[b, c] [a, a]=0
Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах.
Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения.
Теорема: Пусть векторы а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй– координаты первого вектора, в третьей – координаты второго. Определение: ортой вектора а называется вектор ед. длины имеющий одинаковое направление с вектором а. ea=a/|a| РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ.
1. Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9. Угол между пр. Ах+By+C=0 (1), где A, B одновр. не равны нулю. Теорема: n(A, B) ортоганален прямой заданной ур-ем (1).
Доказательство: подставим коорд. т. М0 в ур-е (1) и получим Ах0+By0+C=0 (1’). Вычтем (1)-(1’) получим А(х-х0)+B(y-y0)=0, n(A, B), М0М(х-х0, y-y0). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M0M ортоганальны. Т. о. n ортоганлен прямой. Вектор n(A, B) называется нормальным вектором прямой.
Замечание: пусть ур-я А1х+B1y+C1=0 и А2х+B2y+C2=0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А1=t*А2 и т. д.
Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным. 1. С=0, Ах+By=0 – проходит ч/з (0, 0) 2. С=0, А=0, By=0, значит у=0 3. С=0, B=0, Ах=0, значит х=0 4. А=0, By+C=0, паралл. ОХ 5. B=0, Ах+C=0, паралл. OY x/a+y/b=1.
Геом. смысл: прямая отсекает на осях координат отрезки а и b x-x1/e=y-y1/m
Пусть на прямой задана точка и напр. вектор прямой (паралл. пр. ). Возьмем на прямой произв. точки. q и M1М(х-х1; y-y1) x-x1/x2-x1=y-y1/y2-y1
Пусть на прямой даны две точки М1(x1; y1) и М2(x2; y2). Т. к. на прямой заданы две точки, то задан направляющий вектор q(x2-x1; y2-y1) y=kb+b.
u –угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u
Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x1/e/e=y-y1/m/e. y-y1=k(x-x1) при y1-kx1=b, y=kx+b xcosq+ysinq-P=0 q - угол между вектором ОР и положительным напр. оси ОХ. Задача: записать ур-е прямой , если изветны Р и q
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq, sinq). Пусть М(x, y) –произв. точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал. произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части. Задача: прямая задана общим ур-ем. Перейти к норм. виду. Ах+By+C=0 xcosq+ysinq-P=0
т. к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности. Cos2q=(A*t)2 Sin2q=(B*t)2 -p=C*t
cos2q+sin2q=t2(A2+B2), t2=1/A2+B2, t=±sqrt(1/ A2+B2). Sign t= - sign C Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t. Аtх+Bty+Ct=0, t-нормирующий множитель. 7. Система: x=et+x1 и y=mt+y1
НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой. 1. xcosq+ysinq-P=0 q - угол между вектором ОР и положительным напр. оси ОХ. Задача: записать ур-е прямой , если изветны Р и q
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq, sinq). Пусть М(x, y) –произв. точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал. произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части. Задача: прямая задана общим ур-ем. Перейти к норм. виду. Ах+By+C=0 xcosq+ysinq-P=0
т. к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности. Cos2q=(A*t)2 Sin2q=(B*t)2 -p=C*t
cos2q+sin2q=t2(A2+B2), t2=1/A2+B2, t=±sqrt(1/ A2+B2). Sign t= - sign C Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t. Аtх+Bty+Ct=0, t-нормирующий множитель.
2. Обозначим d – расстояние от точки до прямой, а ч/з б –отклонение точки от прямой. б=d, если нач. коорд. и точка по разные стороны; = d, если нач. коорд. и точка по одну сторону.
Теорема: Пусть задано нормальное уравнение прямой xcosq+ysinq-P=0 и М1(x1; y1), тогда отклонение точки М1 = x1cosq+y1sinq-P=0 Задача: найти расстояние от точки М0(x0; y0) до прямой Ах+By+C=0. Т. к. d=|б|, то формула расстояний принимает вид d=| x0cosq+y0sinq-P|. d=|Ах0+By0+C|/sqrt(A2+B2) ГИПЕРБОЛА.
Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная Каноническое уравнение:
Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом расстоянии от начала координат. |F1F2|=2c, М – произвольная точка гиперболы. r1, r2 – расстояния от М до фокусов; |r2-r1|=2a; a , x2c2-2a2xc+a2=a2(x2-2xc+c2+y2) x2(c2-a2)-a2y2=a2(c2-a2) c2-a2=b2 x2b2-a2y2=a2b2 - каноническое ур-е гиперболы ПАРАБОЛА.
Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой. Каноническое уравнение:
Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат.
|DF|=p, М – произвольная точка параболы; К – точка на директрисе; МF=r; MK=d; r=sqrt((x-p/2)2+y2); d=p/2+x Приравниваем и получаем: y2=2px - каноническое уравнение параболы ЭКСЦЕНТРИСИТЕТ И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ.
