2
Федеральное агентство по образованию
Государственное образовательное учреждение
Высшего профессионального образования
Камышинский технологический институт (филиал)
Волгоградского государственного технологического университета
Кафедра: электроснабжение промышленных предприятий
Семестровое задание
На тему:
Материалы, используемые в электропечестроении
По дисциплине:
"Электротехнологические установки"
Выполнил:
Студент группы КЭЛ-051(с) Ермаков М.М.
Проверил: Панасенко М.В.
Камышин 2007г.
СОДЕРЖАНИЕ
1. Материалы, используемые в электропечестроении
Во всякой электрической печи имеется рабочая камера для нагрева или плавления обрабатываемых в печи материалов. Рабочая камера, область печи с наиболее высокими температурами, отделена от окружающего пространства и внешних конструкций материалом, способным работать при этих температурах и быть достаточно прочным, чтобы выдерживать те нагрузки и удары, которыми он подвергается в печи. Кроме того, он должен плохо проводить тепло, снижая до минимума тепловые потери камеры в окружающее пространство. Материалов, которые удовлетворяли бы всем этим требованиям, в природе не существует. Плотные, механически прочные керамические материалы сравнительно хорошо проводят тепло, пористые легкие, плохо проводящие тепло материалы недостаточно прочны. Поэтому футеровку высокотемпературных и среднетемпературных печей выполняют минимум из двух слоев: внутреннего - огнеупорного, способного работать при рабочей температуре печи и достаточно механически прочного - этот слой воспринимает все нагрузки от нагреваемых изделий и нагревателей; наружного - теплоизоляционного, освобожденного от несения каких-либо нагрузок, кроме собственного веса, но зато обеспечивающего уменьшения до минимума тепловых потерь.
При очень больших для керамических материалов нагрузках применяют упрочнение кладки печи при помощи креплений из жароупорных сталей. Так, при больших пролетах делают подвесные своды на жароупорных балках, из жароупорных сталей выполняют ограждения, защищающие нагреватели и кладку от ударов со стороны загрузки, всякого рода экраны в печах, герметизированные ящики и муфели. Кроме того, части механизмов, находящиеся внутри печи и служащие для перемещения изделий (конвейеры, направляющие рельсы, поддоны и т.п.), также выполняют из жароупорных сталей.
В особую группу должны быть выделены материалы для нагревательных элементов, так как к ним предъявляются специфические требования, касающиеся их электрических свойств.
2. Огнеупорные материалы
К огнеупорным материалам для электропечей предъявляют следующие требования:
Достаточная огнеупорность.
Достаточная механическая прочность при высоких температурах.
Способность выдерживать, не растрескиваясь, резкие колебания температуры (стойкость к термоударам).
Сопротивляемость химическим воздействиям при высоких температурах.
Достаточно малая теплопроводность.
Малая теплоемкость.
Малая электропроводность, как при низких, так и при высоких температурах.
Дешевизна и доступность материалов.
Огнеупорностью в соответствии с ГОСТ 4069 - 69 называется свойство материала противостоять не расплавляясь, воздействию высоких температур. Огнеупорность материала определяется на сделанном из него образце "конусе", имеющем форму усеченной трехгранной пирамиды. Под действием нагрева материал образца постепенно размягчается, и его вершина начинает склоняться к основанию. Температура "падения" образца, когда его вершина достигнет уровня основания, принимается за огнеупорность образца. Так как эта температура может меняться при изменении скорости нагрева, то устанавливают ее не непосредственным измерением, а "пироскопами".
У огнеупорных материалов огнеупорность лежит между 1580 и 17700С. Материалы с огнеупорностью больше 17700С, называются высокоогнеупорными.
Некоторые материалы, являясь достаточно огнеупорными, теряют свою прочность задолго до температуры размягчения и поэтому могут работать механически нагруженными лишь до ограниченных температур. Для того чтобы охарактеризовать способность материала работать в нагруженном состоянии при высоких температурах, определяют в соответствии с ГОСТ 4070 - 48 температуру его деформации под нагрузкой 196,2 кПа. При этом отмечают температуру начала размягчения (НР) образца и температуры его сжатия 4 и 40%.
У некоторых материалов диапазон между началом размягчения и 40% -ным сжатием достаточно большой, и температурный интервал равен 100 - 2000С. У других этот интервал измеряется лишь 20 - 300С (рис.1). Динас и магнезит сохраняют прочность почти до температуры разрушения, другие же материалы теряют прочность задолго до наступления разрушения.
