Реферат по предмету "Математика"


Доказательство великой теоремы Ферма для четных показателей степени



Файл: FERMA-2mPF-for

© Н. М. Козий, 2007

Авторские права защищены свидетельствами Украины

№ 27312 и № 28607

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ

Великая теорема Ферма формулируется следующим образом: диофантово уравнение(http://soluvel.okis.ru/evrika.html):

Аn+ Вn = Сn /1/

где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:

Аn = Сnn /2/

Пусть показатель степени n=2m. Тогда уравнение /2/ запишется следующим образом:

А2m = С2m2m /3/

Для доказательства великой теоремы Ферма используем алгебраическое доказательство теоремы Пифагора.

АЛГЕБРАИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА (Решение уравнения теоремы Пифагора в целых числах)

Теорема Пифагора формулируется следующим образом: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

С2 2 + В2, /4/

где: С - гипотенуза; А и В - катеты.

Существуют прямоугольные треугольники, у которых стороны А, В и С выражаются целыми числами. Такие числа называются пифагоровыми.

Рассматривая уравнение теоремы Пифагора как алгебраическое уравнение, докажем, что существует бесконечное количество прямоугольных треугольников, в которых их стороны выражаются целыми числами или, что одно и тоже, уравнение /4/ имеет бесконечное количество решений в целых числах.

Суть теоремы Пифагора не изменится, если уравнение /4/ запишем следующим образом:

А2 = С22 /5/

Для доказательства теоремы Пифагора методами элементарной алгебры используем два известные в математике метода решения алгебраических уравнений: метод решения параметрических уравнений и метод замены переменных.

Уравнение /5/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С. Уравнение /5/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:

А2=(C-B)•(C+B) /6/

Используя метод замены переменных, обозначим:

C-B=M /7/

Из уравнения /7/ имеем:

C=B+M /8/

Из уравнений /6/, /7/ и /8/ имеем:

А2 =M• (B+M+B)=M•(2B+M) = 2BM+M2 /9/

Из уравнения /9/ имеем:

А2- M2=2BM /10/

Отсюда: B = /11/

Из уравнений /8/ и /11/ имеем:

C= /12/

Таким образом: B = /13/

C /14/

Из уравнений /11/ и /12/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2 на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2.

Числа А и M должны иметь одинаковую четность.

По формулам /13/ и /14/ определяются числа B и C как переменные, зависящие от значения числа А как параметра и значения числа M.

Из изложенного следует: 1. Квадрат простого числа A равен разности квадратов одной пары чисел B и C (при M=1). 2. Квадрат составного числа A равен разности квадратов одной пары или нескольких пар чисел B и C. 3. Квадрат числа Am равен разности квадратов нескольких пар чисел. 4. Все числа A> 2 являются пифагоровыми.

Таким образом, существует бесконечное количество троек пифагоровых чисел А, В и С и, следовательно, бесконечное количество прямоугольных треугольников, у которых стороны А, В и С выражаются целыми числами.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 1

Уравнение /3/ с учетом уравнений /5/ и /6/ запишем следующим образом:

А2m = С2m2m =m -Вm )•(Сmm) /15/

Тогда в соответствии с уравнениями /13/ и /14/ запишем:

Bm = /16/

Cm /17/

Из уравнений /16/ и /17/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2m на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2m. Следовательно, число A2m должно быть равно:

A2m = M· D, /18/

где D - целое число.

Тогда : Bm = /19/

А число Cm с учетом уравнения /8/ равно:

Cm = Bm + M = /20/

Тогда из уравнений /19/ и /20/ следует:

B = /21/

C /22/

Если допустить, что В - целое число, то из уравнения /22/ следует, что число С не может быть целым числом, так как сомножители в скобках в подкоренных выражениях в уравнениях /21/ и /22/ отличаются всего на 1.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 2

Выше в доказательстве теоремы Пифагора доказано, что все натуральные числа являются пифагоровыми. Следовательно, все натуральные числа распределяются на тройки пифагоровых чисел и, следовательно, все тройки пифагоровых чисел удовлетворяют уравнению /4/:

С2 2 + В2 /23/

Пифагоровы числа (А, В, С) могут быть истолкованы как длины сторон прямоугольного треугольника, а их квадраты могут быть истолкованы как площади квадратов, построенных на гипотенузе и катетах этого треугольника. Умножив приведенное уравнение на С, получим:

С32• С + В2· С /24/

Из уравнения /24/ следует, что объем куба раскладывается на два объема двух параллелепипедов. Поскольку очевидно, что в уравнении /23/ А<C и В<C, то из уравнения /24/ следует:

С33 + В3 /25/

На всем множестве троек пифагоровых чисел ( а все натуральные числа образуют тройки пифагоровых чисел) при показателе степени n=3 не может быть ни одного решения уравнения /1/:

Аn+ Вn = Сn

Следовательно, на всем множестве натуральных чисел невозможно куб разложить на два куба.

Умножив уравнение /23/ на С2, получим:

С2•С2 2·С2 + В2•С2 /26/

Все члены этого уравнения представляют собой объемы параллелепипедов:

параллелепипед С2•С2 имеет в основании квадрат со стороной С и высоту С2;

параллелепипед А2•С2 имеет в основании квадрат со стороной А и высоту С2;

параллелепипед В2•С2 имеет в основании квадрат со стороной В и высоту С2.

Следовательно, в соответствии с уравнением /26/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов.

Поскольку, как показано выше, А<C и В<C, то из уравнения /26/ следует:

С44 + В4 /27/

В общем случае уравнение /26/ можно записать следующим образом:

С2•Сn-22·Сn-2 + В2•Сn-2 /28/

Сn2·Сn-2 + В2•Сn-2 /29/

Следовательно, в соответствии с уравнениями /28/ и /29/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов. Поскольку, как показано выше, А<C и В<C, то из уравнения /29/ следует:

Сnn + Вn /30/

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при четных показателях степени.




Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Верховна Рада України 2
Реферат Венеричні захворювання 2
Реферат Великие ученые астрономы (Джордано Бруно)
Реферат Периодизация этапов психофизиологической подготовки музыканта-исполнителя к концертному выступлению
Реферат Cистема управління зовнішньоекономічною діяльністю ЗАТ Харків`янка
Реферат Види трудового договору
Реферат Взаємозв язок загальної політехнічної та професійної освіти
Реферат Виробнича практика на прикладі Дирекції АППБ АВАЛЬ
Реферат Роботизовані технологічні комплекси
Реферат Вищі органи демократичної держави
Реферат Вихідні поняття теорії фізичного виховання
Реферат Вероніка лікарська вовконіг вовчуг
Реферат Вексельний обіг і перспективи його розвитку в Україні
Реферат Виникнення науки логіки Поняття логічного закону
Реферат Висхідні1 ділянка кривої сукупної пропозиції ділянка на ко-