1. Определение: эксцентриситет – величина равная отношению с к а. е=с/а е эллипсв c) е гиперболы >1 (т. к. с>a) Определение: окружность – эллипс у которого а=b, с=0, е=0. Выразим эксцентриситеты через а и b: е эллипса является мерой его “вытянутости” е гиперболы характеризует угол раствора между асимптотами

2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскостиaперпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е D1: x= - a/e D2: x= a/e р=а(1-е2)/е – для эллипса р=а(е2-1)/е – для гиперболы
ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ. Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы). Доказательство: для эллипса. r1/d1=e xЈ|a|, xe+a>0 r1=xe+a d1 – расстояние от М(x, y) до прямой D1 xcos180+ysin180-p=0 x=-p x=-a/e бм=-x-a/e
d1=-бм (минус, т. к. прямая и точка по одну стороно о начала коорд. )
Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до соответствующей директрисы есть величина постоянная и представляет собой эллипс, если 1, параболу, если =1. ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ. Пусть задан эллипс, парабола или правая ветвь гиперболы.

Пусть задан фокус этих кривых. Поместим полюс полярной системы в фокус кривой, а полярную ось совместим с осью симметрии, на которой находится фокус. r= r d=p+rcosj e=r/p+rcosj
- полярное уравнение эллипса, параболы и правой ветви гиперболы. КАСАТЕЛЬНАЯ К КРИВОЙ 2-ГО ПОРЯДКА.
Пусть задан эллипс в каноническом виде. Найдем уравнение касательной к нему, проходящей через М0(x0; y0) – точка касания, она принадлежит эллипсу значит справедливо: у-у0=y’(x0)(x-x0) Рассмотрим касательную к кривой следовательно ya2y0-a2y02+b2x0x-b2x02=0 - уравнение касательной к эллипсу. - уравнение касательной к гиперболе. - уравнение касательной к параболе.
ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ НА ПЛОСКОСТИ. Преобразование на плоскости есть применение преобразований параллельного переноса и поворота.
Пусть две прямоугольные системы координат имеют общее начало. Рассмотрим все возможные скалярные произведения базисных векторов двумя способами: (е1; е1’)=cos u (е1; е2’)=cos (90+u)= -sin u (е2; е1’)=cos (90-u)=sin u (е2; е2’)=cos u Базис рассматривается ортонормированный: (е1; е1’)=(е1, a11е1+a12е2)= a11 (е1; е2’)= (е1, a21е1+a22е2)= a21 (е2; е1’)= a12 (е2; е2’)= a22 Приравниваем: a11=cos u a21= - sin u a12=sin u a22=cos u Получаем: x=a+x’cos u – y’sin u
y=b+x’sin u – y’cos u - формулы поворота системы координат на угол u. ----------- x=a+x’ y=b+y’ - формулы параллельного переноса ИНВАРИАНТЫ УРАВНЕНИЯ ЛИНИЙ 2-ГО ПОРЯДКА.
Определение: Инвариантой ур-я (1) линии второго порядка относительно преобразования системы координат, называется функция зависящая от коэффициентов ур-я (1) и не меняющая своего значения при преобразовании системы координат.
Теорема: инвариантами уравнения (1) линии второго порядка относительно преобразования системы координат являются следующие величины: I1; I2; I3
Вывод: при преобразовании системы координат 3 величины остаются неизменными, поэтому они характеризуют линию. Определение: I2>0 – элиптический тип I2 I2=0 – параболический тип ЦЕНТР ЛИНИИ 2-ГО ПОРЯДКА. Пусть задана на плоскости линия уравнением (1). Параллельный перенос:
Параллельно перенесем систему XOY на вектор OO’ т. о. что бы в системе X’O’Y’ коэфф. при x’ и y’ преобразованного уравнения кривой оказались равными нулю. После этого: a11x’2+2a12x’y’+a22y’2+a’33=0 (2) точка О’ находится из условия: a13’=0 и a23’=0. Получается система a11x0+a12y0+a13=0 и a12x0+a22y0+a23=0
Покажем, что новое начало координат (если система разрешима) является центром симметрии кривой: f(x’; y’)=0, f(-x’; -y’)= f(x’; y’)
Но точка О’ существует если знаменатели у x0 и y0 отличны от нуля. Точка O’ – единственная точка.
Центр симметрии кривой существует если I2№0 т. е. центр симметрии имеют линии элиптического и гиперболического типа Поворот:
Пусть система XOY повернута на угол u. В новой системе координат уравнение не содержит члена с x’y’ т. е. мы делаем коэфф. а12=0. a12’= -0, 5(a11-a22)sin2u+a12cos2u=0 (разделим на sin2u), получим: , после такого преобразования уравнение принимает вид a11’x’2+a22’y’2+2a13’x’+2a23’y’+a33’=0 (3) ТЕОРЕМА О ЛИНИЯХ ЭЛИПТИЧЕСКОГО ТИПА.