Способность выдерживать, не растрескиваясь, резкие колебания температуры особенно нужна в материалах, применяемых в печах, работающих периодически, а также в зонах с резкими колебаниями температуры. Для определения стойкости к термоударам кирпич быстро нагревают с торца в электрической печи до 8500С, охлаждают в проточной вод, вновь нагревают и так до потери им 20% начальной массы из-за скалывания кусков. Таким образом, стойкость материала к термоударам оценивается по числу водяных теплосмен, которые он выдерживает, данные для некоторых термоупорных материалов даны в табл.1.
Таблица 1. Стойкость к термоударам огнеупорных материалов
Наименование |
Число водяных теплосмен до 20% потери массы |
|
Шамотные изделия |
10 - 25 |
|
Многошамотные изделия |
50 - 100 |
|
Динасовые изделия |
1 - 2 |
|
Магнезитовые изделия |
2 - 3 |
|
Нагревостойкие хромомагнезитовые изделия |
Более 30 |
|
Иногда стойкость материала к термоударам определяют по числу воздушных теплосмен, которые он выдерживает.д.ля этого раму с кирпичами подвергают сначала одностороннему нагреву, а затем охлаждению вентилятором. Это испытание является менее жестким.
Сопротивляемость химическим воздействиям при высоких температурах является также весьма важным свойством для огнеупоров. Необходимо, чтобы огнеупорные материалы не вступали в химические соединения с обрабатываемыми в печи изделиями или с материалом нагревательных элементов, а также с атмосферой печи, так как это опасно не только для самих огнеупоров, но может вывести из строя нагреватели печи или привести к браку изделий. В некоторых печах нагреваются и расплавляются кислые материалы, а в других - основные; очевидно, что и огнеупоры этих печей также должны быть соответственно кислыми в первом случае и основными во втором во избежание химических реакций с этими материалами или шкалами.
Рис.1. Температуры деформации некоторых огнеупоров.
1 - шамотный кирпич класса А; 2 - шамотный кирпич класса Б; 3 - полукислый; 4 - динасовый; 5 - муллитовый; 6 - магнезитовый.
Малая теплопроводность требуется от огнеупорных материалов, так как они отделяют нагретую камеру печи от окружающей среды и через них из камеры проходит поток тепла. Хотя эти потери ограничиваются в основном теплоизоляцией печи, а не огнеупорным слоем, все же температурный перепад в последнем часто является достаточно заметным, а главное он снижает максимальную рабочую температуру теплоизоляции и тем самым увеличивает срок ее службы.
Малая теплоемкость огнеупорных материалов обеспечивает уменьшение аккумулированного футеровкой тепла. Правда, иногда значительная аккумуляция тепла кладкой является положительным фактором, стабилизирующим тепловой режим печи, однако большей частью она приводит к существенному перерасходу энергии, особенно при частых разогревах.
Малая электропроводность огнеупоров желательна, потому что в электрических печах сопротивления они могут применяться как электрические изоляторы для нагревательных элементов, что удешевляет и упрощает кладку. Наконец, требование дешевизны и доступности выдвинуто потому, что огнеупоры являются массовыми материалами, потребляемыми в больших количествах не только при изготовлении печей, но и их эксплуатации. Особенно много огнеупоров потребляют дуговые сталеплавильные и рудотермические печи.
Огнеупорные материалы применяются в виде сплошных и пористых кирпичей и фасонных камней. Фасонные камни изготавливаются самых различных конфигураций и размеров, причем, как правило, чем больше размер камня, тем труднее его изготовить и тем он дороже, но зато тем надежнее кладка, набранная из таких камней.
Огнеупорные материалы применяются иногда и в виде порошка, огнеупорных бетонов, набивных масс и обмазок, а также в виде мелких готовых деталей - трубок, крючков, втулок и т.п., главным образом в электрических печах сопротивления в качестве изоляторов нагревателей.
Огнеупоры являются массовыми материалами, поэтому значительное применение нашли лишь такие соединения, которые широко распространены на земной поверхности и могут добываться непосредственно из карьеров. Исключением являются некоторые высокоогнеупорные материалы, отличающиеся весьма ценными свойствами, но дорогие и редкие или получаемые искусственным путем.
Основой огнеупорных и высокоогнеупорных материалов являются три огнеупорных окисла - кремнезем, глинозем и окись магния - периклаз. Они распространены в природе, образуя друг с другом и другими веществами многочисленные соединения. Особенно широко используется система "кремнезем - глинозем".
Изделия |
Содержание Al2O3,% |
Температура обжига, 0С |
Огнеупорность, 0С |
Температура деформации, 0С |
||
НР |
40% |
|||||
Шамотно-глиняные |
38 - 40 |
1350 - 1420 |
1710 - 1650 |
1400 |
1600 |
|
Шамотно-каолиновые |
40 - 44 |
1450 - 1500 |
1770 - 1750 |
1500 |
1650 |
|
Добытые материалы после предварительного обжига и помола смешиваются со связующими веществами, формуются, подвергаются сушке и обжигаются при температуре не ниже 15500С. В результате получаются силлиманитовые изделия, отличающиеся хорошими огнеупорностью и механической прочностью при высоких температурах.
Еще более высококачественные изделия изготавливают из плавленого муллита, получаемого расплавлением боксита в присутствии кокса древесных опилок в электрической дуговой печи. Полученный материал после размельчения смешивается с глиной, формуется и обжигается при 1500 - 17000С.
Плавильный муллит обладает малым коэффициентом расширения, поэтому выполненные из него изделия являются весьма термостойкими и не растрескиваются при резких изменениях температуры; их огнеупорность 1800 - 18500С, начало деформации под нагрузкой 196,2 кПа у лучших сортов достигает 17000С.
Плавленый муллит применяется главным образом для изготовления мелких изделий, а также в качестве формовочного материала для индукционных плавильных печей.
Кроме того, он также применяется в стеклоплавильных печах. Для этой цели полученный в электролитической печи муллит отливается в формы и после длительного весьма медленного охлаждения в виде плавленых муллитных брусьев идет на выкладку ванн стеклоплавильных печей. Такой литой муллит имеет среднюю плотность 3300кг/м3, предел прочности на сжатие 300 - 500 МПа, температура начала размягчения под нагрузкой 196,2 кПа 1700С.
Из гидратов глинозема также могут быть получены высокоогнеупорные высокоглиноземистые изделия. Природные гидраты глинозема - диаспоры и бокситы - сильно загрязнены минеральными примесями. Поэтому хотя на базе обогащенного акташского диаспора можно получать изделия с содержанием глинозема до 68%, их свойства приближаются к свойствам силлиманитовых изделий.
Искусственный гидрат глинозема, получаемый путем химической переработки бокситов и прокаленный при 1000 - 12000С, превращается в технический глинозем, содержащий до 99,0 - 99,5% глинозема. Из технического глинозема спеканием его с глиной может быть получен муллито-корундовый шамот, а последний по способу изготовления много шамотных изделий позволяет получить корундовые изделия с содержанием глинозема около 73%, со средней плотностью 2700кг/м3, огнеупорностью свыше 18000С и с температурой начала деформации под нагрузкой 196,2 кПа в 15800С.
Из технического глинозема могут быть получены и чистые корундовые рекристаллизованные изделия. Для этой цели производиться дополнительный обжиг глинозема при температуре 1450 - 16000С, его размельчение и формирование из него изделий с последующим вторичным обжигом при 17000С. Полученные рекристаллизованные изделия содержат до 99,0 - 99,7% глинозема, обладают огнеупорностью выше 20000С и температурой начала деформации под нагрузкой 196,2 кПа в 19000С. Однако большая усадка их и сравнительно невысокая нагревостойкость позволяют изготовлять таким путем лишь тонкостенные, полые и небольшого размера изделия. Поэтому из того же глинозема, а также из белого электрокорунда или монокорунда со связкой из высокодисперсного рекристаллизованного корунда получают более совершенные по своим свойствам корундовые изделия также с огнеупорностью около 20000С и с температурой начала деформации под нагрузкой 196,2 кПа в 18500С.
На противоположном конце системы SiO2-А12О3 находится динас, материал, имеющий явно выраженный кислый характер. Поэтому динас применяется главным образом для выкладки футеровки дуговых и индукционных сталеплавильных печей, работающих с использованием кислых - шлаков. Замечательным свойством динаса является его механическая прочность при высоких температурах. В то время как остальные материалы снижают постепенно свою прочность по мере повышения температуры, динас сохраняет свои механические свойства почти до температуры расплавления. Ввиду этого он является одним из самых прочных огнеупорных материалов и поэтому идёт на выкладку нагруженных частей футеровки, сводов и арок дуговых сталеплавильных и руднотермических печей.