Теорема: Пусть задана линия элиптического типа т. е. I2>0 и пусть I1>0 следовательно уравнение (1) определяет: 1. I30 – ур-е (1) не определяет. Если I3=0 говорят, что эллипс вырождается в точку. Если I3>0 говорят, что задается мнимый эллипс. Пусть после ПП и поворота ур-е (1) принимает вид (*). Доказательство: 1. пусть I2>0, I1>0, I3 а11’’x’’2+a22’’ y’’2= -I3/I2 I2=a11’’a22’’ > 0 I1= a11’’+a22’’ > 0 a11’’ > 0; a22’’ > 0

Итак, под корнями стоят положительные числа, следовательно, уравнение эллипса. 2. I3>0 в данном случае под корнем стоят отрицательные числа, следовательно уравнение не определяет действительного геометрического образа. 3. I3=0 в данном случае т(0, 0) – случай вырождения эллипса. ТЕОРЕМА О ЛИНИЯХ ГИПЕРБОЛИЧЕСКОГО ТИПА.
Теорема: Пусть уравнение (1) определяет линию гиперболического типа. Т. е. I20; a22’’0

В данном случае мы имеем гиперболу с действительной осью ОХ. Пусть I3 -(-а11’’)x’’2+a22’’ y’’2= -I3/I2 В этом случае мы имеем гиперболу с действительной осью ОY Пусть I3=0 а11’’x’’2-(-a22’’)y’’2=0 АСИМПТОТИЧЕСКИЕ НАПРАВЛЕНИЯ КРИВЫХ 2-ГО ПОРЯДКА.
Пусть крива второго порядка задана уравнением (1). Рассмотрим квадратную часть этого уравнения: u(x, y)= a11x2+2a12xy+a22y2
Определение: ненулевой вектор (a, b) координаты которого обращают в ноль квадратичную часть называется вектором асимптотического направления заданной кривой. (a, b) – вектор асимптотического направления. a11a2+2a12ab+a22b2=0 (*)
Рассмотрим (a’, b’) параллельный (a, b): следовательно . Дробь a/b характеризует вектор асимптотического направления. Задача: выяснить какие асимптотические направления имеют кривые 2-го порядка. Решение: положим, что b№0 и поделим на b2, получим: a11(a/b)2+2a12a/b+a22=0 из этого квадратного уравнения найдем a/b.
т. к. у линий гиперболического и параболического типов I2Ј0, то они имеют асимптотические направления. Т. к. у эллипса I2>0 следовательно таких у него нет (говорят он имеет мнимые асимптотические направления). Найдем асимптотические направления у гиперболы: (a, b)1=(a, b) (a, b)2=(-a, b)
Векторы асимптотического направления являются направляющими векторами для асимптот.
Итак: гипербола имеет два асимптотических направления, которые определяются асимптотами гиперболы. Найдем асимптотические направления у параболы: y2=2px y2-2px=0 u(x, y)= y2+0, y=0 (a, b)=(0, 0)
Итак: вектор асимптотического направления параболы лежит на оси симметрии параболы, т. е. прямая асимптотического направления пересекает параболу в одной точке, след. асимптотой не является. Парабола имеет одно асимптотическое направление, но асимптот не имеет. РАЗЛИЧНЫЕ УРАВНЕНИЯ ПЛОСКОСТИ. Пусть задано трехмерное пространство.
Теорема: Плоскость в афинной системе координат задается уравнением первой степени от трех переменных: Ax+By+Cz+D=0, где A, B, C№0 одновреенно. Справедлива и обратная теорема. Теорема: Вектор n(A, B, C) ортоганален плоскости, задаваемой общим уравнением. Вектор n – нормальный вектор плоскости. 2. Уравнение плоскости в отрезках:
3. Уравнение плоскости, определенной нормальным вектором и точкой. Пусть n(A, B, C) и М(x0; y0; z0). Запишем ур-е пл-ти: Ax+By+Cz+D=0 Ax0+By0+Cz0=-D A(x-x0)+B(y-y0)+C(z-z0)=0 Уравнение плоскости ч/з 3 точки. Пусть известны три точки не принадл. одной прямой. М1(x1; y1; z1); М2(x2; y2; z2); М3(x3; y3; z3)
Пусть М(x; y; z) –произвольная точка плоскости. Т. к. точки принадл. одной плоскости то векторы компланарны. М1М x-x1 y-y1 z-z1 М1М2 x2-x1 y2-y1 z2-z1 =0 М1М3 x3-x1 y3-y1 z3-z1 Параметрическое ур-е плоскости.
Пусть плоскость определена точкой и парой некомпланарных векторов. V(V1; V2; V3); U(U1; U2; U3); M0(x0; y0; z0), тогда плостость имеет вид: система: x=x0+V1t+U1s и y=y0+V2t+U2s и z=z0+V3t+U3s РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ. Ax+By+Cz+D=0; M0(x0; y0; z0) ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ.
Угол между плоскостями: пусть заданы две плоскости: A1x+B1y+C1z+D1=0; A2x+B2y+C2z+D2=0, поэтому n1(A1; B1; C1); n2(A2; B2; C2). Отыскание угла между плоскостями сводится к отысканию его между нормальными векторами.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.