Основным сырьем для изготовления динаса являются кварциты. Динасовый кирпич имеет белый или слегка желтоватый цвет, в изломе, видны зерна кварца. Масса стандартного кирпича 3,2-3,3 кг. В соответствии с ГОСТ 4157-69 и 156Б-71 - динасовые изделия могут быть отнесены к -I, II или особому классу или к электродинасам (изделия для электросталеплавильных печей)
Недостатком динасового кирпича является его склонность к растрескиванию при резких колебаниях температуры. Наиболее тяжелым условиям динас подвергается в сводах сталеплавильных печей, на внутренней поверхности которых тёмпература доходит до 1750 0С. При этой температуре поверхность кирпича оплавляется, свод печи изнутри покрывается сосульками и он держится в основном наружными, более холодными частями кирпичей. Кроме того, свод периодически охлаждается, особенно в печах с верхней загрузкой. Срок службы свода в таких условиях, понятно невелик и измеряется десятками часов. Поэтому для сводов крупных дуговых сталеплавильных печей рекомендуется применять лишь электродинас, изготовленный из особо плотных кварцитов с содержанием SiO2 не менее 97,5%. Такой динас, имеющий и несколько большую огнеупорность и большую механическую прочность при высоких температурах, обеспечивает увеличение срока, службы свода дуговых сталеплавильных печей. В электрических печах сопротивления динасовые изделия применяются редко.
Весьма важная группа огнеупоров содержит в качестве основной составляющей периклаз (окись магния МgO), обладающий в чистом виде очень высокой огнеупорностью (2800 °С). К этой-группе относятся магнезитовые огнеупоры, изготавливаемые в основном из горной породы магнезита.
В результате обжига и ряда операций получаются магнезитовые кирпичи темно коричневого цвета, масса стандартного кирпича 4,5кг.
В соответствии с ГОСТ 4689-63 - огнеупорность магнезитовых изделий должна быть не менее 2000 0С, предел прочности на сжатие при нормальной температуре не ниже_ 40 МПа, температура начала размягчения при нагрузке 196,2 кПа, не менее 1500 °С.
Магнезитовые кирпичи применяются главным образом для выкладки футеровки металлургических печей, мартеновских и дуговых электросталеплавильных, работающих на основном процессе, а также некоторых руднотермических печей. Обладая высокой огнеупорностью эти кирпичи в то же время не имеют достаточной прочности при высоких температурах и достаточной термоустойчивости. Поэтому они не могут быть использованы для выкладки сводов и арок печей, работающих на основном процессе, их приходится выполнять из динасового кирпича, как более прочного.
3. Теплоизоляционные материалы
Для уменьшения тепловых потерь печи необходимо, чтобы кладка ее обладала большим тепловым сопротивлением. Но огнеупорная часть кладки должна быть механически прочной, а следовательно выполнена из материала с большой средней плотностью и достаточно большой теплопроводностью. Поэтому футеровки печей, как правило, выполняются составными, внутренняя часть выкладывается из огнеупора, а наружная часть из теплоизоляционных материалов. В соответствии с этим электропечестроение предъявляет к теплоизоляционным материалам следующие требования: малая теплопроводность; малая удельная теплоемкость; достаточная огнеупорность; некоторая механическая прочность; дешевизна и доступность.
Теплоизоляционные материалы работают в печи в более легких условиях, чем огнеупоры. Температура, действию которой они подвергаются, всегда меньше, так как огнеупорный слой берет на себя часть температурного перепада и предохраняет их от размывающего действия шлаков, всякого рода ударных и истирающих усилий, разгружает от механических напряжений. Поэтому их огнеупорность может быть меньше, требуется лишь весьма относительная механическая прочность, например способность, выдерживать свой собственный, но зато требование малой теплопроводности является для них основным. Требование дешевизны и доступности определяется опять таки тем обстоятельством, что тепло изоляционные материалы потребляются в больших количествах.
Теплоизоляционные материалы применяются в виде кирпичей, плит, фасонных изделий, в виде засыпки (порошок, вата), мастики, которой покрываются горячие части печей, картона, матрацев, матов.
Одними из наиболее распространенных теплоизоляционных материалов являются диатомит и трепел. Диатомит представляет собой скопление скелетов мельчайших водорослей диатомей, состоящих из кремнекислоты и пронизанных мельчайшими порами. Трепел имеет тот же состав, но в нем в микроскоп нельзя различить отдельные скелеты водорослей.
Для получения пористого диатомитового кирпича применяется главным образом способ выгорающих добавок. В качестве последних: наилучшие результаты дает пробка (негигроскопична, малая зольность, округлая форма пор), затем древесный уголь, худшие результаты дают опилки и торф. Диатомитовый кирпич выполняется трех классов, средней плотностью 500, 600 и 700 кг/м3, и может применяться до 900 °С. Для теплоизоляции электрических печей желательно применять диатомитовые кирпичи марки 500.
Целый ряд теплоизоляционных материалов приготавливается на базе асбеста. Асбест представляет собой минерал волокнистого строения, крупнейшие залежи которого имеются, у нас на Урале. Он состоит из тончайших, нитей, очень прочных на растяжение, но легко перетирающихся. Если асбест распушить, то он принимает вид волокнистой массы со средней плотностью 250-800 кг/м3 в зависимости от сорта асбеста и степени его распуши. В таком виде он может быть использован как теплоизоляционная засыпка (асбестит), способная работать до 600 °С. Температура плавления асбеста значительно выше, около 1500°С но при 700°С асбест теряет всю содержащуюся в нем воду и рассыпается, лишаясь своих теплоизоляционных свойств. Недостатком асбеста является его высокая гигроскопичность.
При склеивании асбестовых волокон белой глиной с органическими добавками и прессовании под высоким давлением получаются, асбестовый картон бумага, а сплетением волокон асбеста с хлопчатобумажными нитями изготавливается асбестовый шнур. Картон и шнур также используются в качестве теплоизоляции.
Асбестовая засыпка является малоэффективной изоляцией, и поэтому она применяется в настоящее время в чистом виде лишь в редких случаях, но входит составляющей, частью в ряд других теплоизоляционных материалов.
Для обмазки горячих поверхностей применяются так называемые мастичные материалы. Такими материалами являются асбозурит (70 % диатомита или трепела и 30% асбеста пятого и седьмого сортов), новоасбозурит (70 % диатомита или трепела, 15% шиферных отходов 15% асбеста пятого и шестого сортов) и др.
К высокоэффективным теплоизоляционным материалам относятся асбомагнезиальные массы например совелит (85 % смеси двойной углекислой соли кальция и магния и 15% распушенного асбеста). Они применяются в виде изделий (плитки, сегменты и т.п.), накладываемых на защищаемые поверхности. Материалы эти, обладая весьма низкой вредней плотностью и хорошими теплоизоляционными свойствами, являются в то же время малопрочными и могут быть использованы до 350 - 500 0С. Основным же недостатком их является высокая стоимость, ограничивающая их применение.
Широкое применение получили в последнее время стеклянная и минеральная ваты, а также стеклянное волокно.
Стеклянная и минеральная ваты и волокно применяются в форме засыпки для заполнёния пространства между, огнеупорной кладкой и кожухом печи, а также в виде матрацев и матов. Стеклянное волокно лучше выносит вибрацию (вата от вибрации уплотняется, в целях уменьшения этого явления ее несколько уплотняют при укладке, лучше ее применять в виде матов), кроме того, оно менее вредно. Мелкие волокна ваты, попадая на слизистые оболочки, раздражают их, вызывая воспаление, тогда как длинные нити стеклянного волокна не вызывают этих явлений. Однако стеклянное волокно значительно дороже ваты.
Стеклянные волокна и нити начинают спекаться при 500-6000С, поэтому их можно применять лишь до 450-500 0С, шлаковая (минеральная) вата выдерживает более высокую температуру - до 650оС.
Хорошей тепловой изоляцией, особенно для высокотемпературных печей, является зонолит или обожженный вермикулит.
Зонолит применяется пока главным образом в виде насыпной изоляции, он имеет малую среднюю плотность (120-250 кг/м3) и, следовательно, является прекрасным теплоизоляционным материалом, но главное его преимущество заключается в его стойкости. В последнее время из зоколита начали изготовлять формованные изделия, плитки, кирпичи и т.п.
4. Дешевизна и недефицитность
Большинство современных жароупорных материалов являются дефицитными и настолько дорогими, что их стоимость составляет во многих печах сопротивления весьма значительную часть (иногда до 50%) от их общей стоимости. Это объясняется как трудностью изготовления и обработки многих материалов, так и дефицитностью и дороговизной их основных легирующих составляющих, таких кат никель, металлический хром, малоуглеродистый феррохром и т.п. Поэтому задача нахождения новых, более дешевых жароупорных материалов является весьма актуальной. Основные жароупорные материалы - это металлы, так как они в наибольшей степени удовлетворяют вышеприведенным требованиям. Окисляемость металлов под действием высокой температуры различна. Некоторые металлы дают легкоплавкие окислы, испаряющиеся при нагреве, в этом случае процесс окисления будет нарастающим во времени. То же самое получится, если окисел будет склонен растрескиваться при нагреве. Если же пленка окислов не имеет тенденции отскакивать от металла и имеет плотное строение, то она является защитной пленкой, а окисление металла постепенно, по мере ее образования, будет уменьшаться. В этом случае количество образующихся окислов принимают пропорциональным квадратному корню из времени нагрева.
Такого рода плотные защитные пленки образуются у металлов, окислы которых при образовании имеют больший объем, чем сам металл. Наоборот, металлы, у которых объем окислов меньше объема, занимаемого металлом, из которого они образовались, дают пористую пленку и у этих металлов количество образующихся окислов растет прямо пропорционально времени.
Металлами, дающим при добавке в сталь плотные защитные пленки, являются в первую очередь хром, алюминий и кремний. Однако чисто кремнистые или алюминиевые стали не применяются, так как они не куются, очень хрупки и лишь с трудом поддаются механической обработке. Значительное улучшение как обрабатываемости сталей, так и их механических свойств при высоких температурах особенно крипоустойчивости, можно получить добавлением никеля, например, в хромистые жароупорные стали.
Поэтому в зависимости от предъявляемых требований в электропечестроении применяются две группы сталей: хромистые - для ненагруженных конструкций и хромоникелевые - для нагруженных конструкций.
Теплопроводность хромистых сталей, как и у всех вообще жароупорных сталей, существенно меньше, чем у обычных углеродистых, причем у малолегированных сталей она уменьшается с температурой, а у высокохромистых слегка увеличивается.
Удельное электрическое сопротивление высокохромистых сталей намного больше, чем у углеродистых, но температурный коэффициент меньше.
Среднелегированные стали свариваются хорошо электродами из того же состава, но требуют специальных флюсов и отжига сварных швов. Высокохромистые стали свариваются электродами из хромистых сталей с трудом под флюсом, лучше их сваривать в подогретом состоянии хромоникелевыми электродами. Литье из хромистых сталей по своим свойствам мало отличается от кованых сплавов. С увеличением содержания углерода материал становится все тверже и при С?1% отливки очень трудно обрабатывать.
Хромоникелевые стали являются самыми распространенными в электропечестроении, так как наряду с высокой жаростойкостью и достаточной механической прочностью, а также крипоустойчивостью они хорошо обрабатываются. Хромоникелевые стали хорошо свариваются автогеном и электросваркой.
Ввиду своей механической прочности при высоких температурах и крипоустойчивости они особенно пригодны для изготовления нагруженных деталей печей, особенно деталей печных транспортирующих устройств. Недостатками этих сталей являются большой коэффициент линейного расширения и, как следствие, большая склонность к короблению по сравнению с хромистыми сталями, а также чувствительность к парам серы. Кроме того, они значительно дороже хромистых сталей, поэтому последние следует применять наравне с хромоникелевыми там, где отсутствует механическая нагрузка.
Иногда детали, находящиеся в зоне высоких температур, делают из обычной стали, но насыщают их поверхностный слой алюминием на глубину в несколько десятых долей миллиметру. Алюминий весьма интенсивно увеличивается сопротивляемость стали окислению, и поэтому такие детали - контейнеры, пирометрические трубки и т.п., не несущие нагрузок, могут успешно работать до 800 °С.
В высокотемпературных печах (1000 - 1350 °С) для подовых перекрытий применяют карборундовые подовые жароупорные плиты. Обладая достаточно большой теплопроводностью, не намного меньшей, чем у стальных плит, они обладают значительно меньшей прочностью и поэтому требуют осторожного обращения.
"Электрические промышленные печи", Свенчанский, 1981г.
"Электрические печи сопротивления и дуговые печи", Гутман, 1983г.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |